organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Oxo-2H-chromen-7-yl 3-methyl­butano­ate

crossmark logo

aJoint Research and Innovation Unit for Engineering Sciences and Techniques, (UMRI STI), Research Team: Instrumentation, Image and Spectroscopy, Félix Houphouet-Boigny National Polytechnic Institute, BP 1093 Yamoussoukro, Côte d'Ivoire, bLaboratory of Molecular Chemistry and Materials (LC2M), Research Team: Organic Chemistry and Phytochemistry, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, cLaboratory of Fundamental and Applied Physics, Nangui Abrogoua University, Abidjan, Côte d'Ivoire, and dCenter for Interdisciplinary Research on Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
*Correspondence e-mail: abouakoun@gmail.com, djandeabdou@yahoo.fr

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 13 January 2025; accepted 21 February 2025; online 28 February 2025)

The title compound, C14H14O4, was synthesized by O-acyl­ation of umbelliferone with isovaleryl chloride in the presence of diethyl ether as a solvent and pyridine as a base. The side chain moiety i.e. the acetate fragment linking to the methyl­ethyl group is almost orthogonal to the almost planar (r.m.s deviation = 0.020 Å) coumarin ring system, making an angle of 76.26 (7)°. In the crystal, the mol­ecules form centrosymmetric dimers through pairwise C—H⋯O hydrogen bonds, generating R22(8) and R22(18) loops that lie within the crystallographic ac plane and propagate along the [001] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mol­ecules containing the coumarin moiety have attracted the attention of researchers since examples of these compounds have been shown to have extensive biological properties, including anti-HIV (Yu et al., 2003[Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K.-H. (2003). Med. Res. Rev. 23, 322-345.], 2007[Yu, D., Morris-Natschke, S. L. & Lee, K.-H. (2007). Med. Res. Rev. 27, 108-132.]), anti-coagulant (Abernethy et al., 1969[Abernethy, J. L. (1969). J. Chem. Educ. 46, 561-568.]), anti-oxidant (Vukovic et al., 2010[Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5-15.]), anti-tumour (Basanagouda et al., 2009[Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, P., Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485-495.]), anti-bacterial (Vukovic et al., 2010[Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5-15.]) and anti-inflammatory (Emmanuel-Giota et al., 2001[Emmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). J. Heterocycl. Chem. 38, 717-722.]) activity. They are also used in the perfumery and agrochemical industries as activators and stabilizers (Bauer et al., 1988[Bauer, K., Garbe, D. & Surburg, H. (1988). Flavors and fragrances. In Ullmann's Encyclopedia of Industrial Chemistry, Vol. A11, edited by W. Gerhartz, Y. S. Yamamoto, B. Elvers, J. F. Rounsaville & G. Schulz, 5th rev, pp. 208-209. New York: VCH Publishers]; Boisde & Meuly, 1993[Boisde, P. M. & Meuly, W. C. (1993). Coumarin. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th Ed., Vol. 7, edited by J. I. Kroschwitz & M. Howe-Grant, M. pp. 647-658. New York: John Wiley.]).

IIn this work, we describe the synthesis and structure of the title compound, C14H14O4, Fig. 1[link]. An analysis of the bond lengths in this structure shows a slightly uneven distribution around the pyrone ring, as indicated by the lengths of the C2=C3 [1.345 (3) Å] and C1—C2 [1.453 (3) Å] bonds, which are shorter and longer, respectively, than what would be expected for a Car—Car bond. This suggests that the electron density is less concentrated in the C2=C3 bond of the pyran-2-one ring, resulting in the formation of a double bond, as observed in other coumarin ester derivatives (Abou et al., 2020[Abou, A., Djandé, A., Ilagouma, A. T., Ouari, O. & Saba, A. (2020). Am. J. Org. Chem, 10, 1-16.]; Koulabiga et al., 2024[Koulabiga, Z., Yao, K. H., Abou, A., Djandé, A., Giorgi, M. & Coussan, S. (2024). Am. J. Org. Chem. 12, 1-19.]; Yao et al., 2024[Yao, H. K., Zakaria, K., Abou, A., Djandé, A., Giorgi, M. & Ouari, O. (2024). Am. J. Chem, 14, 13-26.]). Furthermore, the structure highlights an almost planar coumarin ring system (puckering τ parameter = 0.7; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Likewise, the crystal structure reveals the generation of dimeric units via C—H⋯O inter­actions. These dimers are linked by further C—H⋯O contacts into chains along the [001] direction (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.98 (3) 2.46 (3) 3.296 (2) 142.6 (19)
C6—H5⋯O1ii 0.96 (3) 2.51 (3) 3.444 (2) 167 (2)
C11—H11A⋯O2ii 1.03 (3) 2.60 (3) 3.245 (2) 120.5 (18)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, -y, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2]
Figure 2
A view of the crystal packing showing the association of mol­ecules into centrosymmetric dimers through C—H⋯O hydrogen bonds, forming R22(8) and R22(18) loops extending parallel to the ac crystallographic plane. H atoms not involved in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

To a solution of isovaleryl chloride (0.76 ml, 6.17 mmol, 1 equiv.) in dried diethyl ether (16 ml) was added dried pyridine (2.31 ml, 4.7 equiv.) and umbelliferone (1 g, 6.17 mmol, 1 equiv.) in small portions over 30 min, with vigorous stirring. The reaction mixture was left stirring at room temperature for 3 h. The resulting mixture was next poured into a separating funnel containing 40 ml of chloro­form and washed with diluted hydro­chloric acid solution until the pH was 2–3. The organic phase was extracted, washed with water to neutrality, dried with magnesium sulfate and the solvent removed in vacuo. The obtained crude product was filtered off with suction, washed with petroleum ether and recrystallized from the mixed solvents of chloro­form–hexane (1:3), yielding a white powder of the title compound, 2-oxo-2H-chromen-7-yl-3-methyl­butano­ate (0.92 g, 60%). Colourless crystals suitable for single-crystal X-ray diffraction analysis were then obtained from an acetone solution, after the solvent was allowed to evaporate slowly at ambient conditions.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Three reflections, ([\overline{3}]46), ([\overline{2}]04), ([\overline{1}]04) with ΔF/σ(F) higher than 10, were found to have too low intensities, caused by a systematic error, probably by shielding by the beam-stop inter­ference for reflections ([\overline{2}]04), ([\overline{1}]04) while for ([\overline{3}]46) at higher 2θ angles, the less area irradiated would have an effect of decreasing diffraction intensity. The depth of penetration of the beam becomes commensurably deeper with higher angles. This effectively increases background as well as a sample displacement effect.. They were omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula C14H14O4
Mr 246.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 15.370 (3), 5.4488 (10), 16.339 (3)
β (°) 117.426 (7)
V3) 1214.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.45 × 0.44 × 0.16
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.956, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 41227, 3741, 2799
Rint 0.068
(sin θ/λ)max−1) 0.718
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.203, 1.03
No. of reflections 41227
No. of parameters 219
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.50, −0.39
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

2-Oxo-2H-chromen-7-yl 3-methylbutanoate top
Crystal data top
C14H14O4F(000) = 520
Mr = 246.25Dx = 1.347 Mg m3
Monoclinic, P21/cMelting point = 341–343 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.370 (3) ÅCell parameters from 3741 reflections
b = 5.4488 (10) Åθ = 5.0–61.4°
c = 16.339 (3) ŵ = 0.10 mm1
β = 117.426 (7)°T = 296 K
V = 1214.5 (4) Å3Prism, white
Z = 40.45 × 0.44 × 0.16 mm
Data collection top
SuperNova, Dual, Cu at home/near, AtlasS2
diffractometer
3741 independent reflections
Radiation source: micro-focus sealed X-ray tube2799 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.068
Detector resolution: 5.3048 pixels mm-1θmax = 30.7°, θmin = 2.5°
ω scansh = 2221
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 77
Tmin = 0.956, Tmax = 1.000l = 2323
41227 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: difference Fourier map
wR(F2) = 0.203All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.1174P)2 + 0.7176P]
where P = (Fo2 + 2Fc2)/3
41227 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Refinement. All non-H atoms were refined anisotropically. H atoms were located in difference Fourier maps and refined freely with an isotropic displacement parameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.30502 (9)0.5548 (2)0.49786 (9)0.0262 (3)
O10.60720 (9)0.1291 (2)0.60615 (8)0.0247 (3)
O20.74608 (10)0.0712 (3)0.64517 (10)0.0315 (3)
O40.25820 (10)0.2488 (3)0.56157 (10)0.0362 (4)
C50.55518 (12)0.3187 (3)0.61799 (11)0.0225 (3)
C40.60061 (12)0.4940 (3)0.68735 (11)0.0230 (3)
C70.40292 (12)0.5249 (3)0.56429 (11)0.0236 (3)
C60.45580 (13)0.3301 (3)0.55611 (11)0.0240 (3)
C30.70488 (13)0.4686 (3)0.74636 (12)0.0268 (4)
C110.13750 (13)0.4489 (4)0.42324 (12)0.0276 (4)
C10.70685 (13)0.1025 (3)0.66096 (12)0.0249 (3)
C120.10241 (13)0.7130 (3)0.42369 (12)0.0262 (4)
C100.23739 (13)0.3983 (3)0.50137 (12)0.0257 (3)
C90.54337 (13)0.6854 (3)0.69455 (12)0.0260 (3)
C20.75496 (13)0.2830 (4)0.73351 (12)0.0279 (4)
C80.44435 (13)0.7026 (3)0.63285 (12)0.0258 (3)
C140.00084 (16)0.7484 (4)0.34503 (14)0.0361 (4)
C130.10591 (15)0.7726 (4)0.51641 (14)0.0312 (4)
H50.4273 (19)0.210 (5)0.5086 (19)0.040 (7)*
H30.7378 (17)0.589 (5)0.7957 (17)0.036 (6)*
H90.5763 (18)0.811 (5)0.7445 (19)0.041 (7)*
H80.4032 (18)0.849 (5)0.6331 (18)0.037 (6)*
H20.8282 (17)0.258 (4)0.7702 (16)0.027 (6)*
H11A0.1421 (18)0.418 (5)0.3633 (18)0.039 (7)*
H14A0.051 (2)0.631 (6)0.352 (2)0.048 (7)*
H14B0.0221 (17)0.929 (5)0.3426 (17)0.034 (6)*
H11B0.0901 (18)0.329 (5)0.4256 (17)0.035 (6)*
H120.1473 (16)0.826 (4)0.4176 (15)0.026 (5)*
H13A0.0868 (17)0.946 (5)0.5179 (17)0.036 (6)*
H13B0.1761 (18)0.750 (4)0.5683 (18)0.033 (6)*
H13C0.059 (2)0.656 (6)0.5256 (19)0.052 (8)*
H14C0.005 (2)0.709 (5)0.282 (2)0.051 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0272 (6)0.0259 (6)0.0257 (6)0.0001 (5)0.0122 (5)0.0045 (5)
O10.0292 (6)0.0230 (6)0.0239 (6)0.0005 (5)0.0141 (5)0.0023 (5)
O20.0351 (7)0.0299 (7)0.0336 (7)0.0045 (5)0.0193 (6)0.0002 (5)
O40.0338 (7)0.0409 (8)0.0323 (7)0.0023 (6)0.0138 (6)0.0128 (6)
C50.0300 (8)0.0205 (7)0.0202 (7)0.0000 (6)0.0144 (6)0.0010 (6)
C40.0293 (8)0.0228 (7)0.0196 (7)0.0012 (6)0.0136 (6)0.0009 (6)
C70.0266 (8)0.0250 (8)0.0211 (7)0.0005 (6)0.0126 (6)0.0031 (6)
C60.0291 (8)0.0233 (8)0.0205 (7)0.0021 (6)0.0123 (6)0.0010 (6)
C30.0309 (8)0.0291 (8)0.0207 (7)0.0023 (7)0.0121 (6)0.0005 (6)
C110.0277 (8)0.0298 (9)0.0241 (8)0.0000 (7)0.0108 (6)0.0022 (7)
C10.0301 (8)0.0245 (8)0.0234 (7)0.0009 (6)0.0152 (6)0.0034 (6)
C120.0278 (8)0.0281 (8)0.0246 (8)0.0000 (6)0.0138 (6)0.0015 (6)
C100.0289 (8)0.0259 (8)0.0242 (8)0.0002 (6)0.0139 (6)0.0008 (6)
C90.0336 (8)0.0239 (8)0.0228 (7)0.0022 (6)0.0150 (7)0.0033 (6)
C20.0287 (8)0.0318 (9)0.0224 (8)0.0005 (7)0.0112 (6)0.0009 (7)
C80.0341 (9)0.0226 (8)0.0254 (8)0.0011 (6)0.0177 (7)0.0000 (6)
C140.0345 (10)0.0391 (11)0.0289 (9)0.0071 (8)0.0097 (8)0.0023 (8)
C130.0348 (9)0.0335 (10)0.0294 (9)0.0013 (7)0.0184 (8)0.0033 (7)
Geometric parameters (Å, º) top
O3—C101.366 (2)C11—H11A1.03 (3)
O3—C71.402 (2)C11—H11B0.99 (3)
O1—C51.373 (2)C1—C21.453 (3)
O1—C11.380 (2)C12—C141.526 (3)
O2—C11.212 (2)C12—C131.526 (3)
O4—C101.201 (2)C12—H120.96 (2)
C5—C61.392 (2)C9—C81.388 (3)
C5—C41.398 (2)C9—H91.00 (3)
C4—C91.404 (2)C2—H21.01 (2)
C4—C31.447 (2)C8—H81.02 (3)
C7—C61.380 (2)C14—H14A1.04 (3)
C7—C81.393 (2)C14—H14B1.03 (3)
C6—H50.96 (3)C14—H14C1.03 (3)
C3—C21.345 (3)C13—H13A0.99 (3)
C3—H30.98 (3)C13—H13B1.03 (2)
C11—C101.502 (2)C13—H13C1.03 (3)
C11—C121.538 (3)
C10—O3—C7117.47 (13)C13—C12—C11110.59 (15)
C5—O1—C1122.11 (13)C14—C12—H12110.5 (13)
O1—C5—C6116.52 (14)C13—C12—H12105.5 (13)
O1—C5—C4121.48 (15)C11—C12—H12109.0 (14)
C6—C5—C4121.98 (15)O4—C10—O3122.46 (16)
C5—C4—C9118.50 (16)O4—C10—C11127.06 (17)
C5—C4—C3117.45 (15)O3—C10—C11110.44 (15)
C9—C4—C3124.04 (16)C8—C9—C4120.59 (16)
C6—C7—C8122.74 (16)C8—C9—H9121.2 (15)
C6—C7—O3118.98 (15)C4—C9—H9118.2 (15)
C8—C7—O3118.16 (15)C3—C2—C1121.56 (17)
C7—C6—C5117.53 (15)C3—C2—H2124.7 (13)
C7—C6—H5122.5 (15)C1—C2—H2113.7 (13)
C5—C6—H5119.9 (15)C9—C8—C7118.63 (16)
C2—C3—C4120.40 (16)C9—C8—H8121.7 (15)
C2—C3—H3121.0 (14)C7—C8—H8119.5 (15)
C4—C3—H3118.6 (14)C12—C14—H14A111.2 (16)
C10—C11—C12113.02 (15)C12—C14—H14B109.9 (13)
C10—C11—H11A106.7 (14)H14A—C14—H14B111 (2)
C12—C11—H11A109.6 (15)C12—C14—H14C112.4 (16)
C10—C11—H11B109.1 (14)H14A—C14—H14C106 (2)
C12—C11—H11B110.5 (15)H14B—C14—H14C107 (2)
H11A—C11—H11B108 (2)C12—C13—H13A110.6 (15)
O2—C1—O1117.13 (16)C12—C13—H13B109.7 (14)
O2—C1—C2125.87 (17)H13A—C13—H13B107.9 (19)
O1—C1—C2116.99 (15)C12—C13—H13C108.1 (16)
C14—C12—C13110.90 (16)H13A—C13—H13C110 (2)
C14—C12—C11110.18 (15)H13B—C13—H13C110 (2)
C1—O1—C5—C6177.72 (14)C5—O1—C1—C20.9 (2)
C1—O1—C5—C40.8 (2)C10—C11—C12—C14177.74 (16)
O1—C5—C4—C9178.90 (14)C10—C11—C12—C1354.8 (2)
C6—C5—C4—C90.5 (2)C7—O3—C10—O44.3 (3)
O1—C5—C4—C30.1 (2)C7—O3—C10—C11177.61 (14)
C6—C5—C4—C3178.32 (15)C12—C11—C10—O4119.0 (2)
C10—O3—C7—C674.6 (2)C12—C11—C10—O358.91 (19)
C10—O3—C7—C8109.20 (18)C5—C4—C9—C81.4 (3)
C8—C7—C6—C52.0 (3)C3—C4—C9—C8177.38 (16)
O3—C7—C6—C5174.03 (14)C4—C3—C2—C10.2 (3)
O1—C5—C6—C7177.36 (14)O2—C1—C2—C3179.25 (18)
C4—C5—C6—C71.1 (2)O1—C1—C2—C30.4 (3)
C5—C4—C3—C20.4 (2)C4—C9—C8—C70.6 (3)
C9—C4—C3—C2178.36 (17)C6—C7—C8—C91.2 (3)
C5—O1—C1—O2179.85 (15)O3—C7—C8—C9174.88 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.98 (3)2.46 (3)3.296 (2)142.6 (19)
C6—H5···O1ii0.96 (3)2.51 (3)3.444 (2)167 (2)
C11—H11A···O2ii1.03 (3)2.60 (3)3.245 (2)120.5 (18)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Institute Jean Barriol (Université de Lorraine, France) for the X-ray diffraction measurements and the AFRAMED project for the crystal structure determination..

References

First citationAbernethy, J. L. (1969). J. Chem. Educ. 46, 561–568.  CrossRef CAS Web of Science Google Scholar
First citationAbou, A., Djandé, A., Ilagouma, A. T., Ouari, O. & Saba, A. (2020). Am. J. Org. Chem, 10, 1–16.  CAS Google Scholar
First citationBasanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, P., Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.  CrossRef CAS Google Scholar
First citationBauer, K., Garbe, D. & Surburg, H. (1988). Flavors and fragrances. In Ullmann's Encyclopedia of Industrial Chemistry, Vol. A11, edited by W. Gerhartz, Y. S. Yamamoto, B. Elvers, J. F. Rounsaville & G. Schulz, 5th rev, pp. 208–209. New York: VCH Publishers  Google Scholar
First citationBoisde, P. M. & Meuly, W. C. (1993). Coumarin. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th Ed., Vol. 7, edited by J. I. Kroschwitz & M. Howe-Grant, M. pp. 647–658. New York: John Wiley.  Google Scholar
First citationEmmanuel–Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou–Litina, D. J. (2001). J. Heterocycl. Chem. 38, 717–722.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoulabiga, Z., Yao, K. H., Abou, A., Djandé, A., Giorgi, M. & Coussan, S. (2024). Am. J. Org. Chem. 12, 1–19.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, H. K., Zakaria, K., Abou, A., Djandé, A., Giorgi, M. & Ouari, O. (2024). Am. J. Chem, 14, 13–26.  Google Scholar
First citationYu, D., Morris–Natschke, S. L. & Lee, K.-H. (2007). Med. Res. Rev. 27, 108–132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, D., Suzuki, M., Xie, L., Morris–Natschke, S. L. & Lee, K.-H. (2003). Med. Res. Rev. 23, 322–345.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146