

organic compounds
2-Oxo-2H-chromen-7-yl 3-methylbutanoate
aJoint Research and Innovation Unit for Engineering Sciences and Techniques, (UMRI STI), Research Team: Instrumentation, Image and Spectroscopy, Félix Houphouet-Boigny National Polytechnic Institute, BP 1093 Yamoussoukro, Côte d'Ivoire, bLaboratory of Molecular Chemistry and Materials (LC2M), Research Team: Organic Chemistry and Phytochemistry, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, cLaboratory of Fundamental and Applied Physics, Nangui Abrogoua University, Abidjan, Côte d'Ivoire, and dCenter for Interdisciplinary Research on Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
*Correspondence e-mail: abouakoun@gmail.com, djandeabdou@yahoo.fr
The title compound, C14H14O4, was synthesized by O-acylation of umbelliferone with isovaleryl chloride in the presence of diethyl ether as a solvent and pyridine as a base. The side chain moiety i.e. the acetate fragment linking to the methylethyl group is almost orthogonal to the almost planar (r.m.s deviation = 0.020 Å) coumarin ring system, making an angle of 76.26 (7)°. In the crystal, the molecules form centrosymmetric dimers through pairwise C—H⋯O hydrogen bonds, generating R22(8) and R22(18) loops that lie within the crystallographic ac plane and propagate along the [001] direction.
Keywords: crystal structure; coumarin derivative; umbelliferone; hydrogen bonds.
CCDC reference: 2426608
![[Scheme 3D1]](bh4093scheme3D1.gif)
![[Scheme 1]](bh4093scheme1.gif)
Structure description
Molecules containing the coumarin moiety have attracted the attention of researchers since examples of these compounds have been shown to have extensive biological properties, including anti-HIV (Yu et al., 2003, 2007
), anti-coagulant (Abernethy et al., 1969
), anti-oxidant (Vukovic et al., 2010
), anti-tumour (Basanagouda et al., 2009
), anti-bacterial (Vukovic et al., 2010
) and anti-inflammatory (Emmanuel-Giota et al., 2001
) activity. They are also used in the perfumery and agrochemical industries as activators and stabilizers (Bauer et al., 1988
; Boisde & Meuly, 1993
).
IIn this work, we describe the synthesis and structure of the title compound, C14H14O4, Fig. 1. An analysis of the bond lengths in this structure shows a slightly uneven distribution around the pyrone ring, as indicated by the lengths of the C2=C3 [1.345 (3) Å] and C1—C2 [1.453 (3) Å] bonds, which are shorter and longer, respectively, than what would be expected for a Car—Car bond. This suggests that the electron density is less concentrated in the C2=C3 bond of the pyran-2-one ring, resulting in the formation of a double bond, as observed in other coumarin ester derivatives (Abou et al., 2020
; Koulabiga et al., 2024
; Yao et al., 2024
). Furthermore, the structure highlights an almost planar coumarin ring system (puckering τ parameter = 0.7; Spek, 2009
). Likewise, the reveals the generation of dimeric units via C—H⋯O interactions. These dimers are linked by further C—H⋯O contacts into chains along the [001] direction (Table 1
, Fig. 2
).
|
![]() | Figure 1 Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. |
![]() | Figure 2 A view of the crystal packing showing the association of molecules into centrosymmetric dimers through C—H⋯O hydrogen bonds, forming R22(8) and R22(18) loops extending parallel to the ac crystallographic plane. H atoms not involved in hydrogen bonding have been omitted for clarity. |
Synthesis and crystallization
To a solution of isovaleryl chloride (0.76 ml, 6.17 mmol, 1 equiv.) in dried diethyl ether (16 ml) was added dried pyridine (2.31 ml, 4.7 equiv.) and umbelliferone (1 g, 6.17 mmol, 1 equiv.) in small portions over 30 min, with vigorous stirring. The reaction mixture was left stirring at room temperature for 3 h. The resulting mixture was next poured into a separating funnel containing 40 ml of chloroform and washed with diluted hydrochloric acid solution until the pH was 2–3. The organic phase was extracted, washed with water to neutrality, dried with magnesium sulfate and the solvent removed in vacuo. The obtained crude product was filtered off with suction, washed with petroleum ether and recrystallized from the mixed solvents of chloroform–hexane (1:3), yielding a white powder of the title compound, 2-oxo-2H-chromen-7-yl-3-methylbutanoate (0.92 g, 60%). Colourless crystals suitable for single-crystal X-ray were then obtained from an acetone solution, after the solvent was allowed to evaporate slowly at ambient conditions.
Refinement
Crystal data, data collection and structure . Three reflections, (
46), (
04), (
04) with ΔF/σ(F) higher than 10, were found to have too low intensities, caused by a systematic error, probably by shielding by the beam-stop interference for reflections (
04), (
04) while for (
46) at higher 2θ angles, the less area irradiated would have an effect of decreasing diffraction intensity. The of the beam becomes commensurably deeper with higher angles. This effectively increases background as well as a sample displacement effect.. They were omitted from the refinement.
|
Structural data
CCDC reference: 2426608
https://doi.org/10.1107/S2414314625001610/bh4093sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314625001610/bh4093Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314625001610/bh4093Isup3.cml
C14H14O4 | F(000) = 520 |
Mr = 246.25 | Dx = 1.347 Mg m−3 |
Monoclinic, P21/c | Melting point = 341–343 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.370 (3) Å | Cell parameters from 3741 reflections |
b = 5.4488 (10) Å | θ = 5.0–61.4° |
c = 16.339 (3) Å | µ = 0.10 mm−1 |
β = 117.426 (7)° | T = 296 K |
V = 1214.5 (4) Å3 | Prism, white |
Z = 4 | 0.45 × 0.44 × 0.16 mm |
SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer | 3741 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 2799 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.068 |
Detector resolution: 5.3048 pixels mm-1 | θmax = 30.7°, θmin = 2.5° |
ω scans | h = −22→21 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −7→7 |
Tmin = 0.956, Tmax = 1.000 | l = −23→23 |
41227 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.203 | All H-atom parameters refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1174P)2 + 0.7176P] where P = (Fo2 + 2Fc2)/3 |
41227 reflections | (Δ/σ)max < 0.001 |
219 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
Refinement. All non-H atoms were refined anisotropically. H atoms were located in difference Fourier maps and refined freely with an isotropic displacement parameter. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.30502 (9) | 0.5548 (2) | 0.49786 (9) | 0.0262 (3) | |
O1 | 0.60720 (9) | 0.1291 (2) | 0.60615 (8) | 0.0247 (3) | |
O2 | 0.74608 (10) | −0.0712 (3) | 0.64517 (10) | 0.0315 (3) | |
O4 | 0.25820 (10) | 0.2488 (3) | 0.56157 (10) | 0.0362 (4) | |
C5 | 0.55518 (12) | 0.3187 (3) | 0.61799 (11) | 0.0225 (3) | |
C4 | 0.60061 (12) | 0.4940 (3) | 0.68735 (11) | 0.0230 (3) | |
C7 | 0.40292 (12) | 0.5249 (3) | 0.56429 (11) | 0.0236 (3) | |
C6 | 0.45580 (13) | 0.3301 (3) | 0.55611 (11) | 0.0240 (3) | |
C3 | 0.70488 (13) | 0.4686 (3) | 0.74636 (12) | 0.0268 (4) | |
C11 | 0.13750 (13) | 0.4489 (4) | 0.42324 (12) | 0.0276 (4) | |
C1 | 0.70685 (13) | 0.1025 (3) | 0.66096 (12) | 0.0249 (3) | |
C12 | 0.10241 (13) | 0.7130 (3) | 0.42369 (12) | 0.0262 (4) | |
C10 | 0.23739 (13) | 0.3983 (3) | 0.50137 (12) | 0.0257 (3) | |
C9 | 0.54337 (13) | 0.6854 (3) | 0.69455 (12) | 0.0260 (3) | |
C2 | 0.75496 (13) | 0.2830 (4) | 0.73351 (12) | 0.0279 (4) | |
C8 | 0.44435 (13) | 0.7026 (3) | 0.63285 (12) | 0.0258 (3) | |
C14 | −0.00084 (16) | 0.7484 (4) | 0.34503 (14) | 0.0361 (4) | |
C13 | 0.10591 (15) | 0.7726 (4) | 0.51641 (14) | 0.0312 (4) | |
H5 | 0.4273 (19) | 0.210 (5) | 0.5086 (19) | 0.040 (7)* | |
H3 | 0.7378 (17) | 0.589 (5) | 0.7957 (17) | 0.036 (6)* | |
H9 | 0.5763 (18) | 0.811 (5) | 0.7445 (19) | 0.041 (7)* | |
H8 | 0.4032 (18) | 0.849 (5) | 0.6331 (18) | 0.037 (6)* | |
H2 | 0.8282 (17) | 0.258 (4) | 0.7702 (16) | 0.027 (6)* | |
H11A | 0.1421 (18) | 0.418 (5) | 0.3633 (18) | 0.039 (7)* | |
H14A | −0.051 (2) | 0.631 (6) | 0.352 (2) | 0.048 (7)* | |
H14B | −0.0221 (17) | 0.929 (5) | 0.3426 (17) | 0.034 (6)* | |
H11B | 0.0901 (18) | 0.329 (5) | 0.4256 (17) | 0.035 (6)* | |
H12 | 0.1473 (16) | 0.826 (4) | 0.4176 (15) | 0.026 (5)* | |
H13A | 0.0868 (17) | 0.946 (5) | 0.5179 (17) | 0.036 (6)* | |
H13B | 0.1761 (18) | 0.750 (4) | 0.5683 (18) | 0.033 (6)* | |
H13C | 0.059 (2) | 0.656 (6) | 0.5256 (19) | 0.052 (8)* | |
H14C | −0.005 (2) | 0.709 (5) | 0.282 (2) | 0.051 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0272 (6) | 0.0259 (6) | 0.0257 (6) | 0.0001 (5) | 0.0122 (5) | 0.0045 (5) |
O1 | 0.0292 (6) | 0.0230 (6) | 0.0239 (6) | 0.0005 (5) | 0.0141 (5) | −0.0023 (5) |
O2 | 0.0351 (7) | 0.0299 (7) | 0.0336 (7) | 0.0045 (5) | 0.0193 (6) | −0.0002 (5) |
O4 | 0.0338 (7) | 0.0409 (8) | 0.0323 (7) | −0.0023 (6) | 0.0138 (6) | 0.0128 (6) |
C5 | 0.0300 (8) | 0.0205 (7) | 0.0202 (7) | 0.0000 (6) | 0.0144 (6) | 0.0010 (6) |
C4 | 0.0293 (8) | 0.0228 (7) | 0.0196 (7) | −0.0012 (6) | 0.0136 (6) | 0.0009 (6) |
C7 | 0.0266 (8) | 0.0250 (8) | 0.0211 (7) | −0.0005 (6) | 0.0126 (6) | 0.0031 (6) |
C6 | 0.0291 (8) | 0.0233 (8) | 0.0205 (7) | −0.0021 (6) | 0.0123 (6) | −0.0010 (6) |
C3 | 0.0309 (8) | 0.0291 (8) | 0.0207 (7) | −0.0023 (7) | 0.0121 (6) | −0.0005 (6) |
C11 | 0.0277 (8) | 0.0298 (9) | 0.0241 (8) | 0.0000 (7) | 0.0108 (6) | −0.0022 (7) |
C1 | 0.0301 (8) | 0.0245 (8) | 0.0234 (7) | 0.0009 (6) | 0.0152 (6) | 0.0034 (6) |
C12 | 0.0278 (8) | 0.0281 (8) | 0.0246 (8) | 0.0000 (6) | 0.0138 (6) | 0.0015 (6) |
C10 | 0.0289 (8) | 0.0259 (8) | 0.0242 (8) | −0.0002 (6) | 0.0139 (6) | 0.0008 (6) |
C9 | 0.0336 (8) | 0.0239 (8) | 0.0228 (7) | −0.0022 (6) | 0.0150 (7) | −0.0033 (6) |
C2 | 0.0287 (8) | 0.0318 (9) | 0.0224 (8) | −0.0005 (7) | 0.0112 (6) | 0.0009 (7) |
C8 | 0.0341 (9) | 0.0226 (8) | 0.0254 (8) | 0.0011 (6) | 0.0177 (7) | 0.0000 (6) |
C14 | 0.0345 (10) | 0.0391 (11) | 0.0289 (9) | 0.0071 (8) | 0.0097 (8) | 0.0023 (8) |
C13 | 0.0348 (9) | 0.0335 (10) | 0.0294 (9) | −0.0013 (7) | 0.0184 (8) | −0.0033 (7) |
O3—C10 | 1.366 (2) | C11—H11A | 1.03 (3) |
O3—C7 | 1.402 (2) | C11—H11B | 0.99 (3) |
O1—C5 | 1.373 (2) | C1—C2 | 1.453 (3) |
O1—C1 | 1.380 (2) | C12—C14 | 1.526 (3) |
O2—C1 | 1.212 (2) | C12—C13 | 1.526 (3) |
O4—C10 | 1.201 (2) | C12—H12 | 0.96 (2) |
C5—C6 | 1.392 (2) | C9—C8 | 1.388 (3) |
C5—C4 | 1.398 (2) | C9—H9 | 1.00 (3) |
C4—C9 | 1.404 (2) | C2—H2 | 1.01 (2) |
C4—C3 | 1.447 (2) | C8—H8 | 1.02 (3) |
C7—C6 | 1.380 (2) | C14—H14A | 1.04 (3) |
C7—C8 | 1.393 (2) | C14—H14B | 1.03 (3) |
C6—H5 | 0.96 (3) | C14—H14C | 1.03 (3) |
C3—C2 | 1.345 (3) | C13—H13A | 0.99 (3) |
C3—H3 | 0.98 (3) | C13—H13B | 1.03 (2) |
C11—C10 | 1.502 (2) | C13—H13C | 1.03 (3) |
C11—C12 | 1.538 (3) | ||
C10—O3—C7 | 117.47 (13) | C13—C12—C11 | 110.59 (15) |
C5—O1—C1 | 122.11 (13) | C14—C12—H12 | 110.5 (13) |
O1—C5—C6 | 116.52 (14) | C13—C12—H12 | 105.5 (13) |
O1—C5—C4 | 121.48 (15) | C11—C12—H12 | 109.0 (14) |
C6—C5—C4 | 121.98 (15) | O4—C10—O3 | 122.46 (16) |
C5—C4—C9 | 118.50 (16) | O4—C10—C11 | 127.06 (17) |
C5—C4—C3 | 117.45 (15) | O3—C10—C11 | 110.44 (15) |
C9—C4—C3 | 124.04 (16) | C8—C9—C4 | 120.59 (16) |
C6—C7—C8 | 122.74 (16) | C8—C9—H9 | 121.2 (15) |
C6—C7—O3 | 118.98 (15) | C4—C9—H9 | 118.2 (15) |
C8—C7—O3 | 118.16 (15) | C3—C2—C1 | 121.56 (17) |
C7—C6—C5 | 117.53 (15) | C3—C2—H2 | 124.7 (13) |
C7—C6—H5 | 122.5 (15) | C1—C2—H2 | 113.7 (13) |
C5—C6—H5 | 119.9 (15) | C9—C8—C7 | 118.63 (16) |
C2—C3—C4 | 120.40 (16) | C9—C8—H8 | 121.7 (15) |
C2—C3—H3 | 121.0 (14) | C7—C8—H8 | 119.5 (15) |
C4—C3—H3 | 118.6 (14) | C12—C14—H14A | 111.2 (16) |
C10—C11—C12 | 113.02 (15) | C12—C14—H14B | 109.9 (13) |
C10—C11—H11A | 106.7 (14) | H14A—C14—H14B | 111 (2) |
C12—C11—H11A | 109.6 (15) | C12—C14—H14C | 112.4 (16) |
C10—C11—H11B | 109.1 (14) | H14A—C14—H14C | 106 (2) |
C12—C11—H11B | 110.5 (15) | H14B—C14—H14C | 107 (2) |
H11A—C11—H11B | 108 (2) | C12—C13—H13A | 110.6 (15) |
O2—C1—O1 | 117.13 (16) | C12—C13—H13B | 109.7 (14) |
O2—C1—C2 | 125.87 (17) | H13A—C13—H13B | 107.9 (19) |
O1—C1—C2 | 116.99 (15) | C12—C13—H13C | 108.1 (16) |
C14—C12—C13 | 110.90 (16) | H13A—C13—H13C | 110 (2) |
C14—C12—C11 | 110.18 (15) | H13B—C13—H13C | 110 (2) |
C1—O1—C5—C6 | 177.72 (14) | C5—O1—C1—C2 | 0.9 (2) |
C1—O1—C5—C4 | −0.8 (2) | C10—C11—C12—C14 | −177.74 (16) |
O1—C5—C4—C9 | 178.90 (14) | C10—C11—C12—C13 | −54.8 (2) |
C6—C5—C4—C9 | 0.5 (2) | C7—O3—C10—O4 | 4.3 (3) |
O1—C5—C4—C3 | 0.1 (2) | C7—O3—C10—C11 | −177.61 (14) |
C6—C5—C4—C3 | −178.32 (15) | C12—C11—C10—O4 | 119.0 (2) |
C10—O3—C7—C6 | 74.6 (2) | C12—C11—C10—O3 | −58.91 (19) |
C10—O3—C7—C8 | −109.20 (18) | C5—C4—C9—C8 | −1.4 (3) |
C8—C7—C6—C5 | −2.0 (3) | C3—C4—C9—C8 | 177.38 (16) |
O3—C7—C6—C5 | 174.03 (14) | C4—C3—C2—C1 | −0.2 (3) |
O1—C5—C6—C7 | −177.36 (14) | O2—C1—C2—C3 | −179.25 (18) |
C4—C5—C6—C7 | 1.1 (2) | O1—C1—C2—C3 | −0.4 (3) |
C5—C4—C3—C2 | 0.4 (2) | C4—C9—C8—C7 | 0.6 (3) |
C9—C4—C3—C2 | −178.36 (17) | C6—C7—C8—C9 | 1.2 (3) |
C5—O1—C1—O2 | 179.85 (15) | O3—C7—C8—C9 | −174.88 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O4i | 0.98 (3) | 2.46 (3) | 3.296 (2) | 142.6 (19) |
C6—H5···O1ii | 0.96 (3) | 2.51 (3) | 3.444 (2) | 167 (2) |
C11—H11A···O2ii | 1.03 (3) | 2.60 (3) | 3.245 (2) | 120.5 (18) |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y, −z+1. |
Acknowledgements
The authors thank the Institute Jean Barriol (Université de Lorraine, France) for the X-ray diffraction measurements and the AFRAMED project for the
determination..References
Abernethy, J. L. (1969). J. Chem. Educ. 46, 561–568. CrossRef CAS Web of Science Google Scholar
Abou, A., Djandé, A., Ilagouma, A. T., Ouari, O. & Saba, A. (2020). Am. J. Org. Chem, 10, 1–16. CAS Google Scholar
Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, P., Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495. CrossRef CAS Google Scholar
Bauer, K., Garbe, D. & Surburg, H. (1988). Flavors and fragrances. In Ullmann's Encyclopedia of Industrial Chemistry, Vol. A11, edited by W. Gerhartz, Y. S. Yamamoto, B. Elvers, J. F. Rounsaville & G. Schulz, 5th rev, pp. 208–209. New York: VCH Publishers Google Scholar
Boisde, P. M. & Meuly, W. C. (1993). Coumarin. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th Ed., Vol. 7, edited by J. I. Kroschwitz & M. Howe-Grant, M. pp. 647–658. New York: John Wiley. Google Scholar
Emmanuel–Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou–Litina, D. J. (2001). J. Heterocycl. Chem. 38, 717–722. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Koulabiga, Z., Yao, K. H., Abou, A., Djandé, A., Giorgi, M. & Coussan, S. (2024). Am. J. Org. Chem. 12, 1–19. Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yao, H. K., Zakaria, K., Abou, A., Djandé, A., Giorgi, M. & Ouari, O. (2024). Am. J. Chem, 14, 13–26. Google Scholar
Yu, D., Morris–Natschke, S. L. & Lee, K.-H. (2007). Med. Res. Rev. 27, 108–132. Web of Science CrossRef PubMed CAS Google Scholar
Yu, D., Suzuki, M., Xie, L., Morris–Natschke, S. L. & Lee, K.-H. (2003). Med. Res. Rev. 23, 322–345. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.