

ISSN 2414-3146

Received 13 January 2025 Accepted 21 February 2025

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; coumarin derivative; umbelliferone; hydrogen bonds.

CCDC reference: 2426608

Structural data: full structural data are available from iucrdata.iucr.org

2-Oxo-2H-chromen-7-yl 3-methylbutanoate

Akoun Abou,^a* Hypolite Bazié,^b Ludovic Akonan,^c Abdoulaye Djandé^b* and Pierre Francotte^d

^aJoint Research and Innovation Unit for Engineering Sciences and Techniques, (UMRI STI), Research Team: Instrumentation, Image and Spectroscopy, Félix Houphouet-Boigny National Polytechnic Institute, BP 1093 Yamoussoukro, Côte d'Ivoire, ^bLaboratory of Molecular Chemistry and Materials (LC2M), Research Team: Organic Chemistry and Phytochemistry, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, ^cLaboratory of Fundamental and Applied Physics, Nangui Abrogoua University, Abidjan, Côte d'Ivoire, and ^dCenter for Interdisciplinary Research on Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium. *Correspondence e-mail: abouakoun@gmail.com, djandeabdou@yahoo.fr

The title compound, $C_{14}H_{14}O_4$, was synthesized by *O*-acylation of umbelliferone with isovaleryl chloride in the presence of diethyl ether as a solvent and pyridine as a base. The side chain moiety *i.e.* the acetate fragment linking to the methylethyl group is almost orthogonal to the almost planar (r.m.s deviation = 0.020 Å) coumarin ring system, making an angle of 76.26 (7)°. In the crystal, the molecules form centrosymmetric dimers through pairwise $C-H\cdots O$ hydrogen bonds, generating $R_2^2(8)$ and $R_2^2(18)$ loops that lie within the crystallographic *ac* plane and propagate along the [001] direction.

Structure description

Molecules containing the coumarin moiety have attracted the attention of researchers since examples of these compounds have been shown to have extensive biological properties, including anti-HIV (Yu *et al.*, 2003, 2007), anti-coagulant (Abernethy *et al.*, 1969), anti-oxidant (Vukovic *et al.*, 2010), anti-tumour (Basanagouda *et al.*, 2009), anti-bacterial (Vukovic *et al.*, 2010) and anti-inflammatory (Emmanuel-Giota *et al.*, 2001) activity. They are also used in the perfumery and agrochemical industries as activators and stabilizers (Bauer *et al.*, 1988; Boisde & Meuly, 1993).

In this work, we describe the synthesis and structure of the title compound, $C_{14}H_{14}O_4$, Fig. 1. An analysis of the bond lengths in this structure shows a slightly uneven distribution around the pyrone ring, as indicated by the lengths of the C2=C3 [1.345 (3) Å] and C1-C2 [1.453 (3) Å] bonds, which are shorter and longer, respectively, than what would be expected for a $C_{ar}-C_{ar}$ bond. This suggests that the electron density is less concentrated in the C2=C3 bond of the pyran-2-one ring, resulting in the formation of a

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$		

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3-H3\cdots O4^i$	0.98 (3)	2.46 (3)	3.296 (2)	142.6 (19)
$C6-H5\cdots O1^{ii}$	0.96 (3)	2.51 (3)	3.444 (2)	167 (2)
$C11-H11A\cdots O2^{ii}$	1.03 (3)	2.60 (3)	3.245 (2)	120.5 (18)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, -y, -z + 1.

double bond, as observed in other coumarin ester derivatives (Abou et al., 2020; Koulabiga et al., 2024; Yao et al., 2024). Furthermore, the structure highlights an almost planar coumarin ring system (puckering τ parameter = 0.7; Spek, 2009). Likewise, the crystal structure reveals the generation of dimeric units via C-H···O interactions. These dimers are linked by further $C-H \cdots O$ contacts into chains along the [001] direction (Table 1, Fig. 2).

Synthesis and crystallization

To a solution of isovaleryl chloride (0.76 ml, 6.17 mmol, 1 equiv.) in dried diethyl ether (16 ml) was added dried pyridine (2.31 ml, 4.7 equiv.) and umbelliferone (1 g, 6.17 mmol, 1 equiv.) in small portions over 30 min, with vigorous stirring. The reaction mixture was left stirring at room temperature for 3 h. The resulting mixture was next poured into a separating funnel containing 40 ml of chloroform and washed with diluted hydrochloric acid solution until the pH was 2–3. The organic phase was extracted, washed with water to neutrality, dried with magnesium sulfate and the solvent removed in vacuo. The obtained crude product was filtered off with suction, washed with petroleum ether and recrystallized from the mixed solvents of chloroform-hexane (1:3), yielding a white powder of the title compound, 2-oxo-2H-chromen-7yl-3-methylbutanoate (0.92 g, 60%). Colourless crystals suitable for single-crystal X-ray diffraction analysis were then obtained from an acetone solution, after the solvent was allowed to evaporate slowly at ambient conditions.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Three reflections, $(\overline{3}46)$, $(\overline{2}04)$, (104) with $\Delta F/\sigma(F)$ higher than 10, were found to have too low

Figure 1

Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Table 2 Experimental details.

 $\cdot A$

Crystal data	
Chemical formula	$C_{14}H_{14}O_4$
$M_{ m r}$	246.25
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
a, b, c (Å)	15.370 (3), 5.4488 (10), 16.339 (3)
β (°)	117.426 (7)
$V(Å^3)$	1214.5 (4)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.10
Crystal size (mm)	$0.45 \times 0.44 \times 0.16$
Determine the stars	
Data collection	
Diffractometer	near, AtlasS2
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD 2022)
Tmin. Tmon	0.956, 1.000
No. of measured, independent and	41227, 3741, 2799
observed $[I > 2\sigma(I)]$ reflections	.,,
R _{int}	0.068
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.718
Refinement	
$R[E^2 > 2\sigma(E^2)] = wR(E^2)$ S	0.066 0.203 1.03
No of reflections	41227
No of parameters	219
H-atom treatment	All H-atom parameters refined
$\Lambda_0 \qquad \Lambda_0 \qquad (e \ \text{\AA}^{-3})$	0.50 = 0.39
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (C \Lambda)$	0.50, -0.57

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), PLATON (Spek, 2020), SHELXL2018/3 (Sheldrick, 2015b), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

intensities, caused by a systematic error, probably by shielding by the beam-stop interference for reflections $(\overline{2}04)$, $(\overline{1}04)$ while for $(\overline{3}46)$ at higher 2θ angles, the less area irradiated would have an effect of decreasing diffraction intensity. The depth of penetration of the beam becomes commensurably deeper with higher angles. This effectively increases background as well as a sample displacement effect.. They were omitted from the refinement.

Figure 2

A view of the crystal packing showing the association of molecules into centrosymmetric dimers through C-H···O hydrogen bonds, forming $R_2^2(8)$ and $R_2^2(18)$ loops extending parallel to the *ac* crystallographic plane. H atoms not involved in hydrogen bonding have been omitted for clarity.

Acknowledgements

The authors thank the Institute Jean Barriol (Université de Lorraine, France) for the X-ray diffraction measurements and the AFRAMED project for the crystal structure determination..

References

- Abernethy, J. L. (1969). J. Chem. Educ. 46, 561-568.
- Abou, A., Djandé, A., Ilagouma, A. T., Ouari, O. & Saba, A. (2020). Am. J. Org. Chem, **10**, 1–16.
- Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, P., Sandhyarani, P. & Rasal, V. P. (2009). *J. Chem. Sci.* 121, 485–495.
- Bauer, K., Garbe, D. & Surburg, H. (1988). Flavors and fragrances. In Ullmann's Encyclopedia of Industrial Chemistry, Vol. A11, edited by W. Gerhartz, Y. S. Yamamoto, B. Elvers, J. F. Rounsaville & G. Schulz, 5th rev, pp. 208–209. New York: VCH Publishers
- Boisde, P. M. & Meuly, W. C. (1993). Coumarin. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th Ed., Vol. 7, edited by J. I. Kroschwitz & M. Howe-Grant, M. pp. 647–658. New York: John Wiley.

- Emmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou–Litina, D. J. (2001). J. Heterocycl. Chem. 38, 717–722.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Koulabiga, Z., Yao, K. H., Abou, A., Djandé, A., Giorgi, M. & Coussan, S. (2024). Am. J. Org. Chem. 12, 1–19.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yao, H. K., Zakaria, K., Abou, A., Djandé, A., Giorgi, M. & Ouari, O. (2024). Am. J. Chem, 14, 13–26.
- Yu, D., Morris-Natschke, S. L. & Lee, K.-H. (2007). *Med. Res. Rev.* **27**, 108–132.
- Yu, D., Suzuki, M., Xie, L., Morris–Natschke, S. L. & Lee, K.-H. (2003). *Med. Res. Rev.* 23, 322–345.

full crystallographic data

IUCrData (2025). **10**, x250161 [https://doi.org/10.1107/S2414314625001610]

2-Oxo-2H-chromen-7-yl 3-methylbutanoate

Akoun Abou, Hypolite Bazié, Ludovic Akonan, Abdoulaye Djandé and Pierre Francotte

F(000) = 520

 $\theta = 5.0-61.4^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 296 K

Prism, white

 $R_{\rm int} = 0.068$

 $h = -22 \rightarrow 21$

 $k = -7 \rightarrow 7$ $l = -23 \rightarrow 23$

 $0.45 \times 0.44 \times 0.16 \text{ mm}$

 $\theta_{\text{max}} = 30.7^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$

41227 measured reflections

3741 independent reflections

2799 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.347 {\rm Mg m^{-3}}$

Melting point = 341-343 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3741 reflections

2-Oxo-2H-chromen-7-yl 3-methylbutanoate

Crystal data

C₁₄H₁₄O₄ $M_r = 246.25$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 15.370 (3) Å b = 5.4488 (10) Å c = 16.339 (3) Å $\beta = 117.426$ (7)° V = 1214.5 (4) Å³ Z = 4

Data collection

SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer Radiation source: micro-focus sealed X-ray tube Mirror monochromator Detector resolution: 5.3048 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) $T_{\min} = 0.956, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.203$ S = 1.03 41227 reflections 219 parameters	Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.1174P)^2 + 0.7176P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$ $\Lambda \rho_{\rm max} = 0.50 \text{ e} \text{ Å}^{-3}$
Primary atom site location: dual	$\Delta \rho_{\rm min} = -0.39$ e Å ⁻³

Special details

Refinement. All non-H atoms were refined anisotropically. H atoms were located in difference Fourier maps and refined freely with an isotropic displacement parameter.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
03	0.30502 (9)	0.5548 (2)	0.49786 (9)	0.0262 (3)
01	0.60720 (9)	0.1291 (2)	0.60615 (8)	0.0247 (3)
O2	0.74608 (10)	-0.0712 (3)	0.64517 (10)	0.0315 (3)
O4	0.25820 (10)	0.2488 (3)	0.56157 (10)	0.0362 (4)
C5	0.55518 (12)	0.3187 (3)	0.61799 (11)	0.0225 (3)
C4	0.60061 (12)	0.4940 (3)	0.68735 (11)	0.0230 (3)
C7	0.40292 (12)	0.5249 (3)	0.56429 (11)	0.0236 (3)
C6	0.45580 (13)	0.3301 (3)	0.55611 (11)	0.0240 (3)
C3	0.70488 (13)	0.4686 (3)	0.74636 (12)	0.0268 (4)
C11	0.13750 (13)	0.4489 (4)	0.42324 (12)	0.0276 (4)
C1	0.70685 (13)	0.1025 (3)	0.66096 (12)	0.0249 (3)
C12	0.10241 (13)	0.7130 (3)	0.42369 (12)	0.0262 (4)
C10	0.23739 (13)	0.3983 (3)	0.50137 (12)	0.0257 (3)
С9	0.54337 (13)	0.6854 (3)	0.69455 (12)	0.0260 (3)
C2	0.75496 (13)	0.2830 (4)	0.73351 (12)	0.0279 (4)
C8	0.44435 (13)	0.7026 (3)	0.63285 (12)	0.0258 (3)
C14	-0.00084 (16)	0.7484 (4)	0.34503 (14)	0.0361 (4)
C13	0.10591 (15)	0.7726 (4)	0.51641 (14)	0.0312 (4)
Н5	0.4273 (19)	0.210 (5)	0.5086 (19)	0.040 (7)*
Н3	0.7378 (17)	0.589 (5)	0.7957 (17)	0.036 (6)*
Н9	0.5763 (18)	0.811 (5)	0.7445 (19)	0.041 (7)*
H8	0.4032 (18)	0.849 (5)	0.6331 (18)	0.037 (6)*
H2	0.8282 (17)	0.258 (4)	0.7702 (16)	0.027 (6)*
H11A	0.1421 (18)	0.418 (5)	0.3633 (18)	0.039 (7)*
H14A	-0.051 (2)	0.631 (6)	0.352 (2)	0.048 (7)*
H14B	-0.0221 (17)	0.929 (5)	0.3426 (17)	0.034 (6)*
H11B	0.0901 (18)	0.329 (5)	0.4256 (17)	0.035 (6)*
H12	0.1473 (16)	0.826 (4)	0.4176 (15)	0.026 (5)*
H13A	0.0868 (17)	0.946 (5)	0.5179 (17)	0.036 (6)*
H13B	0.1761 (18)	0.750 (4)	0.5683 (18)	0.033 (6)*
H13C	0.059 (2)	0.656 (6)	0.5256 (19)	0.052 (8)*
H14C	-0.005 (2)	0.709 (5)	0.282 (2)	0.051 (8)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
03	0.0272 (6)	0.0259 (6)	0.0257 (6)	0.0001 (5)	0.0122 (5)	0.0045 (5)
O1	0.0292 (6)	0.0230 (6)	0.0239 (6)	0.0005 (5)	0.0141 (5)	-0.0023 (5)
O2	0.0351 (7)	0.0299 (7)	0.0336 (7)	0.0045 (5)	0.0193 (6)	-0.0002 (5)
O4	0.0338 (7)	0.0409 (8)	0.0323 (7)	-0.0023 (6)	0.0138 (6)	0.0128 (6)
C5	0.0300 (8)	0.0205 (7)	0.0202 (7)	0.0000 (6)	0.0144 (6)	0.0010 (6)
C4	0.0293 (8)	0.0228 (7)	0.0196 (7)	-0.0012 (6)	0.0136 (6)	0.0009 (6)
C7	0.0266 (8)	0.0250 (8)	0.0211 (7)	-0.0005 (6)	0.0126 (6)	0.0031 (6)
C6	0.0291 (8)	0.0233 (8)	0.0205 (7)	-0.0021 (6)	0.0123 (6)	-0.0010 (6)
C3	0.0309 (8)	0.0291 (8)	0.0207 (7)	-0.0023 (7)	0.0121 (6)	-0.0005 (6)

C11	0.0277 (8)	0.0298 (9)	0.0241 (8)	0.0000 (7)	0.0108 (6)	-0.0022 (7)
C1	0.0301 (8)	0.0245 (8)	0.0234 (7)	0.0009 (6)	0.0152 (6)	0.0034 (6)
C12	0.0278 (8)	0.0281 (8)	0.0246 (8)	0.0000 (6)	0.0138 (6)	0.0015 (6)
C10	0.0289 (8)	0.0259 (8)	0.0242 (8)	-0.0002 (6)	0.0139 (6)	0.0008 (6)
C9	0.0336 (8)	0.0239 (8)	0.0228 (7)	-0.0022 (6)	0.0150 (7)	-0.0033 (6)
C2	0.0287 (8)	0.0318 (9)	0.0224 (8)	-0.0005 (7)	0.0112 (6)	0.0009(7)
C8	0.0341 (9)	0.0226 (8)	0.0254 (8)	0.0011 (6)	0.0177 (7)	0.0000 (6)
C14	0.0345 (10)	0.0391 (11)	0.0289 (9)	0.0071 (8)	0.0097 (8)	0.0023 (8)
C13	0.0348 (9)	0.0335 (10)	0.0294 (9)	-0.0013 (7)	0.0184 (8)	-0.0033 (7)

Geometric parameters (Å, °)

O3—C10	1.366 (2)	C11—H11A	1.03 (3)
O3—C7	1.402 (2)	C11—H11B	0.99 (3)
O1—C5	1.373 (2)	C1—C2	1.453 (3)
O1—C1	1.380 (2)	C12—C14	1.526 (3)
O2—C1	1.212 (2)	C12—C13	1.526 (3)
O4—C10	1.201 (2)	C12—H12	0.96 (2)
C5—C6	1.392 (2)	C9—C8	1.388 (3)
C5—C4	1.398 (2)	С9—Н9	1.00 (3)
C4—C9	1.404 (2)	C2—H2	1.01 (2)
C4—C3	1.447 (2)	C8—H8	1.02 (3)
C7—C6	1.380 (2)	C14—H14A	1.04 (3)
C7—C8	1.393 (2)	C14—H14B	1.03 (3)
С6—Н5	0.96 (3)	C14—H14C	1.03 (3)
C3—C2	1.345 (3)	C13—H13A	0.99 (3)
С3—Н3	0.98 (3)	C13—H13B	1.03 (2)
C11—C10	1.502 (2)	C13—H13C	1.03 (3)
C11—C12	1.538 (3)		
C10—O3—C7	117.47 (13)	C13—C12—C11	110.59 (15)
C5—O1—C1	122.11 (13)	C14—C12—H12	110.5 (13)
O1—C5—C6	116.52 (14)	C13—C12—H12	105.5 (13)
O1—C5—C4	121.48 (15)	C11—C12—H12	109.0 (14)
C6—C5—C4	121.98 (15)	O4—C10—O3	122.46 (16)
C5—C4—C9	118.50 (16)	O4—C10—C11	127.06 (17)
C5—C4—C3	117.45 (15)	O3—C10—C11	110.44 (15)
C9—C4—C3	124.04 (16)	C8—C9—C4	120.59 (16)
C6—C7—C8	122.74 (16)	С8—С9—Н9	121.2 (15)
C6—C7—O3	118.98 (15)	С4—С9—Н9	118.2 (15)
C8—C7—O3	118.16 (15)	C3—C2—C1	121.56 (17)
C7—C6—C5	117.53 (15)	C3—C2—H2	124.7 (13)
С7—С6—Н5	122.5 (15)	C1—C2—H2	113.7 (13)
С5—С6—Н5	119.9 (15)	C9—C8—C7	118.63 (16)
C2—C3—C4	120.40 (16)	С9—С8—Н8	121.7 (15)
С2—С3—Н3	121.0 (14)	С7—С8—Н8	119.5 (15)
С4—С3—Н3	118.6 (14)	C12—C14—H14A	111.2 (16)
C10-C11-C12	113.02 (15)	C12—C14—H14B	109.9 (13)

C10-C11-H11A	106.7 (14)	H14A—C14—H14B	111 (2)
C12—C11—H11A	109.6 (15)	C12—C14—H14C	112.4 (16)
C10-C11-H11B	109.1 (14)	H14A—C14—H14C	106 (2)
C12—C11—H11B	110.5 (15)	H14B—C14—H14C	107 (2)
H11A—C11—H11B	108 (2)	C12—C13—H13A	110.6 (15)
O2-C1-O1	117.13 (16)	C12—C13—H13B	109.7 (14)
O2—C1—C2	125.87 (17)	H13A—C13—H13B	107.9 (19)
O1—C1—C2	116.99 (15)	C12—C13—H13C	108.1 (16)
C14—C12—C13	110.90 (16)	H13A—C13—H13C	110 (2)
C14—C12—C11	110.18 (15)	H13B—C13—H13C	110 (2)
C1C5C6	177.72 (14)	C5—O1—C1—C2	0.9 (2)
C1C5C4	-0.8 (2)	C10-C11-C12-C14	-177.74 (16)
O1—C5—C4—C9	178.90 (14)	C10-C11-C12-C13	-54.8 (2)
C6—C5—C4—C9	0.5 (2)	C7—O3—C10—O4	4.3 (3)
O1—C5—C4—C3	0.1 (2)	C7—O3—C10—C11	-177.61 (14)
C6—C5—C4—C3	-178.32 (15)	C12-C11-C10-O4	119.0 (2)
C10—O3—C7—C6	74.6 (2)	C12-C11-C10-O3	-58.91 (19)
C10—O3—C7—C8	-109.20 (18)	C5—C4—C9—C8	-1.4 (3)
C8—C7—C6—C5	-2.0 (3)	C3—C4—C9—C8	177.38 (16)
O3—C7—C6—C5	174.03 (14)	C4—C3—C2—C1	-0.2 (3)
O1—C5—C6—C7	-177.36 (14)	O2—C1—C2—C3	-179.25 (18)
C4—C5—C6—C7	1.1 (2)	O1—C1—C2—C3	-0.4 (3)
C5—C4—C3—C2	0.4 (2)	C4—C9—C8—C7	0.6 (3)
C9—C4—C3—C2	-178.36 (17)	C6—C7—C8—C9	1.2 (3)
C5-01-C1-02	179.85 (15)	O3—C7—C8—C9	-174.88 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
C3—H3…O4 ⁱ	0.98 (3)	2.46 (3)	3.296 (2)	142.6 (19)
C6—H5…O1 ⁱⁱ	0.96 (3)	2.51 (3)	3.444 (2)	167 (2)
C11—H11 <i>A</i> ···O2 ⁱⁱ	1.03 (3)	2.60 (3)	3.245 (2)	120.5 (18)

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x+1, -y, -z+1.