organic compounds
Acetyl α-D-2,3,4-triacetyllyxopyranoside
aMissouri Western State University, 4525 Downs Dr, Saint Joseph, MO 64507, USA
*Correspondence e-mail: jrhoad1@missouriwestern.edu
The structure of the title compound, C13H18O9, has monoclinic (P21) symmetry. It is of interest with respect to stereochemistry and the Two acetyl subsituents adopt equatorial orientations and two are axial. The extended structure displays C—H⋯O hydrogen bonding.
Keywords: crystal structure; carbohydrate; anomeric effect; chair conformation.
CCDC reference: 2415464
Structure description
The ; Alabugin et al., 2021). Our interest is in carbohydrate and carbohydrate analog ring conformations, leading to the synthesis of common carbohydrate derivatives. Recent methods have been used to try to evaluate the energy of the anomeric and related effects (Custodio Castro et al. 2024; Matamoros et al., 2024) using complex techniques to deconvolute steric effects from electronic effects.
is of interest to aid our understanding of conformational preferences and stereocontrol of reaction of and carbohydrate-like molecules (Juaristi, 2024The 13H18O9 (aLyx) (Fig. 1), is of interest because the two chair conformations each have two acetate groups in axial orientations and two acetate groups equatorial, with the acetate groups at positions 2 and 3 cis, so that in the chair conformations, they are always gauche. This means that the total energy of the steric interactions for each chair conformation is equal, so any difference in energy is due to the electronic interaction at the acetal group. In the solid state, aLyx is in the 4C1 conformation, with Cremer & Pople (1975) puckering parameters of φ = 263 (3)°, θ = 4.3 (2)° and Q = 0.543 (2) Å. Since θ is close to 0°, it is in a nearly perfect chair conformation, while the Q parameter is lower than average, so the chair is a little flattened. The flattening is to be expected with two acetate groups in the axial position, as flattening the ring decreases gauche interactions of axial groups with the ring. The acetate substituent at the anomeric (C1) position is axial, indicating the influence of the The key torsion angles are O1—C1—C2—O2 = 169.73 (14)° and O3—C3—C4—O4 = −71.1 (2)°. The configurations of the stereogenic centers are C1 R, C2 S, C3 R and C4 R, as expected for the lyxose starting material. This structure will be the starting point for calculations to quantify the in this sterically balanced molecule. In the crystal, weak C—H⋯O interactions (Table 1) link the molecules.
of the title compound, CSynthesis and crystallization
100 mg (6.7 mmol) of lyxose and 10 mg of sodium acetate were dissolved in approximately 2 ml of acetic anhydride. The solution was heated to reflux for 2 h. After cooling the reaction mixture to room temperature, the solution was poured over crushed ice. After the ice melted, the resulting oil was separated from the water and dissolved in minimal boiling ethanol. A few grains of
were added to the ethanol and the solution was boiled as before. This was then passed through a cotton filter and eluted through a silica gel column with a 80:20 hexane-to-dichloromethane mobile phase. Upon evaporation, fine crystals were formed. The crystals were dissolved in a minimal amount of ether and allowed to evaporate overnight to form rectangular parallelepipeds of aLyx.Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2415464
https://doi.org/10.1107/S2414314625000161/hb4504sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314625000161/hb4504Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314625000161/hb4504Isup3.cdx
C13H18O9 | F(000) = 336 |
Mr = 318.27 | Dx = 1.411 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 8.1174 (3) Å | Cell parameters from 5073 reflections |
b = 9.5597 (4) Å | θ = 6.5–70.0° |
c = 10.2580 (4) Å | µ = 1.05 mm−1 |
β = 109.7341 (14)° | T = 200 K |
V = 749.27 (5) Å3 | Rectangular parallelepiped, colourless |
Z = 2 | 0.20 × 0.08 × 0.05 mm |
Bruker APEXII CCD diffractometer | 2081 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.025 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 70.1°, θmin = 6.5° |
Tmin = 0.650, Tmax = 0.753 | h = −9→8 |
5524 measured reflections | k = −11→8 |
2107 independent reflections | l = −12→12 |
Refinement on F2 | Only H-atom displacement parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0444P)2 + 0.0979P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.032 | (Δ/σ)max < 0.001 |
wR(F2) = 0.076 | Δρmax = 0.30 e Å−3 |
S = 1.11 | Δρmin = −0.24 e Å−3 |
2107 reflections | Extinction correction: SHELXL2019/1 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
270 parameters | Extinction coefficient: 0.028 (3) |
1 restraint | Absolute structure: Flack x determined using 630 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: difference Fourier map | Absolute structure parameter: 0.08 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The ring and methyl hydrogen atoms were initially located in difference-Fourier maps and refined as individual isotropic atoms. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.12797 (18) | 0.61079 (17) | 0.65441 (14) | 0.0265 (4) | |
O2 | 0.18123 (17) | 0.40848 (17) | 0.55297 (15) | 0.0261 (4) | |
O3 | 0.05956 (18) | 0.56065 (17) | 0.31122 (15) | 0.0278 (4) | |
O4 | −0.2996 (2) | 0.45517 (19) | 0.21466 (16) | 0.0335 (4) | |
O5 | −0.14941 (18) | 0.37458 (16) | 0.58585 (15) | 0.0267 (4) | |
O6 | −0.1547 (2) | 0.5135 (2) | 0.84634 (17) | 0.0396 (4) | |
O7 | 0.4179 (2) | 0.5469 (2) | 0.5983 (2) | 0.0458 (5) | |
O8 | −0.1219 (2) | 0.7203 (2) | 0.17276 (16) | 0.0374 (4) | |
O9 | −0.2878 (4) | 0.2352 (3) | 0.1434 (2) | 0.0698 (7) | |
C1 | −0.0355 (3) | 0.4874 (2) | 0.6386 (2) | 0.0249 (5) | |
H1 | 0.038 (3) | 0.457 (3) | 0.730 (3) | 0.025 (6)* | |
C2 | 0.0676 (2) | 0.5270 (2) | 0.5439 (2) | 0.0237 (4) | |
H2 | 0.138 (3) | 0.606 (3) | 0.571 (3) | 0.020 (5)* | |
C3 | −0.0509 (3) | 0.5479 (2) | 0.3942 (2) | 0.0244 (4) | |
H3 | −0.117 (3) | 0.631 (3) | 0.386 (2) | 0.018 (5)* | |
C4 | −0.1710 (3) | 0.4228 (3) | 0.3476 (2) | 0.0260 (5) | |
H4 | −0.103 (3) | 0.344 (3) | 0.343 (2) | 0.020 (6)* | |
C5 | −0.2688 (3) | 0.3961 (3) | 0.4481 (2) | 0.0273 (5) | |
H5A | −0.342 (3) | 0.470 (3) | 0.446 (2) | 0.017 (6)* | |
H5B | −0.336 (3) | 0.315 (3) | 0.427 (3) | 0.021 (6)* | |
C6 | −0.1753 (3) | 0.6122 (3) | 0.7703 (2) | 0.0285 (5) | |
C7 | −0.2522 (4) | 0.7496 (3) | 0.7883 (3) | 0.0381 (6) | |
H7A | −0.211 (2) | 0.7748 (15) | 0.880 (5) | 0.075 (12)* | |
H7B | −0.232 (7) | 0.826 (6) | 0.730 (6) | 0.093 (15)* | |
H7C | −0.369 (8) | 0.738 (7) | 0.761 (6) | 0.104 (18)* | |
C8 | 0.3551 (3) | 0.4327 (3) | 0.5903 (2) | 0.0267 (5) | |
C9 | 0.4529 (3) | 0.2978 (3) | 0.6181 (2) | 0.0305 (5) | |
H9A | 0.414 (4) | 0.237 (4) | 0.535 (4) | 0.050 (9)* | |
H9B | 0.428 (4) | 0.251 (4) | 0.691 (3) | 0.034 (7)* | |
H9C | 0.579 (4) | 0.312 (4) | 0.648 (3) | 0.045 (8)* | |
C10 | 0.0097 (3) | 0.6518 (3) | 0.2030 (2) | 0.0301 (5) | |
C11 | 0.1387 (4) | 0.6508 (4) | 0.1280 (3) | 0.0423 (6) | |
H11A | 0.246 (5) | 0.623 (5) | 0.185 (4) | 0.051 (9)* | |
H11B | 0.141 (7) | 0.742 (7) | 0.088 (6) | 0.092 (15)* | |
H11C | 0.090 (5) | 0.577 (5) | 0.045 (4) | 0.060 (10)* | |
C12 | −0.3453 (3) | 0.3515 (3) | 0.1204 (2) | 0.0394 (6) | |
C13 | −0.4761 (4) | 0.4017 (5) | −0.0120 (3) | 0.0540 (9) | |
H13A | −0.544 (7) | 0.482 (7) | 0.009 (5) | 0.092 (16)* | |
H13B | −0.546 (6) | 0.333 (6) | −0.055 (5) | 0.074 (13)* | |
H13C | −0.410 (6) | 0.421 (6) | −0.067 (5) | 0.074 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0271 (7) | 0.0251 (8) | 0.0268 (6) | 0.0027 (6) | 0.0085 (5) | −0.0005 (6) |
O2 | 0.0187 (7) | 0.0230 (8) | 0.0344 (7) | 0.0007 (6) | 0.0060 (5) | −0.0024 (6) |
O3 | 0.0275 (7) | 0.0268 (8) | 0.0305 (7) | 0.0011 (6) | 0.0117 (6) | 0.0024 (6) |
O4 | 0.0309 (7) | 0.0349 (10) | 0.0273 (7) | −0.0029 (7) | 0.0000 (6) | −0.0030 (7) |
O5 | 0.0260 (7) | 0.0231 (8) | 0.0294 (7) | −0.0025 (6) | 0.0073 (6) | 0.0005 (6) |
O6 | 0.0494 (9) | 0.0388 (11) | 0.0336 (8) | 0.0015 (8) | 0.0179 (7) | 0.0031 (8) |
O7 | 0.0252 (8) | 0.0303 (10) | 0.0781 (12) | −0.0055 (7) | 0.0126 (8) | −0.0029 (10) |
O8 | 0.0374 (9) | 0.0336 (10) | 0.0333 (8) | 0.0012 (8) | 0.0015 (6) | 0.0044 (7) |
O9 | 0.0903 (17) | 0.0519 (16) | 0.0528 (12) | 0.0004 (14) | 0.0051 (11) | −0.0247 (12) |
C1 | 0.0236 (9) | 0.0231 (11) | 0.0262 (9) | 0.0010 (8) | 0.0061 (7) | −0.0016 (8) |
C2 | 0.0208 (9) | 0.0187 (11) | 0.0306 (10) | 0.0001 (8) | 0.0071 (7) | −0.0019 (9) |
C3 | 0.0228 (9) | 0.0224 (11) | 0.0282 (9) | 0.0017 (9) | 0.0090 (8) | −0.0006 (9) |
C4 | 0.0227 (9) | 0.0254 (11) | 0.0265 (10) | 0.0005 (9) | 0.0038 (7) | −0.0025 (9) |
C5 | 0.0222 (10) | 0.0260 (12) | 0.0310 (10) | −0.0018 (10) | 0.0056 (8) | −0.0024 (9) |
C6 | 0.0267 (10) | 0.0316 (13) | 0.0263 (9) | −0.0029 (9) | 0.0075 (7) | −0.0049 (9) |
C7 | 0.0417 (14) | 0.0378 (15) | 0.0361 (12) | 0.0055 (11) | 0.0146 (10) | −0.0067 (11) |
C8 | 0.0212 (9) | 0.0320 (12) | 0.0262 (9) | −0.0009 (9) | 0.0071 (7) | −0.0011 (9) |
C9 | 0.0234 (10) | 0.0325 (14) | 0.0334 (11) | 0.0029 (9) | 0.0067 (8) | 0.0030 (10) |
C10 | 0.0326 (11) | 0.0274 (12) | 0.0259 (10) | −0.0081 (10) | 0.0042 (8) | −0.0036 (9) |
C11 | 0.0424 (14) | 0.0515 (17) | 0.0327 (12) | −0.0114 (12) | 0.0124 (10) | 0.0015 (12) |
C12 | 0.0392 (12) | 0.0507 (18) | 0.0303 (11) | −0.0095 (12) | 0.0144 (9) | −0.0103 (11) |
C13 | 0.0473 (15) | 0.084 (3) | 0.0263 (11) | −0.0197 (18) | 0.0065 (10) | −0.0040 (15) |
O1—C6 | 1.367 (3) | C4—C5 | 1.520 (3) |
O1—C1 | 1.437 (3) | C4—H4 | 0.95 (3) |
O2—C8 | 1.352 (3) | C5—H5A | 0.92 (3) |
O2—C2 | 1.444 (2) | C5—H5B | 0.94 (3) |
O3—C10 | 1.361 (3) | C6—C7 | 1.493 (4) |
O3—C3 | 1.435 (2) | C7—H7A | 0.91 (5) |
O4—C12 | 1.346 (3) | C7—H7B | 0.99 (6) |
O4—C4 | 1.443 (2) | C7—H7C | 0.90 (6) |
O5—C1 | 1.405 (3) | C8—C9 | 1.491 (3) |
O5—C5 | 1.433 (2) | C9—H9A | 0.99 (4) |
O6—C6 | 1.199 (3) | C9—H9B | 0.95 (3) |
O7—C8 | 1.196 (3) | C9—H9C | 0.97 (3) |
O8—C10 | 1.201 (3) | C10—C11 | 1.494 (3) |
O9—C12 | 1.198 (4) | C11—H11A | 0.91 (4) |
C1—C2 | 1.528 (3) | C11—H11B | 0.96 (7) |
C1—H1 | 0.97 (3) | C11—H11C | 1.07 (4) |
C2—C3 | 1.525 (3) | C12—C13 | 1.493 (4) |
C2—H2 | 0.94 (3) | C13—H13A | 1.01 (6) |
C3—C4 | 1.515 (3) | C13—H13B | 0.89 (6) |
C3—H3 | 0.94 (3) | C13—H13C | 0.92 (5) |
C6—O1—C1 | 114.64 (16) | O6—C6—C7 | 125.7 (2) |
C8—O2—C2 | 117.83 (18) | O1—C6—C7 | 111.6 (2) |
C10—O3—C3 | 117.73 (17) | C6—C7—H7A | 109.7 |
C12—O4—C4 | 117.2 (2) | C6—C7—H7B | 114 (3) |
C1—O5—C5 | 114.06 (16) | H7A—C7—H7B | 110.1 |
O5—C1—O1 | 111.88 (15) | C6—C7—H7C | 107 (4) |
O5—C1—C2 | 112.09 (17) | H7A—C7—H7C | 109.4 |
O1—C1—C2 | 106.69 (17) | H7B—C7—H7C | 106 (5) |
O5—C1—H1 | 104.6 (17) | O7—C8—O2 | 123.8 (2) |
O1—C1—H1 | 108.5 (16) | O7—C8—C9 | 126.10 (19) |
C2—C1—H1 | 113.1 (15) | O2—C8—C9 | 110.1 (2) |
O2—C2—C3 | 109.81 (16) | C8—C9—H9A | 110 (2) |
O2—C2—C1 | 103.86 (16) | C8—C9—H9B | 109 (2) |
C3—C2—C1 | 112.22 (16) | H9A—C9—H9B | 108 (3) |
O2—C2—H2 | 107.6 (16) | C8—C9—H9C | 112 (2) |
C3—C2—H2 | 108.1 (15) | H9A—C9—H9C | 110 (3) |
C1—C2—H2 | 115.0 (15) | H9B—C9—H9C | 107 (3) |
O3—C3—C4 | 110.17 (17) | O8—C10—O3 | 123.6 (2) |
O3—C3—C2 | 107.51 (15) | O8—C10—C11 | 126.0 (2) |
C4—C3—C2 | 109.53 (17) | O3—C10—C11 | 110.4 (2) |
O3—C3—H3 | 109.2 (15) | C10—C11—H11A | 111 (2) |
C4—C3—H3 | 110.3 (15) | C10—C11—H11B | 109 (3) |
C2—C3—H3 | 110.1 (14) | H11A—C11—H11B | 113 (4) |
O4—C4—C3 | 108.18 (18) | C10—C11—H11C | 106 (2) |
O4—C4—C5 | 107.47 (16) | H11A—C11—H11C | 109 (3) |
C3—C4—C5 | 110.29 (17) | H11B—C11—H11C | 108 (4) |
O4—C4—H4 | 111.8 (15) | O9—C12—O4 | 123.2 (2) |
C3—C4—H4 | 108.6 (15) | O9—C12—C13 | 126.0 (3) |
C5—C4—H4 | 110.5 (15) | O4—C12—C13 | 110.8 (3) |
O5—C5—C4 | 111.03 (16) | C12—C13—H13A | 109 (3) |
O5—C5—H5A | 110.3 (15) | C12—C13—H13B | 111 (3) |
C4—C5—H5A | 109.7 (15) | H13A—C13—H13B | 112 (4) |
O5—C5—H5B | 105.0 (15) | C12—C13—H13C | 104 (3) |
C4—C5—H5B | 112.4 (15) | H13A—C13—H13C | 117 (5) |
H5A—C5—H5B | 108 (2) | H13B—C13—H13C | 104 (4) |
O6—C6—O1 | 122.7 (2) | ||
C5—O5—C1—O1 | 64.6 (2) | C12—O4—C4—C5 | −99.9 (2) |
C5—O5—C1—C2 | −55.2 (2) | O3—C3—C4—O4 | −71.1 (2) |
C6—O1—C1—O5 | 79.4 (2) | C2—C3—C4—O4 | 170.86 (16) |
C6—O1—C1—C2 | −157.64 (16) | O3—C3—C4—C5 | 171.64 (17) |
C8—O2—C2—C3 | 114.69 (18) | C2—C3—C4—C5 | 53.6 (2) |
C8—O2—C2—C1 | −125.12 (17) | C1—O5—C5—C4 | 58.9 (2) |
O5—C1—C2—O2 | −67.48 (19) | O4—C4—C5—O5 | −175.16 (18) |
O1—C1—C2—O2 | 169.73 (14) | C3—C4—C5—O5 | −57.5 (2) |
O5—C1—C2—C3 | 51.1 (2) | C1—O1—C6—O6 | −6.1 (3) |
O1—C1—C2—C3 | −71.7 (2) | C1—O1—C6—C7 | 173.50 (18) |
C10—O3—C3—C4 | 97.3 (2) | C2—O2—C8—O7 | −10.3 (3) |
C10—O3—C3—C2 | −143.44 (18) | C2—O2—C8—C9 | 170.07 (16) |
O2—C2—C3—O3 | −55.3 (2) | C3—O3—C10—O8 | −0.8 (3) |
C1—C2—C3—O3 | −170.28 (18) | C3—O3—C10—C11 | −179.63 (19) |
O2—C2—C3—C4 | 64.4 (2) | C4—O4—C12—O9 | 1.9 (4) |
C1—C2—C3—C4 | −50.6 (2) | C4—O4—C12—C13 | −178.94 (19) |
C12—O4—C4—C3 | 141.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O8i | 0.97 (3) | 2.47 (3) | 3.198 (3) | 132 (2) |
C5—H5B···O7i | 0.94 (3) | 2.63 (3) | 3.528 (3) | 160 (2) |
C9—H9C···O5ii | 0.97 (3) | 2.57 (3) | 3.434 (3) | 149 (3) |
C11—H11C···O6iii | 1.07 (4) | 2.39 (4) | 3.331 (3) | 145 (3) |
C13—H13C···O6iii | 0.92 (5) | 2.66 (5) | 3.554 (4) | 162 (4) |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) x+1, y, z; (iii) x, y, z−1. |
Acknowledgements
The authors would like to thank Dr Victor Day and acknowledge the NSF-MRI grant (CHE-0923449) that was used to purchase the X-ray diffractometer and software used in this study.
References
Alabugin, I. V., Kuhn, L., Medvedev, M. G., Krivoshchapov, N. V., Vil', V. A., Yaremenko, I. A., Mehaffy, P., Yarie, M., Terent'ev, A. O. & Zolfigol, M. A. (2021). Chem. Soc. Rev. 50, 10253–10345. CrossRef CAS PubMed Google Scholar
Bruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2017). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
CustodioCastro, M., DellaVédova, C. & Romano, R. M. (2024). J. Phys. Org. Chem. 37, e4654. Google Scholar
Juaristi, E. (2024). Tetrahedron, 162, 134129. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Matamoros, E., Pérez, E. M., Light, M. E., Cintas, P., Martínez, R. F. & Palacios, J. C. (2024). J. Org. Chem. 89, 7877–7898. CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.