organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Acetyl α-D-2,3,4-tri­acetyl­lyxo­pyran­oside

crossmark logo

aMissouri Western State University, 4525 Downs Dr, Saint Joseph, MO 64507, USA
*Correspondence e-mail: jrhoad1@missouriwestern.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 6 January 2025; accepted 8 January 2025; online 10 January 2025)

The structure of the title compound, C13H18O9, has monoclinic (P21) symmetry. It is of inter­est with respect to stereochemistry and the anomeric effect. Two acetyl subsituents adopt equatorial orientations and two are axial. The extended structure displays C—H⋯O hydrogen bonding.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The anomeric effect is of inter­est to aid our understanding of conformational preferences and stereocontrol of reaction of carbohydrates and carbohydrate-like mol­ecules (Juaristi, 2024[Juaristi, E. (2024). Tetrahedron, 162, 134129.]; Alabugin et al., 2021[Alabugin, I. V., Kuhn, L., Medvedev, M. G., Krivoshchapov, N. V., Vil', V. A., Yaremenko, I. A., Mehaffy, P., Yarie, M., Terent'ev, A. O. & Zolfigol, M. A. (2021). Chem. Soc. Rev. 50, 10253-10345.]). Our inter­est is in carbohydrate and carbohydrate analog ring conformations, leading to the synthesis of common carbohydrate derivatives. Recent methods have been used to try to evaluate the energy of the anomeric and related effects (Custodio Castro et al. 2024[CustodioCastro, M., DellaVédova, C. & Romano, R. M. (2024). J. Phys. Org. Chem. 37, e4654.]; Matamoros et al., 2024[Matamoros, E., Pérez, E. M., Light, M. E., Cintas, P., Martínez, R. F. & Palacios, J. C. (2024). J. Org. Chem. 89, 7877-7898.]) using complex techniques to deconvolute steric effects from electronic effects.

The crystal structure of the title compound, C13H18O9 (aLyx) (Fig. 1[link]), is of inter­est because the two chair conformations each have two acetate groups in axial orientations and two acetate groups equatorial, with the acetate groups at positions 2 and 3 cis, so that in the chair conformations, they are always gauche. This means that the total energy of the steric inter­actions for each chair conformation is equal, so any difference in energy is due to the electronic inter­action at the acetal group. In the solid state, aLyx is in the 4C1 conformation, with Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) puckering parameters of φ = 263 (3)°, θ = 4.3 (2)° and Q = 0.543 (2) Å. Since θ is close to 0°, it is in a nearly perfect chair conformation, while the Q parameter is lower than average, so the chair is a little flattened. The flattening is to be expected with two acetate groups in the axial position, as flattening the ring decreases gauche inter­actions of axial groups with the ring. The acetate substituent at the anomeric (C1) position is axial, indicating the influence of the anomeric effect. The key torsion angles are O1—C1—C2—O2 = 169.73 (14)° and O3—C3—C4—O4 = −71.1 (2)°. The configurations of the stereogenic centers are C1 R, C2 S, C3 R and C4 R, as expected for the lyxose starting material. This structure will be the starting point for calculations to qu­antify the anomeric effect in this sterically balanced mol­ecule. In the crystal, weak C—H⋯O inter­actions (Table 1[link]) link the mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O8i 0.97 (3) 2.47 (3) 3.198 (3) 132 (2)
C5—H5B⋯O7i 0.94 (3) 2.63 (3) 3.528 (3) 160 (2)
C9—H9C⋯O5ii 0.97 (3) 2.57 (3) 3.434 (3) 149 (3)
C11—H11C⋯O6iii 1.07 (4) 2.39 (4) 3.331 (3) 145 (3)
C13—H13C⋯O6iii 0.92 (5) 2.66 (5) 3.554 (4) 162 (4)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [x+1, y, z]; (iii) [x, y, z-1].
[Figure 1]
Figure 1
The mol­ecular structure of aLyx showing 50% displacement ellipsoids.

Synthesis and crystallization

100 mg (6.7 mmol) of lyxose and 10 mg of sodium acetate were dissolved in approximately 2 ml of acetic anhydride. The solution was heated to reflux for 2 h. After cooling the reaction mixture to room temperature, the solution was poured over crushed ice. After the ice melted, the resulting oil was separated from the water and dissolved in minimal boiling ethanol. A few grains of activated charcoal were added to the ethanol and the solution was boiled as before. This was then passed through a cotton filter and eluted through a silica gel column with a 80:20 hexane-to-di­chloro­methane mobile phase. Upon evaporation, fine crystals were formed. The crystals were dissolved in a minimal amount of ether and allowed to evaporate overnight to form rectangular parallelepipeds of aLyx.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H18O9
Mr 318.27
Crystal system, space group Monoclinic, P21
Temperature (K) 200
a, b, c (Å) 8.1174 (3), 9.5597 (4), 10.2580 (4)
β (°) 109.7341 (14)
V3) 749.27 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.05
Crystal size (mm) 0.20 × 0.08 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.650, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 5524, 2107, 2081
Rint 0.025
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.11
No. of reflections 2107
No. of parameters 270
No. of restraints 1
H-atom treatment Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.30, −0.25
Absolute structure Flack x determined using 630 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.08 (7)
Computer programs: APEX2 (Bruker, 2017[Bruker (2017). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2019/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Acetyl α-D-2,3,4-triacetyllyxopyranoside top
Crystal data top
C13H18O9F(000) = 336
Mr = 318.27Dx = 1.411 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 8.1174 (3) ÅCell parameters from 5073 reflections
b = 9.5597 (4) Åθ = 6.5–70.0°
c = 10.2580 (4) ŵ = 1.05 mm1
β = 109.7341 (14)°T = 200 K
V = 749.27 (5) Å3Rectangular parallelepiped, colourless
Z = 20.20 × 0.08 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
2081 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 70.1°, θmin = 6.5°
Tmin = 0.650, Tmax = 0.753h = 98
5524 measured reflectionsk = 118
2107 independent reflectionsl = 1212
Refinement top
Refinement on F2Only H-atom displacement parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0444P)2 + 0.0979P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max < 0.001
wR(F2) = 0.076Δρmax = 0.30 e Å3
S = 1.11Δρmin = 0.24 e Å3
2107 reflectionsExtinction correction: SHELXL2019/1 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
270 parametersExtinction coefficient: 0.028 (3)
1 restraintAbsolute structure: Flack x determined using 630 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: difference Fourier mapAbsolute structure parameter: 0.08 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The ring and methyl hydrogen atoms were initially located in difference-Fourier maps and refined as individual isotropic atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12797 (18)0.61079 (17)0.65441 (14)0.0265 (4)
O20.18123 (17)0.40848 (17)0.55297 (15)0.0261 (4)
O30.05956 (18)0.56065 (17)0.31122 (15)0.0278 (4)
O40.2996 (2)0.45517 (19)0.21466 (16)0.0335 (4)
O50.14941 (18)0.37458 (16)0.58585 (15)0.0267 (4)
O60.1547 (2)0.5135 (2)0.84634 (17)0.0396 (4)
O70.4179 (2)0.5469 (2)0.5983 (2)0.0458 (5)
O80.1219 (2)0.7203 (2)0.17276 (16)0.0374 (4)
O90.2878 (4)0.2352 (3)0.1434 (2)0.0698 (7)
C10.0355 (3)0.4874 (2)0.6386 (2)0.0249 (5)
H10.038 (3)0.457 (3)0.730 (3)0.025 (6)*
C20.0676 (2)0.5270 (2)0.5439 (2)0.0237 (4)
H20.138 (3)0.606 (3)0.571 (3)0.020 (5)*
C30.0509 (3)0.5479 (2)0.3942 (2)0.0244 (4)
H30.117 (3)0.631 (3)0.386 (2)0.018 (5)*
C40.1710 (3)0.4228 (3)0.3476 (2)0.0260 (5)
H40.103 (3)0.344 (3)0.343 (2)0.020 (6)*
C50.2688 (3)0.3961 (3)0.4481 (2)0.0273 (5)
H5A0.342 (3)0.470 (3)0.446 (2)0.017 (6)*
H5B0.336 (3)0.315 (3)0.427 (3)0.021 (6)*
C60.1753 (3)0.6122 (3)0.7703 (2)0.0285 (5)
C70.2522 (4)0.7496 (3)0.7883 (3)0.0381 (6)
H7A0.211 (2)0.7748 (15)0.880 (5)0.075 (12)*
H7B0.232 (7)0.826 (6)0.730 (6)0.093 (15)*
H7C0.369 (8)0.738 (7)0.761 (6)0.104 (18)*
C80.3551 (3)0.4327 (3)0.5903 (2)0.0267 (5)
C90.4529 (3)0.2978 (3)0.6181 (2)0.0305 (5)
H9A0.414 (4)0.237 (4)0.535 (4)0.050 (9)*
H9B0.428 (4)0.251 (4)0.691 (3)0.034 (7)*
H9C0.579 (4)0.312 (4)0.648 (3)0.045 (8)*
C100.0097 (3)0.6518 (3)0.2030 (2)0.0301 (5)
C110.1387 (4)0.6508 (4)0.1280 (3)0.0423 (6)
H11A0.246 (5)0.623 (5)0.185 (4)0.051 (9)*
H11B0.141 (7)0.742 (7)0.088 (6)0.092 (15)*
H11C0.090 (5)0.577 (5)0.045 (4)0.060 (10)*
C120.3453 (3)0.3515 (3)0.1204 (2)0.0394 (6)
C130.4761 (4)0.4017 (5)0.0120 (3)0.0540 (9)
H13A0.544 (7)0.482 (7)0.009 (5)0.092 (16)*
H13B0.546 (6)0.333 (6)0.055 (5)0.074 (13)*
H13C0.410 (6)0.421 (6)0.067 (5)0.074 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0271 (7)0.0251 (8)0.0268 (6)0.0027 (6)0.0085 (5)0.0005 (6)
O20.0187 (7)0.0230 (8)0.0344 (7)0.0007 (6)0.0060 (5)0.0024 (6)
O30.0275 (7)0.0268 (8)0.0305 (7)0.0011 (6)0.0117 (6)0.0024 (6)
O40.0309 (7)0.0349 (10)0.0273 (7)0.0029 (7)0.0000 (6)0.0030 (7)
O50.0260 (7)0.0231 (8)0.0294 (7)0.0025 (6)0.0073 (6)0.0005 (6)
O60.0494 (9)0.0388 (11)0.0336 (8)0.0015 (8)0.0179 (7)0.0031 (8)
O70.0252 (8)0.0303 (10)0.0781 (12)0.0055 (7)0.0126 (8)0.0029 (10)
O80.0374 (9)0.0336 (10)0.0333 (8)0.0012 (8)0.0015 (6)0.0044 (7)
O90.0903 (17)0.0519 (16)0.0528 (12)0.0004 (14)0.0051 (11)0.0247 (12)
C10.0236 (9)0.0231 (11)0.0262 (9)0.0010 (8)0.0061 (7)0.0016 (8)
C20.0208 (9)0.0187 (11)0.0306 (10)0.0001 (8)0.0071 (7)0.0019 (9)
C30.0228 (9)0.0224 (11)0.0282 (9)0.0017 (9)0.0090 (8)0.0006 (9)
C40.0227 (9)0.0254 (11)0.0265 (10)0.0005 (9)0.0038 (7)0.0025 (9)
C50.0222 (10)0.0260 (12)0.0310 (10)0.0018 (10)0.0056 (8)0.0024 (9)
C60.0267 (10)0.0316 (13)0.0263 (9)0.0029 (9)0.0075 (7)0.0049 (9)
C70.0417 (14)0.0378 (15)0.0361 (12)0.0055 (11)0.0146 (10)0.0067 (11)
C80.0212 (9)0.0320 (12)0.0262 (9)0.0009 (9)0.0071 (7)0.0011 (9)
C90.0234 (10)0.0325 (14)0.0334 (11)0.0029 (9)0.0067 (8)0.0030 (10)
C100.0326 (11)0.0274 (12)0.0259 (10)0.0081 (10)0.0042 (8)0.0036 (9)
C110.0424 (14)0.0515 (17)0.0327 (12)0.0114 (12)0.0124 (10)0.0015 (12)
C120.0392 (12)0.0507 (18)0.0303 (11)0.0095 (12)0.0144 (9)0.0103 (11)
C130.0473 (15)0.084 (3)0.0263 (11)0.0197 (18)0.0065 (10)0.0040 (15)
Geometric parameters (Å, º) top
O1—C61.367 (3)C4—C51.520 (3)
O1—C11.437 (3)C4—H40.95 (3)
O2—C81.352 (3)C5—H5A0.92 (3)
O2—C21.444 (2)C5—H5B0.94 (3)
O3—C101.361 (3)C6—C71.493 (4)
O3—C31.435 (2)C7—H7A0.91 (5)
O4—C121.346 (3)C7—H7B0.99 (6)
O4—C41.443 (2)C7—H7C0.90 (6)
O5—C11.405 (3)C8—C91.491 (3)
O5—C51.433 (2)C9—H9A0.99 (4)
O6—C61.199 (3)C9—H9B0.95 (3)
O7—C81.196 (3)C9—H9C0.97 (3)
O8—C101.201 (3)C10—C111.494 (3)
O9—C121.198 (4)C11—H11A0.91 (4)
C1—C21.528 (3)C11—H11B0.96 (7)
C1—H10.97 (3)C11—H11C1.07 (4)
C2—C31.525 (3)C12—C131.493 (4)
C2—H20.94 (3)C13—H13A1.01 (6)
C3—C41.515 (3)C13—H13B0.89 (6)
C3—H30.94 (3)C13—H13C0.92 (5)
C6—O1—C1114.64 (16)O6—C6—C7125.7 (2)
C8—O2—C2117.83 (18)O1—C6—C7111.6 (2)
C10—O3—C3117.73 (17)C6—C7—H7A109.7
C12—O4—C4117.2 (2)C6—C7—H7B114 (3)
C1—O5—C5114.06 (16)H7A—C7—H7B110.1
O5—C1—O1111.88 (15)C6—C7—H7C107 (4)
O5—C1—C2112.09 (17)H7A—C7—H7C109.4
O1—C1—C2106.69 (17)H7B—C7—H7C106 (5)
O5—C1—H1104.6 (17)O7—C8—O2123.8 (2)
O1—C1—H1108.5 (16)O7—C8—C9126.10 (19)
C2—C1—H1113.1 (15)O2—C8—C9110.1 (2)
O2—C2—C3109.81 (16)C8—C9—H9A110 (2)
O2—C2—C1103.86 (16)C8—C9—H9B109 (2)
C3—C2—C1112.22 (16)H9A—C9—H9B108 (3)
O2—C2—H2107.6 (16)C8—C9—H9C112 (2)
C3—C2—H2108.1 (15)H9A—C9—H9C110 (3)
C1—C2—H2115.0 (15)H9B—C9—H9C107 (3)
O3—C3—C4110.17 (17)O8—C10—O3123.6 (2)
O3—C3—C2107.51 (15)O8—C10—C11126.0 (2)
C4—C3—C2109.53 (17)O3—C10—C11110.4 (2)
O3—C3—H3109.2 (15)C10—C11—H11A111 (2)
C4—C3—H3110.3 (15)C10—C11—H11B109 (3)
C2—C3—H3110.1 (14)H11A—C11—H11B113 (4)
O4—C4—C3108.18 (18)C10—C11—H11C106 (2)
O4—C4—C5107.47 (16)H11A—C11—H11C109 (3)
C3—C4—C5110.29 (17)H11B—C11—H11C108 (4)
O4—C4—H4111.8 (15)O9—C12—O4123.2 (2)
C3—C4—H4108.6 (15)O9—C12—C13126.0 (3)
C5—C4—H4110.5 (15)O4—C12—C13110.8 (3)
O5—C5—C4111.03 (16)C12—C13—H13A109 (3)
O5—C5—H5A110.3 (15)C12—C13—H13B111 (3)
C4—C5—H5A109.7 (15)H13A—C13—H13B112 (4)
O5—C5—H5B105.0 (15)C12—C13—H13C104 (3)
C4—C5—H5B112.4 (15)H13A—C13—H13C117 (5)
H5A—C5—H5B108 (2)H13B—C13—H13C104 (4)
O6—C6—O1122.7 (2)
C5—O5—C1—O164.6 (2)C12—O4—C4—C599.9 (2)
C5—O5—C1—C255.2 (2)O3—C3—C4—O471.1 (2)
C6—O1—C1—O579.4 (2)C2—C3—C4—O4170.86 (16)
C6—O1—C1—C2157.64 (16)O3—C3—C4—C5171.64 (17)
C8—O2—C2—C3114.69 (18)C2—C3—C4—C553.6 (2)
C8—O2—C2—C1125.12 (17)C1—O5—C5—C458.9 (2)
O5—C1—C2—O267.48 (19)O4—C4—C5—O5175.16 (18)
O1—C1—C2—O2169.73 (14)C3—C4—C5—O557.5 (2)
O5—C1—C2—C351.1 (2)C1—O1—C6—O66.1 (3)
O1—C1—C2—C371.7 (2)C1—O1—C6—C7173.50 (18)
C10—O3—C3—C497.3 (2)C2—O2—C8—O710.3 (3)
C10—O3—C3—C2143.44 (18)C2—O2—C8—C9170.07 (16)
O2—C2—C3—O355.3 (2)C3—O3—C10—O80.8 (3)
C1—C2—C3—O3170.28 (18)C3—O3—C10—C11179.63 (19)
O2—C2—C3—C464.4 (2)C4—O4—C12—O91.9 (4)
C1—C2—C3—C450.6 (2)C4—O4—C12—C13178.94 (19)
C12—O4—C4—C3141.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O8i0.97 (3)2.47 (3)3.198 (3)132 (2)
C5—H5B···O7i0.94 (3)2.63 (3)3.528 (3)160 (2)
C9—H9C···O5ii0.97 (3)2.57 (3)3.434 (3)149 (3)
C11—H11C···O6iii1.07 (4)2.39 (4)3.331 (3)145 (3)
C13—H13C···O6iii0.92 (5)2.66 (5)3.554 (4)162 (4)
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y, z; (iii) x, y, z1.
 

Acknowledgements

The authors would like to thank Dr Victor Day and acknowledge the NSF-MRI grant (CHE-0923449) that was used to purchase the X-ray diffractometer and software used in this study.

References

First citationAlabugin, I. V., Kuhn, L., Medvedev, M. G., Krivoshchapov, N. V., Vil', V. A., Yaremenko, I. A., Mehaffy, P., Yarie, M., Terent'ev, A. O. & Zolfigol, M. A. (2021). Chem. Soc. Rev. 50, 10253–10345.  CrossRef CAS PubMed Google Scholar
First citationBruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCustodioCastro, M., DellaVédova, C. & Romano, R. M. (2024). J. Phys. Org. Chem. 37, e4654.  Google Scholar
First citationJuaristi, E. (2024). Tetrahedron, 162, 134129.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMatamoros, E., Pérez, E. M., Light, M. E., Cintas, P., Martínez, R. F. & Palacios, J. C. (2024). J. Org. Chem. 89, 7877–7898.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146