organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Chloro­curcumin

crossmark logo

aDepartment of Chemistry, Pennsylvania State Scranton, Dunmore, PA 18512, USA, and bDepartment of Chemistry, Alfaisal University, Riyadh 11533, Saudi Arabia
*Correspondence e-mail: mbader@alfaisal.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 11 December 2024; accepted 24 December 2024; online 3 January 2025)

The title compound [systematic name: 4-chloro-5-hy­droxy-1,7-bis­(4-hy­droxy-3-meth­oxy­phen­yl)hepta-1,4,6-trien-3-one], C21H19ClO6, is close to planar, with a dihedral angle of 2.61 (7)° between the terminal phenyl groups and three intra­molecular O—H⋯O hydrogen bonds occur. In the crystal, the mol­ecules are linked into [201] chains by O—H⋯O hydrogen bonds and weak aromatic ππ stacking is also observed with a shortest centroid–centroid separation of 3.7279 (8) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Curcumin, or 1,7-bis­(4-hy­droxy-3-meth­oxy­phen­yl)-1,6-hepta­diene-3,5-dione (C21H20O6), is a yellow–orange polyphenolic compound found in turmeric. Since the 1990s, extensive research has highlighted its anti­oxidant, anti-inflammatory, and anti­cancer properties (Dairam et al., 2008[Dairam, A., Fogel, R., Daya, S. & Limson, J. L. (2008). J. Agric. Food Chem. 56, 3350-3356.]). Structurally, curcumin features an α,β-unsaturated β-diketone moiety. In neutral and acidic media, it predominantly adopts the diketo form, whereas the more stable keto–enol form is favored under alkaline conditions. The phenolic groups and the α,β-unsaturated diketone contribute to its anti­oxidant activity, while the α,β-unsaturated diketone unit is primarily linked to its anti­cancer effects (Priyadarsini, 2013[Priyadarsini, K. I. (2013). Curr. Pharm. Des. 19, 2093-2100.]). An examination of the Cambridge Structural Database (CSD; version2024.3, update of December 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicates that curcumin exists in three polymorphs (I, II, and III), all displaying their keto–enol tautomeric forms in the solid-state. The most common form, polymorph I, crystallizes in the monoclinic space group P2/n [CSD refcodes BINMEQ (Tønnesen et al., 1982[Tønnesen, H. H., Karlsen, J., Mostad, A., Samuelsson, B., Enzell, C. R. & Berg, J. (1982). Acta Chem. Scand. 36b, 475-479.]), BINMEQ01 (Ishigami et al., 1999[Ishigami, Y., Goto, M., Masuda, T., Takizawa, Y. & Suzuki, S. (1999). Shikizai Kyokaishi, 72, 71-77.]), BINMEQ02 (Parimita et al., 2007[Parimita, S. P., Ramshankar, Y. V., Suresh, S. & Guru Row, T. N. (2007). Acta Cryst. E63, o860-o862.]), BINMEQ03 (Suo et al., 2006[Suo, Q., Huang, Y., Weng, L., He, W., Li, C., Li, Y. & Hong, H. (2006). Shipin Kexue (Beijing), 27, 27.]), BINMEQ04 (Fronczek, 2009[Fronczek, F. R. (2009). CSD Communication (refcode BINMEQ04). CCDC, Cambridge, England.]), BINMEQ05 (Sanphui et al., 2011[Sanphui, P., Goud, N. R., Khandavilli, U. B. R., Bhanoth, S. & Nangia, A. (2011). Chem. Commun. 47, 5013.]), BINMEQ09 (Reid et al., 2015[Reid, J. W., Kaduk, J. A., Garimella, S. V. & Tse, J. S. (2015). Powder Diffr. 30, 67-75.]), BINMEQ10 (Parveen et al., 2016[Parveen, M., Ahmad, F., Malla, A. M., Azaz, S., Alam, M., Basudan, O. A., Silva, M. R. & Pereira Silva, P. S. (2016). Nat. Prod. Bioprospect. 6, 267-278.]), BINMEQ11 (Matlinska et al., 2018[Matlinska, M. A., Wasylishen, R. E., Bernard, G. M., Terskikh, V. V., Brinkmann, A. & Michaelis, V. K. (2018). Cryst. Growth Des. 18, 5556-5563.]), BINMEQ13 (Lal et al., 2020[Lal, S., Prakash, K., Khera, N. & Hooda, S. (2020). CSD Communication (refcode BINMEQ13). CCDC, Cambridge, England.]) and BINMEQ14 (Kohnhorst & Saithong, 2019[Kohnhorst, S. A. & Saithong, S. (2019). J. Curr. Sci. Technol. 9, 77-87.])] while the less common forms II and III crystallize in the ortho­rhom­bic space groups Pca21 [BINMEQ06 (Sanphui et al., 2011[Sanphui, P., Goud, N. R., Khandavilli, U. B. R., Bhanoth, S. & Nangia, A. (2011). Chem. Commun. 47, 5013.]), BINMEQ08 (Renuga Parameswari et al., 2012[Renuga Parameswari, A., Devipriya, B., Jenniefer, S. J., Thomas Muthiah, P. & Kumaradhas, P. (2012). J. Chem. Crystallogr. 42, 227-231.]), BINMEQ12 (Matlinska et al., 2018[Matlinska, M. A., Wasylishen, R. E., Bernard, G. M., Terskikh, V. V., Brinkmann, A. & Michaelis, V. K. (2018). Cryst. Growth Des. 18, 5556-5563.]) and BINMEQ15 (Zou, 2024[Zou, H. (2024). CSD Communication (refcode BINMEQ15). CCDC, Cambridge, England.])] and Pbca (BINMEQ07; Sanphui et al., 2011[Sanphui, P., Goud, N. R., Khandavilli, U. B. R., Bhanoth, S. & Nangia, A. (2011). Chem. Commun. 47, 5013.]), respectively.

This study presents the synthesis and crystal structure of the title compound, C21H19ClO6 (I), where the hydrogen atom at the α-carbon atom (4-position) is replaced by a chlorine atom. The synthesis of the title compound was reported previously by two groups through multistep syntheses plagued with low yields and impurities (Ooko et al., 2016[Ooko, E., Alsalim, T., Saeed, B., Saeed, M. E. M., Kadioglu, O., Abbo, H. S., Titinchi, S. J. J. & Efferth, T. (2016). Toxicol. Appl. Pharmacol. 305, 216-233.]; Abood et al., 2021[Abood, R. G., Alsalim, T. A. & Abood, E. A. (2021). Egypt. J. Chem. 64, 2173-2183.]). Our method is a direct one-step halogenation reaction with a reasonable yield.

The mol­ecule of (I) adopts a near planar conformation, as indicated by the torsion angle of 2.61 (7)(7)° between the planes of the terminal C5–C10 and C15–C20 phenyl groups. Three intra­molecular O—H⋯O hydrogen bonds occur (Fig. 1[link]), with the central O1—H1⋯O2 bond notably shorter and closer to linearity than the terminal O3—H3⋯O4 and O5—H5⋯O6 bonds (Table 1[link]). The supporting information provides a comparison of curcumin polymorph structural and physical data with those of (I).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.70 2.4506 (16) 151
O3—H3⋯O4 0.82 2.18 2.6395 (15) 115
O5—H5⋯O6 0.82 2.28 2.7200 (15) 114
O3—H3⋯O6i 0.82 2.20 2.8398 (15) 135
O5—H5⋯O3ii 0.82 2.05 2.8439 (16) 164
C11—H11B⋯O2iii 0.96 2.59 3.477 (2) 154
C17—H17⋯O2iv 0.93 2.57 3.3206 (19) 138
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I) showing 50% displacement ellipsoids. Hydrogen bonds are shown as dotted lines.

In the crystal of (I), the mol­ecules are linked by O—H⋯O hydrogen bonds arising from O3 and O4 (both of which also form an intra­molecular link) to generate infinite [20[\overline{1}]] chains (Fig. 2[link]). Aromatic ππ stacking also occurs, as indicated by the shortest centroid–centroid separation of 3.7279 (8) Å between inversion related C5–C10 and C15–C20 rings but no short Cl⋯Cl contacts occur.

[Figure 2]
Figure 2
Part of a [20[\overline{1}]] hydrogen-bonded chain in the structure of (I).

Synthesis and crystallization

Curcumin (2.74 g, 7.45 mmol) was dissolved in anhydrous aceto­nitrile with heating. The solution was briefly cooled in an ice bath before N-chloro­succinimide (1.21 g, 9.05 mmol) was added. Stirring was allowed to continue overnight at room temperature. The red crude powder was filtered and recrystallized from aceto­nitrile solution to give yellow needles of (I) (yield: 33%. Analysis calculated (C21H19ClO6): C, 62.62; H, 4.75; Cl, 8.80. Found: C, 62.30; H, 4.77; Cl, 8.58. Exact mass: 402.0870, found (EI, M + 1): 403.0940. M.p. 197°C (lit. 190–191°C; Abood et al., 2021[Abood, R. G., Alsalim, T. A. & Abood, E. A. (2021). Egypt. J. Chem. 64, 2173-2183.]). Compared to curcumin, the solubility of (I) in water is slightly reduced, measuring approximately 5 g l−1, compared to 6.6 g l−1 for the former.

The UV/visible absorption spectrum of (I) dissolved in di­chloro­methane shows a bathochromic (red) shift of 35 nm, compared to the parent curcumin compound (Fig. 3[link]), which might correlate with the electron-donating properties of the chlorine atom.

[Figure 3]
Figure 3
The UV/visible absorption spectrum of (I) dissolved in di­chloro­methane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H19ClO6
Mr 402.81
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 16.7520 (3), 7.27831 (16), 15.9369 (3)
β (°) 100.0131 (17)
V3) 1913.53 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.08
Crystal size (mm) 0.2 × 0.17 × 0.13
 
Data collection
Diffractometer Four-circle diffractometer
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.765, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13358, 3710, 3247
Rint 0.020
(sin θ/λ)max−1) 0.623
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.108, 1.07
No. of reflections 3710
No. of parameters 259
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.32
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

4-Chloro-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one top
Crystal data top
C21H19ClO6F(000) = 840
Mr = 402.81Dx = 1.398 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 16.7520 (3) ÅCell parameters from 8805 reflections
b = 7.27831 (16) Åθ = 2.9–73.7°
c = 15.9369 (3) ŵ = 2.08 mm1
β = 100.0131 (17)°T = 298 K
V = 1913.53 (7) Å3Block, clear orange
Z = 40.2 × 0.17 × 0.13 mm
Data collection top
Four-circle
diffractometer
3710 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source3247 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.0000 pixels mm-1θmax = 73.8°, θmin = 2.7°
ω scansh = 2018
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 88
Tmin = 0.765, Tmax = 1.000l = 1819
13358 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.3344P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.27 e Å3
3710 reflectionsΔρmin = 0.32 e Å3
259 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0016 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43756 (2)0.67682 (7)0.37034 (2)0.06172 (16)
O10.50652 (7)0.79498 (18)0.61198 (7)0.0570 (3)
H10.5509360.8298430.6033740.086*
O20.61937 (6)0.85947 (18)0.53705 (7)0.0565 (3)
O30.04255 (6)0.4600 (2)0.66977 (7)0.0641 (4)
H30.0413370.4633670.7209690.096*
O40.15138 (7)0.56430 (19)0.80133 (6)0.0581 (3)
O50.87723 (7)0.9296 (2)0.13546 (7)0.0682 (4)
H50.9228480.9673880.1547460.102*
O60.94585 (6)1.00942 (19)0.29885 (6)0.0573 (3)
C10.49645 (8)0.7455 (2)0.46575 (9)0.0434 (3)
C20.46339 (8)0.7392 (2)0.54077 (9)0.0443 (3)
C30.38188 (9)0.6737 (2)0.54378 (10)0.0477 (4)
H3A0.3494880.6331700.4938290.057*
C40.35239 (9)0.6703 (2)0.61630 (10)0.0474 (4)
H40.3873750.7079500.6650950.057*
C50.27120 (8)0.6139 (2)0.62761 (9)0.0426 (3)
C60.21122 (9)0.5600 (2)0.56049 (9)0.0476 (4)
H60.2226030.5574380.5054310.057*
C70.13493 (9)0.5102 (2)0.57431 (9)0.0508 (4)
H70.0952750.4751430.5287880.061*
C80.11786 (8)0.5126 (2)0.65602 (9)0.0459 (3)
C90.17684 (8)0.5667 (2)0.72415 (9)0.0437 (3)
C100.25293 (9)0.6168 (2)0.71009 (9)0.0451 (3)
H100.2923030.6526330.7557020.054*
C110.20933 (11)0.6084 (3)0.87479 (10)0.0649 (5)
H11A0.2298700.7300550.8689380.097*
H11B0.2531950.5218930.8806510.097*
H11C0.1840720.6032080.9243860.097*
C120.57657 (9)0.8078 (2)0.46588 (9)0.0435 (3)
C130.61302 (9)0.8162 (2)0.38921 (10)0.0464 (4)
H130.5825830.7834860.3368480.056*
C140.68960 (9)0.8704 (2)0.39371 (10)0.0453 (3)
H140.7169340.9011390.4477690.054*
C150.73604 (8)0.8876 (2)0.32490 (9)0.0423 (3)
C160.70374 (9)0.8547 (2)0.24003 (10)0.0487 (4)
H160.6495400.8215380.2248120.058*
C170.75172 (9)0.8709 (2)0.17775 (10)0.0521 (4)
H170.7294210.8486620.1210460.063*
C180.83262 (9)0.9199 (2)0.19931 (9)0.0471 (3)
C190.86553 (8)0.9572 (2)0.28391 (9)0.0434 (3)
C200.81761 (8)0.9398 (2)0.34580 (9)0.0442 (3)
H200.8398990.9632080.4023950.053*
C210.98395 (10)1.0319 (3)0.38498 (10)0.0639 (5)
H21A1.0385421.0740160.3868890.096*
H21B0.9846270.9163880.4141740.096*
H21C0.9544541.1204900.4121320.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0402 (2)0.0935 (4)0.0527 (2)0.01305 (19)0.01165 (17)0.00591 (19)
O10.0407 (6)0.0814 (8)0.0512 (6)0.0087 (6)0.0141 (5)0.0033 (5)
O20.0340 (5)0.0848 (8)0.0516 (6)0.0076 (5)0.0097 (4)0.0013 (6)
O30.0334 (6)0.1104 (10)0.0526 (6)0.0065 (6)0.0187 (5)0.0016 (7)
O40.0452 (6)0.0933 (9)0.0395 (5)0.0025 (6)0.0175 (4)0.0007 (5)
O50.0469 (6)0.1209 (11)0.0400 (6)0.0127 (7)0.0165 (5)0.0010 (6)
O60.0313 (5)0.1007 (10)0.0419 (5)0.0091 (5)0.0118 (4)0.0003 (5)
C10.0314 (7)0.0511 (8)0.0493 (7)0.0004 (6)0.0113 (6)0.0058 (6)
C20.0343 (7)0.0491 (8)0.0514 (8)0.0015 (6)0.0124 (6)0.0067 (6)
C30.0354 (7)0.0552 (9)0.0553 (8)0.0011 (6)0.0163 (6)0.0049 (7)
C40.0391 (8)0.0542 (9)0.0514 (8)0.0025 (6)0.0151 (6)0.0035 (6)
C50.0371 (7)0.0481 (8)0.0456 (7)0.0016 (6)0.0151 (6)0.0043 (6)
C60.0417 (8)0.0636 (9)0.0415 (7)0.0011 (7)0.0179 (6)0.0032 (6)
C70.0367 (7)0.0748 (11)0.0420 (7)0.0007 (7)0.0100 (6)0.0012 (7)
C80.0310 (7)0.0631 (9)0.0464 (7)0.0014 (6)0.0144 (6)0.0019 (7)
C90.0378 (7)0.0563 (9)0.0399 (7)0.0045 (6)0.0145 (6)0.0032 (6)
C100.0377 (7)0.0554 (8)0.0439 (7)0.0017 (6)0.0116 (6)0.0001 (6)
C110.0625 (11)0.0925 (14)0.0404 (8)0.0013 (10)0.0106 (7)0.0003 (8)
C120.0323 (7)0.0490 (8)0.0505 (8)0.0029 (6)0.0109 (6)0.0071 (6)
C130.0354 (7)0.0542 (9)0.0521 (8)0.0003 (6)0.0147 (6)0.0036 (6)
C140.0354 (7)0.0538 (9)0.0493 (8)0.0007 (6)0.0145 (6)0.0014 (6)
C150.0334 (7)0.0470 (8)0.0488 (8)0.0012 (6)0.0131 (6)0.0034 (6)
C160.0337 (7)0.0605 (9)0.0519 (8)0.0048 (6)0.0076 (6)0.0048 (7)
C170.0434 (8)0.0711 (10)0.0407 (7)0.0062 (7)0.0041 (6)0.0037 (7)
C180.0405 (7)0.0633 (9)0.0397 (7)0.0007 (7)0.0136 (6)0.0057 (6)
C190.0300 (7)0.0587 (9)0.0427 (7)0.0003 (6)0.0099 (5)0.0043 (6)
C200.0340 (7)0.0596 (9)0.0403 (7)0.0007 (6)0.0098 (5)0.0003 (6)
C210.0372 (8)0.1081 (15)0.0465 (8)0.0085 (9)0.0072 (6)0.0080 (9)
Geometric parameters (Å, º) top
Cl1—C11.7359 (15)C7—C81.381 (2)
O1—H10.8200C8—C91.392 (2)
O1—C21.2999 (18)C9—C101.381 (2)
O2—C121.2881 (19)C10—H100.9300
O3—H30.8200C11—H11A0.9600
O3—C81.3718 (17)C11—H11B0.9600
O4—C91.3703 (16)C11—H11C0.9600
O4—C111.422 (2)C12—C131.459 (2)
O5—H50.8200C13—H130.9300
O5—C181.3650 (17)C13—C141.332 (2)
O6—C191.3785 (16)C14—H140.9300
O6—C211.4190 (18)C14—C151.4561 (19)
C1—C21.4030 (19)C15—C161.387 (2)
C1—C121.4164 (19)C15—C201.4016 (19)
C2—C31.4550 (19)C16—H160.9300
C3—H3A0.9300C16—C171.387 (2)
C3—C41.334 (2)C17—H170.9300
C4—H40.9300C17—C181.386 (2)
C4—C51.4614 (19)C18—C191.392 (2)
C5—C61.391 (2)C19—C201.3814 (19)
C5—C101.4007 (19)C20—H200.9300
C6—H60.9300C21—H21A0.9600
C6—C71.383 (2)C21—H21B0.9600
C7—H70.9300C21—H21C0.9600
C2—O1—H1109.5O4—C11—H11C109.5
C8—O3—H3109.5H11A—C11—H11B109.5
C9—O4—C11117.50 (12)H11A—C11—H11C109.5
C18—O5—H5109.5H11B—C11—H11C109.5
C19—O6—C21117.40 (11)O2—C12—C1118.50 (13)
C2—C1—Cl1119.25 (11)O2—C12—C13118.38 (13)
C2—C1—C12121.57 (13)C1—C12—C13123.13 (14)
C12—C1—Cl1119.18 (11)C12—C13—H13119.8
O1—C2—C1119.47 (13)C14—C13—C12120.44 (14)
O1—C2—C3117.12 (13)C14—C13—H13119.8
C1—C2—C3123.41 (14)C13—C14—H14115.8
C2—C3—H3A119.1C13—C14—C15128.36 (15)
C4—C3—C2121.73 (15)C15—C14—H14115.8
C4—C3—H3A119.1C16—C15—C14123.40 (13)
C3—C4—H4116.4C16—C15—C20118.51 (12)
C3—C4—C5127.22 (15)C20—C15—C14118.09 (13)
C5—C4—H4116.4C15—C16—H16119.8
C6—C5—C4123.22 (13)C17—C16—C15120.45 (14)
C6—C5—C10118.65 (13)C17—C16—H16119.8
C10—C5—C4118.13 (13)C16—C17—H17119.7
C5—C6—H6119.5C18—C17—C16120.54 (14)
C7—C6—C5121.05 (13)C18—C17—H17119.7
C7—C6—H6119.5O5—C18—C17117.85 (13)
C6—C7—H7120.1O5—C18—C19122.41 (13)
C8—C7—C6119.71 (14)C17—C18—C19119.74 (13)
C8—C7—H7120.1O6—C19—C18115.56 (12)
O3—C8—C7119.61 (13)O6—C19—C20124.95 (13)
O3—C8—C9120.14 (12)C20—C19—C18119.49 (13)
C7—C8—C9120.26 (13)C15—C20—H20119.4
O4—C9—C8114.02 (12)C19—C20—C15121.25 (13)
O4—C9—C10126.09 (13)C19—C20—H20119.4
C10—C9—C8119.89 (13)O6—C21—H21A109.5
C5—C10—H10119.8O6—C21—H21B109.5
C9—C10—C5120.45 (14)O6—C21—H21C109.5
C9—C10—H10119.8H21A—C21—H21B109.5
O4—C11—H11A109.5H21A—C21—H21C109.5
O4—C11—H11B109.5H21B—C21—H21C109.5
Cl1—C1—C2—O1178.22 (12)C6—C7—C8—C90.6 (2)
Cl1—C1—C2—C31.4 (2)C7—C8—C9—O4179.38 (15)
Cl1—C1—C12—O2179.55 (11)C7—C8—C9—C100.5 (2)
Cl1—C1—C12—C130.5 (2)C8—C9—C10—C50.1 (2)
O1—C2—C3—C40.2 (2)C10—C5—C6—C70.0 (2)
O2—C12—C13—C142.2 (2)C11—O4—C9—C8176.77 (15)
O3—C8—C9—O41.1 (2)C11—O4—C9—C103.4 (2)
O3—C8—C9—C10179.02 (15)C12—C1—C2—O11.3 (2)
O4—C9—C10—C5179.74 (14)C12—C1—C2—C3179.07 (14)
O5—C18—C19—O61.6 (2)C12—C13—C14—C15179.93 (14)
O5—C18—C19—C20178.20 (16)C13—C14—C15—C162.7 (3)
O6—C19—C20—C15179.36 (15)C13—C14—C15—C20177.12 (16)
C1—C2—C3—C4179.78 (15)C14—C15—C16—C17178.99 (15)
C1—C12—C13—C14177.78 (15)C14—C15—C20—C19179.38 (15)
C2—C1—C12—O20.0 (2)C15—C16—C17—C180.1 (3)
C2—C1—C12—C13179.96 (14)C16—C15—C20—C190.5 (2)
C2—C3—C4—C5177.85 (15)C16—C17—C18—O5178.57 (16)
C3—C4—C5—C62.2 (3)C16—C17—C18—C191.5 (3)
C3—C4—C5—C10178.62 (16)C17—C18—C19—O6178.37 (15)
C4—C5—C6—C7179.12 (15)C17—C18—C19—C201.8 (2)
C4—C5—C10—C9179.31 (14)C18—C19—C20—C150.9 (2)
C5—C6—C7—C80.4 (3)C20—C15—C16—C170.9 (2)
C6—C5—C10—C90.1 (2)C21—O6—C19—C18174.18 (16)
C6—C7—C8—O3178.88 (15)C21—O6—C19—C205.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.702.4506 (16)151
O3—H3···O40.822.182.6395 (15)115
O5—H5···O60.822.282.7200 (15)114
O3—H3···O6i0.822.202.8398 (15)135
O5—H5···O3ii0.822.052.8439 (16)164
C11—H11B···O2iii0.962.593.477 (2)154
C17—H17···O2iv0.932.573.3206 (19)138
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x+1, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge partial support from the SIG S10 of the National Institute of Health under awards 1S10OD028589–01 and 1S10RR023439–01 to Dr Neela Yennawar for the X-ray instrumentation. The authors also acknowledge Dr Hemant P. Yennawar of the X-ray facility at Penn State University, University Park. We would also like to thank Dr E. Alsharaeh, Dr Mohan C. and undergraduate students Sarah Younas and Samar Al Rifai for help with the DSC and UV measurements. MMB acknowledges the support of the Office of Research at Alfaisal University for financial support (IRG-2020 and 2024).

Funding information

Funding for this research was provided by: Penn State Scranton (grant No. RDG-Pham to P.-T. T. Pham); Office of the VP for Research at Alfaisal University (grant No. IRG-2024 to M. M. Bader).

References

First citationAbood, R. G., Alsalim, T. A. & Abood, E. A. (2021). Egypt. J. Chem. 64, 2173–2183.  Google Scholar
First citationDairam, A., Fogel, R., Daya, S. & Limson, J. L. (2008). J. Agric. Food Chem. 56, 3350–3356.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFronczek, F. R. (2009). CSD Communication (refcode BINMEQ04). CCDC, Cambridge, England.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIshigami, Y., Goto, M., Masuda, T., Takizawa, Y. & Suzuki, S. (1999). Shikizai Kyokaishi, 72, 71–77.  CAS Google Scholar
First citationKohnhorst, S. A. & Saithong, S. (2019). J. Curr. Sci. Technol. 9, 77–87.  Google Scholar
First citationLal, S., Prakash, K., Khera, N. & Hooda, S. (2020). CSD Communication (refcode BINMEQ13). CCDC, Cambridge, England.  Google Scholar
First citationMatlinska, M. A., Wasylishen, R. E., Bernard, G. M., Terskikh, V. V., Brinkmann, A. & Michaelis, V. K. (2018). Cryst. Growth Des. 18, 5556–5563.  CrossRef CAS Google Scholar
First citationOoko, E., Alsalim, T., Saeed, B., Saeed, M. E. M., Kadioglu, O., Abbo, H. S., Titinchi, S. J. J. & Efferth, T. (2016). Toxicol. Appl. Pharmacol. 305, 216–233.  CrossRef CAS PubMed Google Scholar
First citationParimita, S. P., Ramshankar, Y. V., Suresh, S. & Guru Row, T. N. (2007). Acta Cryst. E63, o860–o862.  CrossRef IUCr Journals Google Scholar
First citationParveen, M., Ahmad, F., Malla, A. M., Azaz, S., Alam, M., Basudan, O. A., Silva, M. R. & Pereira Silva, P. S. (2016). Nat. Prod. Bioprospect. 6, 267–278.  CrossRef PubMed Google Scholar
First citationPriyadarsini, K. I. (2013). Curr. Pharm. Des. 19, 2093–2100.  CAS PubMed Google Scholar
First citationReid, J. W., Kaduk, J. A., Garimella, S. V. & Tse, J. S. (2015). Powder Diffr. 30, 67–75.  CrossRef CAS Google Scholar
First citationRenuga Parameswari, A., Devipriya, B., Jenniefer, S. J., Thomas Muthiah, P. & Kumaradhas, P. (2012). J. Chem. Crystallogr. 42, 227–231.  CrossRef Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSanphui, P., Goud, N. R., Khandavilli, U. B. R., Bhanoth, S. & Nangia, A. (2011). Chem. Commun. 47, 5013.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuo, Q., Huang, Y., Weng, L., He, W., Li, C., Li, Y. & Hong, H. (2006). Shipin Kexue (Beijing), 27, 27.  Google Scholar
First citationTønnesen, H. H., Karlsen, J., Mostad, A., Samuelsson, B., Enzell, C. R. & Berg, J. (1982). Acta Chem. Scand. 36b, 475–479.  Google Scholar
First citationZou, H. (2024). CSD Communication (refcode BINMEQ15). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146