organic compounds
Tetraphenylglycolide tetrahydrofuran monosolvate
aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: Richard.Betz@mandela.ac.za
The title compound, C28H20O4·C4H4O, is the cyclic ester anhydride of benzilic acid. A disordered solvent molecule is present in the structure. The contains half the acid-derived molecule. C—H⋯O contacts connect the constituents of the title compound into a three-dimensional network.
Keywords: crystal structure; glycolide; C—H⋯O contacts.
CCDC reference: 2412616
Structure description
). Owing to this finding, pharmaceutical research often employs aromatic and as leitmotifs from which potentially powerful new drugs can be derived. Against this backdrop it is not surprising that structural information about this class of molecules, although already abundant, still constitutes a considerable focus of research up to this day. As part of our ongoing studies in this area (Nayak et al., 2014; Mohamed et al., 2023; Dayananda et al., 2013; Lulama & Betz, 2015; Betz & Klüfers, 2007a,b,c, 2008, 2009; Betz et al., 2008, 2011, 2009, 2010; Potgieter et al., 2011; Hosten & Betz, 2014; Averdunk et al., 2021a,b), we sought to determine the of the title compound that was obtained as a surprising outcome of an inorganic non-metal compound reaction. The crystal and molecular structure of the solvent-free equivalent of the title compound are apparent in the literature (Shan et al., 2005) as are other examples of symmetric cyclic ester such as, e.g., the ones derived from glycolic acid (Hutchison et al., 2017; Belenkaya et al., 1997), lactic acid (Chisholm et al., 2000; van Hummel et al., 1982; Belenkaya et al., 1997) or 3-chlorolactic acid (Kalelkar et al., 2016), as well as examples of asymmetric members of this compound class such as the condensation products of lactic acid and mandelic acid (Nifant'ev et al., 2020). The lactide of thiolactic acid represents the only example where the molecular and of a thionated glycolide has been secured on grounds of diffraction studies on single crystals (Mangalum et al., 2016).
play a major role in biological systems, with sugars and the building blocks of DNA even being part of many high school curricula (Stryer, 1988The title compound is the cyclic ester anhydride of benzilic acid. The structure et al., 2016). A of the six-membered heterocycle according to Cremer & Pople (1975) shows the latter to adopt a confirmation almost exactly in between a 4T2 (O1iTC1) as well as a BC1,C1i conformation (Boeyens, 1978). The phenyl rings are orientated almost perpendicular to one another as the least-squares planes, as defined by the respective carbon atoms of the aromatic moieties, enclose an angle of 85.34 (16)° (Fig. 1).
was conducted as a two-component with a volume ratio of 75.1:24.9. The contains half a molecule. One disordered molecule of tetrahydrofuran is also present in the The C—O and C=O bond lengths are found at 1.467 (3) and 1.340 (3) Å, respectively, and, therefore, are in good agreement with values reported for other cyclic whose molecular and crystal structures have been determined on grounds of diffraction studies on single crystals and whose metrical parameters have been deposited with the Cambridge Structural Database (GroomIn the crystal, there are C—H⋯O contacts (Table 1) whose range falls by more than 0.1 Å below the sum of the van der Waals radii of the atoms participating in them. These are supported by one hydrogen atom each in the ortho-position on two of the aromatic systems as donors and, invariably, the oxygen atom of the solvent molecule as acceptor. A second type of C—H⋯O contact is found between one hydrogen atom each in meta-position on the remaining two phenyl groups (that had not participated in the previously described contacts) as donors and the two carbonylic oxygen atoms as acceptors. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these C—H⋯O contacts requires a DDC11(7) C11(7) descriptor on the unary level. In total, these interactions connect the constituents present in the of the title compound to a three-dimensional network. Furthermore, one C—H⋯π contact is apparent between one of the hydrogen atoms in the meta-position on one of the phenyl groups giving rise to the C—H⋯O interactions towards the solvent molecule as donor and one of the aromatic systems of an aromatic system that gives rise to the contacts involving the carbonyl group. In addition, the structure is further consolidated by π-stacking interactions with the shortest distance between two centres of gravity measured at 3.8915 (19) Å in between two phenyl groups, giving rise to the C—H⋯O contacts towards the solvent molecule present in the (Fig. 2).
Synthesis and crystallization
The compound was obtained by reacting pentacarbonylrhenium(I) chloride and the hydridospirophosphorane derived from benzilic acid in the mixed solvents of THF/benzene/diethylether. Crystals suitable for the diffraction study were obtained upon concentrating the reaction mixture and subsequent storage at room temperature.
Refinement
Crystal data, data collection and structure . The modelling of the disordered THF molecule was conducted applying RIGU and ISOR instructions.
details are summarized in Table 2Structural data
CCDC reference: 2412616
https://doi.org/10.1107/S2414314624012410/bv4054sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624012410/bv4054Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624012410/bv4054Isup3.cml
C28H20O4·C4H4O | Dx = 1.284 Mg m−3 |
Mr = 488.51 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P43212 | Cell parameters from 9736 reflections |
a = 9.5725 (3) Å | θ = 2.3–27.2° |
c = 27.5760 (11) Å | µ = 0.09 mm−1 |
V = 2526.86 (18) Å3 | T = 200 K |
Z = 4 | Block, colourless |
F(000) = 1024 | 0.24 × 0.23 × 0.15 mm |
Bruker D8 Quest CCD diffractometer | 2460 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.080 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.1°, θmin = 2.3° |
Tmin = 0.717, Tmax = 0.746 | h = −12→11 |
62563 measured reflections | k = −12→11 |
2796 independent reflections | l = −34→35 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.176 | w = 1/[σ2(Fo2) + (0.1205P)2 + 0.5364P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2796 reflections | Δρmax = 0.61 e Å−3 |
182 parameters | Δρmin = −0.49 e Å−3 |
60 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. The carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms and methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.4588 (2) | 0.4898 (2) | 0.54864 (6) | 0.0319 (5) | |
O2 | 0.2991 (2) | 0.6508 (2) | 0.53907 (7) | 0.0368 (5) | |
C1 | 0.5915 (3) | 0.4283 (3) | 0.53272 (9) | 0.0283 (6) | |
C2 | 0.3893 (3) | 0.5818 (3) | 0.52110 (9) | 0.0260 (5) | |
C11 | 0.7086 (3) | 0.5314 (3) | 0.54213 (9) | 0.0298 (6) | |
C12 | 0.8216 (3) | 0.5456 (3) | 0.51104 (11) | 0.0379 (7) | |
H12 | 0.825856 | 0.490886 | 0.482324 | 0.046* | |
C13 | 0.9293 (4) | 0.6394 (4) | 0.52150 (13) | 0.0492 (8) | |
H13 | 1.006380 | 0.648771 | 0.500032 | 0.059* | |
C14 | 0.9226 (4) | 0.7188 (4) | 0.56365 (14) | 0.0538 (9) | |
H14 | 0.995517 | 0.782443 | 0.571219 | 0.065* | |
C15 | 0.8095 (4) | 0.7051 (4) | 0.59457 (12) | 0.0505 (9) | |
H15 | 0.804601 | 0.760230 | 0.623176 | 0.061* | |
C16 | 0.7043 (4) | 0.6123 (3) | 0.58411 (11) | 0.0401 (7) | |
H16 | 0.627644 | 0.603108 | 0.605757 | 0.048* | |
C21 | 0.6034 (3) | 0.2930 (3) | 0.56191 (9) | 0.0310 (6) | |
C22 | 0.7258 (3) | 0.2549 (3) | 0.58459 (10) | 0.0392 (7) | |
H22 | 0.805731 | 0.313339 | 0.582405 | 0.047* | |
C23 | 0.7323 (4) | 0.1301 (4) | 0.61081 (12) | 0.0503 (9) | |
H23 | 0.816855 | 0.103912 | 0.626369 | 0.060* | |
C24 | 0.6182 (4) | 0.0460 (4) | 0.61418 (12) | 0.0511 (9) | |
H24 | 0.623033 | −0.038158 | 0.632355 | 0.061* | |
C25 | 0.4949 (4) | 0.0829 (4) | 0.59113 (14) | 0.0516 (9) | |
H25 | 0.415367 | 0.023889 | 0.593483 | 0.062* | |
C26 | 0.4876 (4) | 0.2054 (4) | 0.56472 (13) | 0.0444 (8) | |
H26 | 0.403565 | 0.229794 | 0.548486 | 0.053* | |
O3 | 0.2067 (8) | 0.1892 (10) | 0.5120 (3) | 0.095 (3) | 0.5 |
C31 | 0.2086 (7) | 0.0816 (11) | 0.4766 (3) | 0.127 (6) | 0.5 |
H31 | 0.289498 | 0.042872 | 0.461821 | 0.153* | 0.5 |
C32 | 0.0683 (8) | 0.0420 (8) | 0.4671 (3) | 0.091 (3) | 0.5 |
H32 | 0.038849 | −0.027875 | 0.444817 | 0.109* | 0.5 |
C33 | −0.0203 (6) | 0.1251 (9) | 0.4966 (3) | 0.082 (3) | 0.5 |
H33 | −0.119378 | 0.120617 | 0.497626 | 0.099* | 0.5 |
C34 | 0.0653 (9) | 0.2161 (8) | 0.5244 (3) | 0.097 (4) | 0.5 |
H34 | 0.033481 | 0.283137 | 0.547268 | 0.116* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0334 (10) | 0.0385 (11) | 0.0238 (8) | 0.0097 (8) | 0.0075 (7) | 0.0069 (8) |
O2 | 0.0376 (11) | 0.0416 (11) | 0.0311 (10) | 0.0111 (9) | 0.0033 (8) | −0.0019 (9) |
C1 | 0.0287 (13) | 0.0338 (13) | 0.0223 (12) | 0.0089 (11) | 0.0041 (10) | 0.0025 (10) |
C2 | 0.0259 (12) | 0.0266 (12) | 0.0255 (12) | −0.0022 (10) | 0.0001 (9) | −0.0012 (9) |
C11 | 0.0360 (14) | 0.0294 (12) | 0.0241 (12) | 0.0061 (11) | −0.0051 (11) | 0.0009 (10) |
C12 | 0.0380 (16) | 0.0394 (16) | 0.0364 (15) | −0.0027 (12) | 0.0019 (12) | −0.0064 (12) |
C13 | 0.0434 (18) | 0.051 (2) | 0.0529 (19) | −0.0079 (16) | −0.0027 (15) | −0.0047 (15) |
C14 | 0.061 (2) | 0.0406 (17) | 0.060 (2) | −0.0069 (17) | −0.0195 (18) | −0.0056 (16) |
C15 | 0.073 (3) | 0.0374 (16) | 0.0415 (16) | 0.0089 (16) | −0.0189 (16) | −0.0097 (14) |
C16 | 0.0496 (18) | 0.0400 (16) | 0.0306 (14) | 0.0108 (14) | −0.0041 (13) | −0.0054 (12) |
C21 | 0.0364 (15) | 0.0320 (13) | 0.0247 (12) | 0.0053 (11) | 0.0049 (10) | 0.0039 (10) |
C22 | 0.0412 (16) | 0.0417 (16) | 0.0349 (14) | 0.0062 (14) | −0.0043 (12) | 0.0082 (12) |
C23 | 0.063 (2) | 0.0485 (19) | 0.0395 (16) | 0.0148 (18) | −0.0063 (16) | 0.0110 (14) |
C24 | 0.073 (3) | 0.0398 (17) | 0.0403 (16) | 0.0146 (17) | 0.0148 (17) | 0.0148 (14) |
C25 | 0.051 (2) | 0.0387 (17) | 0.065 (2) | 0.0018 (16) | 0.0213 (17) | 0.0127 (16) |
C26 | 0.0357 (16) | 0.0423 (17) | 0.0551 (19) | 0.0058 (13) | 0.0056 (14) | 0.0129 (15) |
O3 | 0.059 (3) | 0.113 (5) | 0.113 (6) | 0.001 (3) | −0.009 (4) | −0.019 (4) |
C31 | 0.110 (7) | 0.118 (8) | 0.154 (8) | 0.011 (5) | 0.026 (6) | −0.027 (6) |
C32 | 0.090 (5) | 0.091 (5) | 0.092 (5) | 0.014 (4) | −0.010 (4) | −0.028 (4) |
C33 | 0.070 (4) | 0.102 (5) | 0.074 (5) | 0.021 (4) | −0.008 (4) | −0.015 (4) |
C34 | 0.066 (5) | 0.092 (6) | 0.132 (7) | 0.001 (4) | 0.017 (5) | −0.024 (5) |
O1—C2 | 1.340 (3) | C22—C23 | 1.398 (4) |
O1—C1 | 1.467 (3) | C22—H22 | 0.9500 |
O2—C2 | 1.195 (3) | C23—C24 | 1.360 (6) |
C1—C11 | 1.516 (4) | C23—H23 | 0.9500 |
C1—C21 | 1.529 (4) | C24—C25 | 1.386 (6) |
C1—C2i | 1.533 (3) | C24—H24 | 0.9500 |
C11—C12 | 1.387 (4) | C25—C26 | 1.382 (5) |
C11—C16 | 1.393 (4) | C25—H25 | 0.9500 |
C12—C13 | 1.397 (5) | C26—H26 | 0.9500 |
C12—H12 | 0.9500 | O3—C31 | 1.4200 |
C13—C14 | 1.391 (5) | O3—C34 | 1.4200 |
C13—H13 | 0.9500 | C31—C32 | 1.4200 |
C14—C15 | 1.384 (6) | C31—H31 | 0.9500 |
C14—H14 | 0.9500 | C32—C33 | 1.4200 |
C15—C16 | 1.374 (5) | C32—H32 | 0.9500 |
C15—H15 | 0.9500 | C33—C34 | 1.4200 |
C16—H16 | 0.9500 | C33—H33 | 0.9500 |
C21—C22 | 1.377 (4) | C34—H34 | 0.9500 |
C21—C26 | 1.392 (5) | ||
C2—O1—C1 | 121.62 (19) | C26—C21—C1 | 118.7 (3) |
O1—C1—C11 | 109.1 (2) | C21—C22—C23 | 119.9 (3) |
O1—C1—C21 | 104.3 (2) | C21—C22—H22 | 120.0 |
C11—C1—C21 | 114.0 (2) | C23—C22—H22 | 120.0 |
O1—C1—C2i | 109.6 (2) | C24—C23—C22 | 120.4 (3) |
C11—C1—C2i | 111.6 (2) | C24—C23—H23 | 119.8 |
C21—C1—C2i | 107.9 (2) | C22—C23—H23 | 119.8 |
O2—C2—O1 | 119.2 (2) | C23—C24—C25 | 120.1 (3) |
O2—C2—C1i | 122.9 (2) | C23—C24—H24 | 119.9 |
O1—C2—C1i | 117.9 (2) | C25—C24—H24 | 119.9 |
C12—C11—C16 | 118.9 (3) | C26—C25—C24 | 120.0 (4) |
C12—C11—C1 | 122.3 (2) | C26—C25—H25 | 120.0 |
C16—C11—C1 | 118.8 (3) | C24—C25—H25 | 120.0 |
C11—C12—C13 | 120.7 (3) | C25—C26—C21 | 120.0 (3) |
C11—C12—H12 | 119.6 | C25—C26—H26 | 120.0 |
C13—C12—H12 | 119.6 | C21—C26—H26 | 120.0 |
C14—C13—C12 | 119.3 (3) | C31—O3—C34 | 108.0 |
C14—C13—H13 | 120.3 | O3—C31—C32 | 108.0 |
C12—C13—H13 | 120.3 | O3—C31—H31 | 126.0 |
C15—C14—C13 | 120.0 (3) | C32—C31—H31 | 126.0 |
C15—C14—H14 | 120.0 | C31—C32—C33 | 108.0 |
C13—C14—H14 | 120.0 | C31—C32—H32 | 126.0 |
C16—C15—C14 | 120.3 (3) | C33—C32—H32 | 126.0 |
C16—C15—H15 | 119.8 | C34—C33—C32 | 108.0 |
C14—C15—H15 | 119.8 | C34—C33—H33 | 126.0 |
C15—C16—C11 | 120.8 (3) | C32—C33—H33 | 126.0 |
C15—C16—H16 | 119.6 | C33—C34—O3 | 108.0 |
C11—C16—H16 | 119.6 | C33—C34—H34 | 126.0 |
C22—C21—C26 | 119.5 (3) | O3—C34—H34 | 126.0 |
C22—C21—C1 | 121.8 (3) | ||
C2—O1—C1—C11 | 80.3 (3) | O1—C1—C21—C22 | −134.4 (3) |
C2—O1—C1—C21 | −157.5 (2) | C11—C1—C21—C22 | −15.5 (4) |
C2—O1—C1—C2i | −42.2 (3) | C2i—C1—C21—C22 | 109.1 (3) |
C1—O1—C2—O2 | −164.4 (3) | O1—C1—C21—C26 | 46.7 (3) |
C1—O1—C2—C1i | 16.7 (3) | C11—C1—C21—C26 | 165.6 (3) |
O1—C1—C11—C12 | −144.0 (3) | C2i—C1—C21—C26 | −69.8 (3) |
C21—C1—C11—C12 | 99.9 (3) | C26—C21—C22—C23 | −1.0 (5) |
C2i—C1—C11—C12 | −22.7 (4) | C1—C21—C22—C23 | −179.8 (3) |
O1—C1—C11—C16 | 37.7 (3) | C21—C22—C23—C24 | −0.1 (5) |
C21—C1—C11—C16 | −78.5 (3) | C22—C23—C24—C25 | 0.7 (5) |
C2i—C1—C11—C16 | 158.9 (2) | C23—C24—C25—C26 | −0.1 (5) |
C16—C11—C12—C13 | −0.1 (5) | C24—C25—C26—C21 | −1.1 (5) |
C1—C11—C12—C13 | −178.4 (3) | C22—C21—C26—C25 | 1.6 (5) |
C11—C12—C13—C14 | 0.1 (5) | C1—C21—C26—C25 | −179.5 (3) |
C12—C13—C14—C15 | −0.4 (5) | C34—O3—C31—C32 | 0.0 |
C13—C14—C15—C16 | 0.7 (5) | O3—C31—C32—C33 | 0.0 |
C14—C15—C16—C11 | −0.6 (5) | C31—C32—C33—C34 | 0.0 |
C12—C11—C16—C15 | 0.3 (4) | C32—C33—C34—O3 | 0.0 |
C1—C11—C16—C15 | 178.7 (3) | C31—O3—C34—C33 | 0.0 |
Symmetry code: (i) y, x, −z+1. |
Cg1 is the centroid of carbon atoms C21–C26. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O2i | 0.95 | 2.55 | 3.185 (4) | 124 |
C15—H15···O2ii | 0.95 | 2.57 | 3.494 (4) | 166 |
C26—H26···O3 | 0.95 | 2.17 | 3.060 (7) | 155 |
C13—H13···Cg1iii | 0.95 | 2.90 | 3.799 (4) | 158 |
Symmetry codes: (i) y, x, −z+1; (ii) x+1/2, −y+3/2, −z+5/4; (iii) x+3/2, −y+1/2, −z+5/4. |
References
Averdunk, A., Hosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct. 236, 113–115. CrossRef Google Scholar
Averdunk, A., Hosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 129–131. CrossRef Google Scholar
Belenkaya, B. G., Belsky, V. K., Dementev, A. I., Sakharova, V. I. & Chernikova, N. Yu. (1997). Crystallogr. Rep. 42, 449–?. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Betz, R., Junggeburth, S., Klüfers, P. & Mayer, P. (2010). Acta Cryst. E66, m28. Web of Science CSD CrossRef IUCr Journals Google Scholar
Betz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o4713. CrossRef IUCr Journals Google Scholar
Betz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4132. Web of Science CSD CrossRef IUCr Journals Google Scholar
Betz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o4922. CrossRef IUCr Journals Google Scholar
Betz, R. & Klüfers, P. (2008). Phosphorus Sulfur Silicon, 183, 1615–1629. Web of Science CSD CrossRef CAS Google Scholar
Betz, R. & Klüfers, P. (2009). Inorg. Chem. 48, 925–935. Web of Science CSD CrossRef PubMed CAS Google Scholar
Betz, R., Lindner, C., Klüfers, P. & Mayer, P. (2009). Acta Cryst. E65, m253–m254. CrossRef IUCr Journals Google Scholar
Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1151. Web of Science CSD CrossRef IUCr Journals Google Scholar
Betz, R., Pfister, M., Reichvilser, M. M. & Klüfers, P. (2008). Z. Anorg. Allg. Chem. 634, 1393–1396. CrossRef Google Scholar
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chisholm, M. H., Eilerts, N. W., Huffman, J. C., Iyer, S. S., Pacold, M. & Phomphrai, K. (2000). J. Am. Chem. Soc. 122, 11845–11854. Web of Science CSD CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. New Cryst. Struct. 228, 223–224. CrossRef Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hosten, E. & Betz, R. (2014). Z. Kristallogr. New Cryst. Struct. 229, 283–284. CrossRef Google Scholar
Hummel, G. J. van, Harkema, S., Kohn, F. E. & Feijen, J. (1982). Acta Cryst. B38, 1679–1681. CSD CrossRef Web of Science IUCr Journals Google Scholar
Hutchison, I. B., Bull, C. L., Marshall, W. G., Parsons, S., Urquhart, A. J. & Oswald, I. D. H. (2017). Acta Cryst. B73, 1151–1157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kalelkar, P. P., Alas, G. R. & Collard, D. M. (2016). Macromolecules, 49, 2609–2617. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lulama, K. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct. 230, 307–308. CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mangalum, A., Boadi, F., Masand, S. A., Lalancette, R. A. & Pietrangelo, A. (2016). RSC Adv. 6, 74250–74253. CrossRef Google Scholar
Mohamed, H. A., Bekheit, M. S., Ewies, E. F., Awad, H. M., Betz, R., Hosten, E. C. & Abdel-Wahab, B. F. (2023). J. Mol. Struct. 1274, 134415. Web of Science CSD CrossRef Google Scholar
Nayak, P. S., Narayana, B., Yathirajan, H. S., Hosten, E. C., Betz, R. & Glidewell, C. (2014). Acta Cryst. C70, 1011–1016. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nifant'ev, I. E., Shlyakhtin, A. V., Bagrov, V. V., Tavtorkin, A. N., Komarov, P. D., Churakov, A. V. & Ivchenko, P. V. (2020). Polym. Chem. 11, 6890–6902. Google Scholar
Potgieter, K., Gerber, T. & Betz, R. (2011). Acta Cryst. E67, o1697. CrossRef IUCr Journals Google Scholar
Shan, S., Hu, W.-X. & Xu, D. J. (2005). Chin. J. Struct. Chem. 24, 241–?. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stryer, L. (1988). Biochemistry, 3rd ed. New York: W. H. Freeman and Co. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.