organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­phenyl­glycolide tetra­hydro­furan monosolvate

crossmark logo

aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: Richard.Betz@mandela.ac.za

Edited by R. J. Butcher, Howard University, USA (Received 20 November 2024; accepted 23 December 2024; online 7 January 2025)

The title compound, C28H20O4·C4H4O, is the cyclic ester anhydride of benzilic acid. A disordered solvent mol­ecule is present in the structure. The asymmetric unit contains half the acid-derived mol­ecule. C—H⋯O contacts connect the constituents of the title compound into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Heterocyclic compounds play a major role in biological systems, with sugars and the building blocks of DNA even being part of many high school curricula (Stryer, 1988[Stryer, L. (1988). Biochemistry, 3rd ed. New York: W. H. Freeman and Co.]). Owing to this finding, pharmaceutical research often employs aromatic and alicyclic compounds as leitmotifs from which potentially powerful new drugs can be derived. Against this backdrop it is not surprising that structural information about this class of mol­ecules, although already abundant, still constitutes a considerable focus of research up to this day. As part of our ongoing studies in this area (Nayak et al., 2014[Nayak, P. S., Narayana, B., Yathirajan, H. S., Hosten, E. C., Betz, R. & Glidewell, C. (2014). Acta Cryst. C70, 1011-1016.]; Mohamed et al., 2023[Mohamed, H. A., Bekheit, M. S., Ewies, E. F., Awad, H. M., Betz, R., Hosten, E. C. & Abdel-Wahab, B. F. (2023). J. Mol. Struct. 1274, 134415.]; Dayananda et al., 2013[Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. New Cryst. Struct. 228, 223-224.]; Lulama & Betz, 2015[Lulama, K. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct. 230, 307-308.]; Betz & Klüfers, 2007a[Betz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o4713.],b[Betz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4132.],c[Betz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o4922.], 2008[Betz, R. & Klüfers, P. (2008). Phosphorus Sulfur Silicon, 183, 1615-1629.], 2009[Betz, R. & Klüfers, P. (2009). Inorg. Chem. 48, 925-935.]; Betz et al., 2008[Betz, R., Pfister, M., Reichvilser, M. M. & Klüfers, P. (2008). Z. Anorg. Allg. Chem. 634, 1393-1396.], 2011[Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1151.], 2009[Betz, R., Lindner, C., Klüfers, P. & Mayer, P. (2009). Acta Cryst. E65, m253-m254.], 2010[Betz, R., Junggeburth, S., Klüfers, P. & Mayer, P. (2010). Acta Cryst. E66, m28.]; Potgieter et al., 2011[Potgieter, K., Gerber, T. & Betz, R. (2011). Acta Cryst. E67, o1697.]; Hosten & Betz, 2014[Hosten, E. & Betz, R. (2014). Z. Kristallogr. New Cryst. Struct. 229, 283-284.]; Averdunk et al., 2021a[Averdunk, A., Hosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct. 236, 113-115.],b[Averdunk, A., Hosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 129-131.]), we sought to determine the crystal structure of the title compound that was obtained as a surprising outcome of an inorganic non-metal compound reaction. The crystal and mol­ecular structure of the solvent-free equivalent of the title compound are apparent in the literature (Shan et al., 2005[Shan, S., Hu, W.-X. & Xu, D. J. (2005). Chin. J. Struct. Chem. 24, 241-?.]) as are other examples of symmetric cyclic ester anhydrides such as, e.g., the ones derived from glycolic acid (Hutchison et al., 2017[Hutchison, I. B., Bull, C. L., Marshall, W. G., Parsons, S., Urquhart, A. J. & Oswald, I. D. H. (2017). Acta Cryst. B73, 1151-1157.]; Belenkaya et al., 1997[Belenkaya, B. G., Belsky, V. K., Dementev, A. I., Sakharova, V. I. & Chernikova, N. Yu. (1997). Crystallogr. Rep. 42, 449-?.]), lactic acid (Chisholm et al., 2000[Chisholm, M. H., Eilerts, N. W., Huffman, J. C., Iyer, S. S., Pacold, M. & Phomphrai, K. (2000). J. Am. Chem. Soc. 122, 11845-11854.]; van Hummel et al., 1982[Hummel, G. J. van, Harkema, S., Kohn, F. E. & Feijen, J. (1982). Acta Cryst. B38, 1679-1681.]; Belenkaya et al., 1997[Belenkaya, B. G., Belsky, V. K., Dementev, A. I., Sakharova, V. I. & Chernikova, N. Yu. (1997). Crystallogr. Rep. 42, 449-?.]) or 3-chloro­lactic acid (Kalelkar et al., 2016[Kalelkar, P. P., Alas, G. R. & Collard, D. M. (2016). Macromolecules, 49, 2609-2617.]), as well as examples of asymmetric members of this compound class such as the condensation products of lactic acid and mandelic acid (Nifant'ev et al., 2020[Nifant'ev, I. E., Shlyakhtin, A. V., Bagrov, V. V., Tavtorkin, A. N., Komarov, P. D., Churakov, A. V. & Ivchenko, P. V. (2020). Polym. Chem. 11, 6890-6902.]). The lactide of thiol­actic acid represents the only example where the mol­ecular and crystal structure of a thio­nated glycolide has been secured on grounds of diffraction studies on single crystals (Mangalum et al., 2016[Mangalum, A., Boadi, F., Masand, S. A., Lalancette, R. A. & Pietrangelo, A. (2016). RSC Adv. 6, 74250-74253.]).

The title compound is the cyclic ester anhydride of benzilic acid. The structure refinement was conducted as a two-component inversion twin with a volume ratio of 75.1:24.9. The asymmetric unit contains half a mol­ecule. One disordered mol­ecule of tetra­hydro­furan is also present in the crystal structure. The C—O and C=O bond lengths are found at 1.467 (3) and 1.340 (3) Å, respectively, and, therefore, are in good agreement with values reported for other cyclic lactides whose mol­ecular and crystal structures have been determined on grounds of diffraction studies on single crystals and whose metrical parameters have been deposited with the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A conformational analysis of the six-membered heterocycle according to Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) shows the latter to adopt a confirmation almost exactly in between a 4T2 (O1iTC1) as well as a BC1,C1i conformation (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). The phenyl rings are orientated almost perpendicular to one another as the least-squares planes, as defined by the respective carbon atoms of the aromatic moieties, enclose an angle of 85.34 (16)° (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level). For clarity, the disordered THF mol­ecule has been omitted. Symmetry code: (i) y, x, −z + 1.

In the crystal, there are C—H⋯O contacts (Table 1[link]) whose range falls by more than 0.1 Å below the sum of the van der Waals radii of the atoms participating in them. These are supported by one hydrogen atom each in the ortho-position on two of the aromatic systems as donors and, invariably, the oxygen atom of the solvent mol­ecule as acceptor. A second type of C—H⋯O contact is found between one hydrogen atom each in meta-position on the remaining two phenyl groups (that had not participated in the previously described contacts) as donors and the two carbonylic oxygen atoms as acceptors. In terms of graph-set analysis (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), the descriptor for these C—H⋯O contacts requires a DDC11(7)  C11(7) descriptor on the unary level. In total, these inter­actions connect the constituents present in the crystal structure of the title compound to a three-dimensional network. Furthermore, one C—H⋯π contact is apparent between one of the hydrogen atoms in the meta-position on one of the phenyl groups giving rise to the C—H⋯O inter­actions towards the solvent mol­ecule as donor and one of the aromatic systems of an aromatic system that gives rise to the contacts involving the carbonyl group. In addition, the structure is further consolidated by π-stacking inter­actions with the shortest distance between two centres of gravity measured at 3.8915 (19) Å in between two phenyl groups, giving rise to the C—H⋯O contacts towards the solvent mol­ecule present in the crystal structure (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of carbon atoms C21–C26.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.55 3.185 (4) 124
C15—H15⋯O2ii 0.95 2.57 3.494 (4) 166
C26—H26⋯O3 0.95 2.17 3.060 (7) 155
C13—H13⋯Cg1iii 0.95 2.90 3.799 (4) 158
Symmetry codes: (i) [y, x, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{5\over 4}}]; (iii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+{\script{5\over 4}}].
[Figure 2]
Figure 2
Inter­molecular contacts, viewed approximately along [110].

Synthesis and crystallization

The compound was obtained by reacting penta­carbonyl­rhenium(I) chloride and the hydrido­spiro­phospho­rane derived from benzilic acid in the mixed solvents of THF/benzene/di­ethyl­ether. Crystals suitable for the diffraction study were obtained upon concentrating the reaction mixture and subsequent storage at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The modelling of the disordered THF mol­ecule was conducted applying RIGU and ISOR instructions.

Table 2
Experimental details

Crystal data
Chemical formula C28H20O4·C4H4O
Mr 488.51
Crystal system, space group Tetragonal, P43212
Temperature (K) 200
a, c (Å) 9.5725 (3), 27.5760 (11)
V3) 2526.86 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.24 × 0.23 × 0.15
 
Data collection
Diffractometer Bruker D8 Quest CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.717, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 62563, 2796, 2460
Rint 0.080
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.176, 1.09
No. of reflections 2796
No. of parameters 182
No. of restraints 60
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.49
Absolute structure Refined as an inversion twin
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

3,3,6,6-Tetraphenyl-1,4-dioxane-2,5-dione tetrahydrofuran monosolvate top
Crystal data top
C28H20O4·C4H4ODx = 1.284 Mg m3
Mr = 488.51Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 9736 reflections
a = 9.5725 (3) Åθ = 2.3–27.2°
c = 27.5760 (11) ŵ = 0.09 mm1
V = 2526.86 (18) Å3T = 200 K
Z = 4Block, colourless
F(000) = 10240.24 × 0.23 × 0.15 mm
Data collection top
Bruker D8 Quest CCD
diffractometer
2460 reflections with I > 2σ(I)
φ and ω scansRint = 0.080
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.1°, θmin = 2.3°
Tmin = 0.717, Tmax = 0.746h = 1211
62563 measured reflectionsk = 1211
2796 independent reflectionsl = 3435
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.1205P)2 + 0.5364P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2796 reflectionsΔρmax = 0.61 e Å3
182 parametersΔρmin = 0.49 e Å3
60 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin. The carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms and methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4588 (2)0.4898 (2)0.54864 (6)0.0319 (5)
O20.2991 (2)0.6508 (2)0.53907 (7)0.0368 (5)
C10.5915 (3)0.4283 (3)0.53272 (9)0.0283 (6)
C20.3893 (3)0.5818 (3)0.52110 (9)0.0260 (5)
C110.7086 (3)0.5314 (3)0.54213 (9)0.0298 (6)
C120.8216 (3)0.5456 (3)0.51104 (11)0.0379 (7)
H120.8258560.4908860.4823240.046*
C130.9293 (4)0.6394 (4)0.52150 (13)0.0492 (8)
H131.0063800.6487710.5000320.059*
C140.9226 (4)0.7188 (4)0.56365 (14)0.0538 (9)
H140.9955170.7824430.5712190.065*
C150.8095 (4)0.7051 (4)0.59457 (12)0.0505 (9)
H150.8046010.7602300.6231760.061*
C160.7043 (4)0.6123 (3)0.58411 (11)0.0401 (7)
H160.6276440.6031080.6057570.048*
C210.6034 (3)0.2930 (3)0.56191 (9)0.0310 (6)
C220.7258 (3)0.2549 (3)0.58459 (10)0.0392 (7)
H220.8057310.3133390.5824050.047*
C230.7323 (4)0.1301 (4)0.61081 (12)0.0503 (9)
H230.8168550.1039120.6263690.060*
C240.6182 (4)0.0460 (4)0.61418 (12)0.0511 (9)
H240.6230330.0381580.6323550.061*
C250.4949 (4)0.0829 (4)0.59113 (14)0.0516 (9)
H250.4153670.0238890.5934830.062*
C260.4876 (4)0.2054 (4)0.56472 (13)0.0444 (8)
H260.4035650.2297940.5484860.053*
O30.2067 (8)0.1892 (10)0.5120 (3)0.095 (3)0.5
C310.2086 (7)0.0816 (11)0.4766 (3)0.127 (6)0.5
H310.2894980.0428720.4618210.153*0.5
C320.0683 (8)0.0420 (8)0.4671 (3)0.091 (3)0.5
H320.0388490.0278750.4448170.109*0.5
C330.0203 (6)0.1251 (9)0.4966 (3)0.082 (3)0.5
H330.1193780.1206170.4976260.099*0.5
C340.0653 (9)0.2161 (8)0.5244 (3)0.097 (4)0.5
H340.0334810.2831370.5472680.116*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0334 (10)0.0385 (11)0.0238 (8)0.0097 (8)0.0075 (7)0.0069 (8)
O20.0376 (11)0.0416 (11)0.0311 (10)0.0111 (9)0.0033 (8)0.0019 (9)
C10.0287 (13)0.0338 (13)0.0223 (12)0.0089 (11)0.0041 (10)0.0025 (10)
C20.0259 (12)0.0266 (12)0.0255 (12)0.0022 (10)0.0001 (9)0.0012 (9)
C110.0360 (14)0.0294 (12)0.0241 (12)0.0061 (11)0.0051 (11)0.0009 (10)
C120.0380 (16)0.0394 (16)0.0364 (15)0.0027 (12)0.0019 (12)0.0064 (12)
C130.0434 (18)0.051 (2)0.0529 (19)0.0079 (16)0.0027 (15)0.0047 (15)
C140.061 (2)0.0406 (17)0.060 (2)0.0069 (17)0.0195 (18)0.0056 (16)
C150.073 (3)0.0374 (16)0.0415 (16)0.0089 (16)0.0189 (16)0.0097 (14)
C160.0496 (18)0.0400 (16)0.0306 (14)0.0108 (14)0.0041 (13)0.0054 (12)
C210.0364 (15)0.0320 (13)0.0247 (12)0.0053 (11)0.0049 (10)0.0039 (10)
C220.0412 (16)0.0417 (16)0.0349 (14)0.0062 (14)0.0043 (12)0.0082 (12)
C230.063 (2)0.0485 (19)0.0395 (16)0.0148 (18)0.0063 (16)0.0110 (14)
C240.073 (3)0.0398 (17)0.0403 (16)0.0146 (17)0.0148 (17)0.0148 (14)
C250.051 (2)0.0387 (17)0.065 (2)0.0018 (16)0.0213 (17)0.0127 (16)
C260.0357 (16)0.0423 (17)0.0551 (19)0.0058 (13)0.0056 (14)0.0129 (15)
O30.059 (3)0.113 (5)0.113 (6)0.001 (3)0.009 (4)0.019 (4)
C310.110 (7)0.118 (8)0.154 (8)0.011 (5)0.026 (6)0.027 (6)
C320.090 (5)0.091 (5)0.092 (5)0.014 (4)0.010 (4)0.028 (4)
C330.070 (4)0.102 (5)0.074 (5)0.021 (4)0.008 (4)0.015 (4)
C340.066 (5)0.092 (6)0.132 (7)0.001 (4)0.017 (5)0.024 (5)
Geometric parameters (Å, º) top
O1—C21.340 (3)C22—C231.398 (4)
O1—C11.467 (3)C22—H220.9500
O2—C21.195 (3)C23—C241.360 (6)
C1—C111.516 (4)C23—H230.9500
C1—C211.529 (4)C24—C251.386 (6)
C1—C2i1.533 (3)C24—H240.9500
C11—C121.387 (4)C25—C261.382 (5)
C11—C161.393 (4)C25—H250.9500
C12—C131.397 (5)C26—H260.9500
C12—H120.9500O3—C311.4200
C13—C141.391 (5)O3—C341.4200
C13—H130.9500C31—C321.4200
C14—C151.384 (6)C31—H310.9500
C14—H140.9500C32—C331.4200
C15—C161.374 (5)C32—H320.9500
C15—H150.9500C33—C341.4200
C16—H160.9500C33—H330.9500
C21—C221.377 (4)C34—H340.9500
C21—C261.392 (5)
C2—O1—C1121.62 (19)C26—C21—C1118.7 (3)
O1—C1—C11109.1 (2)C21—C22—C23119.9 (3)
O1—C1—C21104.3 (2)C21—C22—H22120.0
C11—C1—C21114.0 (2)C23—C22—H22120.0
O1—C1—C2i109.6 (2)C24—C23—C22120.4 (3)
C11—C1—C2i111.6 (2)C24—C23—H23119.8
C21—C1—C2i107.9 (2)C22—C23—H23119.8
O2—C2—O1119.2 (2)C23—C24—C25120.1 (3)
O2—C2—C1i122.9 (2)C23—C24—H24119.9
O1—C2—C1i117.9 (2)C25—C24—H24119.9
C12—C11—C16118.9 (3)C26—C25—C24120.0 (4)
C12—C11—C1122.3 (2)C26—C25—H25120.0
C16—C11—C1118.8 (3)C24—C25—H25120.0
C11—C12—C13120.7 (3)C25—C26—C21120.0 (3)
C11—C12—H12119.6C25—C26—H26120.0
C13—C12—H12119.6C21—C26—H26120.0
C14—C13—C12119.3 (3)C31—O3—C34108.0
C14—C13—H13120.3O3—C31—C32108.0
C12—C13—H13120.3O3—C31—H31126.0
C15—C14—C13120.0 (3)C32—C31—H31126.0
C15—C14—H14120.0C31—C32—C33108.0
C13—C14—H14120.0C31—C32—H32126.0
C16—C15—C14120.3 (3)C33—C32—H32126.0
C16—C15—H15119.8C34—C33—C32108.0
C14—C15—H15119.8C34—C33—H33126.0
C15—C16—C11120.8 (3)C32—C33—H33126.0
C15—C16—H16119.6C33—C34—O3108.0
C11—C16—H16119.6C33—C34—H34126.0
C22—C21—C26119.5 (3)O3—C34—H34126.0
C22—C21—C1121.8 (3)
C2—O1—C1—C1180.3 (3)O1—C1—C21—C22134.4 (3)
C2—O1—C1—C21157.5 (2)C11—C1—C21—C2215.5 (4)
C2—O1—C1—C2i42.2 (3)C2i—C1—C21—C22109.1 (3)
C1—O1—C2—O2164.4 (3)O1—C1—C21—C2646.7 (3)
C1—O1—C2—C1i16.7 (3)C11—C1—C21—C26165.6 (3)
O1—C1—C11—C12144.0 (3)C2i—C1—C21—C2669.8 (3)
C21—C1—C11—C1299.9 (3)C26—C21—C22—C231.0 (5)
C2i—C1—C11—C1222.7 (4)C1—C21—C22—C23179.8 (3)
O1—C1—C11—C1637.7 (3)C21—C22—C23—C240.1 (5)
C21—C1—C11—C1678.5 (3)C22—C23—C24—C250.7 (5)
C2i—C1—C11—C16158.9 (2)C23—C24—C25—C260.1 (5)
C16—C11—C12—C130.1 (5)C24—C25—C26—C211.1 (5)
C1—C11—C12—C13178.4 (3)C22—C21—C26—C251.6 (5)
C11—C12—C13—C140.1 (5)C1—C21—C26—C25179.5 (3)
C12—C13—C14—C150.4 (5)C34—O3—C31—C320.0
C13—C14—C15—C160.7 (5)O3—C31—C32—C330.0
C14—C15—C16—C110.6 (5)C31—C32—C33—C340.0
C12—C11—C16—C150.3 (4)C32—C33—C34—O30.0
C1—C11—C16—C15178.7 (3)C31—O3—C34—C330.0
Symmetry code: (i) y, x, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of carbon atoms C21–C26.
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.553.185 (4)124
C15—H15···O2ii0.952.573.494 (4)166
C26—H26···O30.952.173.060 (7)155
C13—H13···Cg1iii0.952.903.799 (4)158
Symmetry codes: (i) y, x, z+1; (ii) x+1/2, y+3/2, z+5/4; (iii) x+3/2, y+1/2, z+5/4.
 

References

First citationAverdunk, A., Hosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct. 236, 113–115.  CrossRef Google Scholar
First citationAverdunk, A., Hosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 129–131.  CrossRef Google Scholar
First citationBelenkaya, B. G., Belsky, V. K., Dementev, A. I., Sakharova, V. I. & Chernikova, N. Yu. (1997). Crystallogr. Rep. 42, 449–?.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., Junggeburth, S., Klüfers, P. & Mayer, P. (2010). Acta Cryst. E66, m28.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o4713.  CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o4922.  CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2008). Phosphorus Sulfur Silicon, 183, 1615–1629.  Web of Science CSD CrossRef CAS Google Scholar
First citationBetz, R. & Klüfers, P. (2009). Inorg. Chem. 48, 925–935.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBetz, R., Lindner, C., Klüfers, P. & Mayer, P. (2009). Acta Cryst. E65, m253–m254.  CrossRef IUCr Journals Google Scholar
First citationBetz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Pfister, M., Reichvilser, M. M. & Klüfers, P. (2008). Z. Anorg. Allg. Chem. 634, 1393–1396.  CrossRef Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChisholm, M. H., Eilerts, N. W., Huffman, J. C., Iyer, S. S., Pacold, M. & Phomphrai, K. (2000). J. Am. Chem. Soc. 122, 11845–11854.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. New Cryst. Struct. 228, 223–224.  CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHosten, E. & Betz, R. (2014). Z. Kristallogr. New Cryst. Struct. 229, 283–284.  CrossRef Google Scholar
First citationHummel, G. J. van, Harkema, S., Kohn, F. E. & Feijen, J. (1982). Acta Cryst. B38, 1679–1681.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHutchison, I. B., Bull, C. L., Marshall, W. G., Parsons, S., Urquhart, A. J. & Oswald, I. D. H. (2017). Acta Cryst. B73, 1151–1157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalelkar, P. P., Alas, G. R. & Collard, D. M. (2016). Macromolecules, 49, 2609–2617.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLulama, K. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct. 230, 307–308.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMangalum, A., Boadi, F., Masand, S. A., Lalancette, R. A. & Pietrangelo, A. (2016). RSC Adv. 6, 74250–74253.  CrossRef Google Scholar
First citationMohamed, H. A., Bekheit, M. S., Ewies, E. F., Awad, H. M., Betz, R., Hosten, E. C. & Abdel-Wahab, B. F. (2023). J. Mol. Struct. 1274, 134415.  Web of Science CSD CrossRef Google Scholar
First citationNayak, P. S., Narayana, B., Yathirajan, H. S., Hosten, E. C., Betz, R. & Glidewell, C. (2014). Acta Cryst. C70, 1011–1016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNifant'ev, I. E., Shlyakhtin, A. V., Bagrov, V. V., Tavtorkin, A. N., Komarov, P. D., Churakov, A. V. & Ivchenko, P. V. (2020). Polym. Chem. 11, 6890–6902.  Google Scholar
First citationPotgieter, K., Gerber, T. & Betz, R. (2011). Acta Cryst. E67, o1697.  CrossRef IUCr Journals Google Scholar
First citationShan, S., Hu, W.-X. & Xu, D. J. (2005). Chin. J. Struct. Chem. 24, 241–?.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStryer, L. (1988). Biochemistry, 3rd ed. New York: W. H. Freeman and Co.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146