metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Bis(quinoline-8-amine-κ2N,N′)bis­­(1,1,3,3-tetra­cyano-2-meth­­oxy­propenido-κN)iron(II)

crossmark logo

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartment de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany, and dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de, m.aldouh@hu.edu.ye

Edited by M. Zeller, Purdue University, USA (Received 3 December 2024; accepted 17 December 2024; online 20 December 2024)

The title compound, [Fe(C8H3N4O)2(C9H8N2)2], was synthesized solvothermally. The complex exhibits a distorted octa­hedral coordination geometry. The Fe2+ ion is located on an inversion centre. The octa­hedral FeN6 coordination sphere is composed of bidentate quinoline-8-amine in the equatorial sites while the axial sites are occupied by 1,1,3,3-tetra­cyano-2-meth­oxy­propenide anions. The crystal structure features hydrogen bonds parallel to the crystallographic b axis and parallel to (110).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The well known spin-crossover (SCO) phenomenon can occur for some transition-metal complexes for which the metal ion is in a d4-, d5-, d6- or d7-configuration. The spin state can be switched between high-spin (HS) and low-spin (LS) states by an external perturbation such as temperature, pressure, magnetic field, or light irradiation (Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]). In addition to the magnetic changes resulting from the spin state switching, this SCO behavior is accompanied by structural modifications and changes in the optical properties (color change), making the SCO system very promising for many potential applications such as the development of new generations of memory devices, sensors, displays, and organic light-emitting diodes (OLEDs) (Létard et al., 2004[Létard, J.-F., Guionneau, P. & Goux-Capes, L. (2004). Top. Curr. Chem. 235, 221-249.]; Halcrow, 2013[Halcrow, M. A. (2013). Spin-Crossover Materials. Oxford, UK: John Wiley and Sons Ltd.]).

Regarding the preparation of such SCO materials, our strategy is based on the use of cyano-carbanion ligands for designing these compounds. Taking into account their strong ability to adopt different bridging or non-bridging coordination modes (Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]; Setifi et al., 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.], 2014[Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19-22.]; Dmitrienko et al., 2020[Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084-7092.]), we have used them with other chelating ligands to explore their ability to generate a new series of FeII–SCO complexes.

Continuing our study of spin-crossover 3d-metal complexes formed by polydentate and polynitrile units, we report here the synthesis and crystal structure of a new triclinic FeII complex, (I), which is the isostructural methoxy analogue of a previously described thio­methyl complex (Cuza et al., 2021[Cuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.]). This complex does not show any structural modifications at low temperature.

The title compound shows an octa­hedral coordination around the Fe2+ ion. The positive charge of the central atom is compensated for by two 1,1,3,3-tetra­cyano-2-meth­oxy­propenido anions. Two mol­ecules of quinoline-8-amine are coordinated as well to the central atom. Thereby a neutral complex is generated, with the equal ligands in trans-position to each other. The iron atom is on a special position in the unit cell (x = ½, y = ½, z = ½) and the opposite ligands are generated by inversion around this position (Fig. 1[link]). The trans angles in the complex are 180° due to the crystallographically imposed symmetry. However, there is substantial distortion from an ideal octa­hedron, as can be seen in the angle N3—Fe—N1 [94.72 (5)°] and the angle to the symmetry-equivalent nitro­gen atom N3i—Fe—N1 [symmetry code: (i) −x + 1, −y + 1, −z + 1] of 85.28 (5)°.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn with 50% probability level. Symmetry operator: (A) −x + 1, −y + 1, −z + 1.

The iron atom is coordinated to six nitro­gen atoms with slightly different bond lengths (Table 1[link]). The shortest bond is observed with N3 [2.152 (1) Å] from the anionic polynitrile ligand. The longest bond is to N2 [2.190 (2) Å], which is the NH2 group of the quinoline-8-amine. The bite angle of the quinoline-8-amine N1—Fe1—N2 is 77.62 (5)°, which is comparable to other complexes with this ligand (Setifi et al., 2016[Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488-1491.]; Cuza et al., 2021[Cuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.]).

Table 1
Selected geometric parameters (Å, °)

Fe1—N1 2.167 (1) Fe1—N3 2.152 (1)
Fe1—N2 2.190 (2)    
       
N1i—Fe1—N1 180.0 N3—Fe1—N2 93.15 (6)
N2i—Fe1—N2 180.0 N3—Fe1—N2i 86.85 (6)
N3i—Fe1—N3 180.0 N1—Fe1—N2 77.62 (5)
N3—Fe1—N1 94.72 (5) N1i—Fe1—N2 102.38 (5)
N3i—Fe1—N1 85.28 (5)    
Symmetry code: (i) [-x+1, -y+1, -z+1].

The polynitrile anion 1,1,3,3-tetra­cyano-2-meth­oxy­propenide is distorted in itself. The plane of the atoms N3–C10–C11–C15–N5 forms a dihedral angle of 36.7 (1)° with the other di­cyano­methyl­ene group (N4–C14–C13–C17–N6). This is due to the coordination of the nitro­gen atom N3 to iron and the distribution of the negative charge in the anion. This type of distortion is often observed in polynitrile anions (Saadallah et al. 2022[Saadallah, Y., Setifi, Z., Geiger, D. K., Al-Douh, M. H., Satour, A. & Setifi, F. (2022). IUCrData, 7, x221180.]; Cuza et al., 2021[Cuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.]; Setifi, et al. 2017[Setifi, Z., Bernès, S., Setifi, F., Kaur, M. & Jasinski, J. P. (2017). IUCrData, 2, x171007.]).

The inter­molecular inter­actions are dominated by hydrogen bonds (Table 2[link]). On the one hand there are bifurcated hydrogen bonds to N5 (N2—H1⋯N5ii and C7—H7⋯N5iii), which form chains of mol­ecules parallel to the crystallographic b axis (Fig. 2[link]). On the other hand N6 acts as a dual acceptor of hydrogen bonds (C6—H6⋯N6iv and C16—H16⋯N6v), leading to the formation of layers parallel to (110) (Fig. 3[link]; see Table 2[link] for numerical details). Both types of inter­actions combine to form a three-dimensional network of hydrogen bonds.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N5ii 0.91 (3) 2.26 (3) 3.138 (3) 162 (2)
C7—H7⋯N5iii 0.93 2.58 3.392 (3) 146
C6—H6⋯N6iv 0.93 2.58 3.401 (3) 148
C16—H16A⋯N6v 0.96 2.64 3.355 (3) 132
Symmetry codes: (ii) [x, y+1, z]; (iii) [-x+1, -y, -z+1]; (iv) [-x+1, -y+1, -z]; (v) [-x+2, -y, -z].
[Figure 2]
Figure 2
Partial packing diagram showing the N2—H1⋯N5 and C7—H7⋯N5 hydrogen-bonding inter­actions parallel to the crystallographic b axis.
[Figure 3]
Figure 3
Partial packing diagram showing the C6—H6⋯N6 and C16—H16A⋯N6 hydrogen-bonding inter­actions parallel to (110).

There is one isostructural iron complex in the literature (Cuza et al., 2021[Cuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.]). This complex has nearly the same composition as the title compound. It differs only in having a Me–S-group instead the Me–O-group in the title complex. The same publication features two more very similar complexes with a thio­ethyl- and a thio­propyl group in the polynitrile anions, respectively.

Synthesis and crystallization

Compound (I) was prepared solvothermally from a mixture of iron(II) bis­(tetra­fluorido­borate) hexa­hydrate (34 mg, 0.1 mmol), 8-amino­quinoline (29 mg, 0.2 mmol) and potassium 1,1,3,3-tetra­cyano-2-meth­oxy­propenide (89 mg, 0.2 mmol) in a mixture of water/ethanol (4:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 393 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h−1 to give the product in form of yellow plates (yield 38%). Elemental analysis calculated for C34H22FeN12O2: C, 59.49; H, 3.23; N, 24.48%. Found: C, 60.73; H, 3.35; N, 24.17%. FT—IR (ATR, cm−1): 2187 (vs, tcnoMe).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C8H3N4O)2(C9H8N2)2]
Mr 686.48
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 299
a, b, c (Å) 8.3617 (5), 9.8067 (6), 10.1251 (5)
α, β, γ (°) 100.206 (3), 90.276 (3), 90.500 (3)
V3) 817.08 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.51
Crystal size (mm) 0.21 × 0.18 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE Duo
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.675, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 41760, 4640, 3909
Rint 0.048
(sin θ/λ)max−1) 0.697
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.06
No. of reflections 4640
No. of parameters 232
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.20
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

trans-Bis(quinoline-8-amine-κ2N,N')bis(1,1,3,3-tetracyano-2-methoxypropenido-κN)iron(II) top
Crystal data top
[Fe(C8H3N4O)2(C9H8N2)2]Z = 1
Mr = 686.48F(000) = 352
Triclinic, P1Dx = 1.395 Mg m3
a = 8.3617 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8067 (6) ÅCell parameters from 3704 reflections
c = 10.1251 (5) Åθ = 2.9–28.5°
α = 100.206 (3)°µ = 0.51 mm1
β = 90.276 (3)°T = 299 K
γ = 90.500 (3)°Plate, yellow
V = 817.08 (8) Å30.21 × 0.18 × 0.05 mm
Data collection top
Bruker D8 VENTURE Duo
diffractometer
4640 independent reflections
Radiation source: sealed tube3909 reflections with I > 2σ(I)
TRIUMPH graphite monochromatorRint = 0.048
ω and φ scansθmax = 29.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.675, Tmax = 0.745k = 1313
41760 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.3359P]
where P = (Fo2 + 2Fc2)/3
4640 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms at N2 have been localized from residual electron density peaks and were freely refined. All other hydrogen atoms were placed in idealized positions and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.5000000.5000000.5000000.03405 (10)
O10.74346 (19)0.00197 (15)0.05960 (15)0.0609 (4)
N10.29013 (17)0.50285 (13)0.62516 (13)0.0378 (3)
N20.32247 (19)0.59938 (16)0.38964 (14)0.0420 (3)
H10.364 (3)0.671 (3)0.354 (2)0.067 (7)*
H20.283 (3)0.538 (3)0.320 (3)0.073 (7)*
N30.45064 (17)0.29722 (14)0.38569 (14)0.0406 (3)
N40.3677 (2)0.3604 (2)0.0862 (2)0.0707 (5)
N50.5201 (3)0.14868 (19)0.3218 (2)0.0780 (6)
N60.8157 (3)0.2527 (3)0.1261 (2)0.0810 (6)
C10.1911 (2)0.64840 (17)0.47750 (16)0.0391 (3)
C20.17703 (18)0.59330 (15)0.59786 (15)0.0341 (3)
C30.04890 (19)0.6362 (2)0.68605 (17)0.0432 (4)
C40.0580 (2)0.7348 (3)0.6558 (2)0.0623 (6)
H40.1409590.7651190.7142250.075*
C50.0405 (3)0.7861 (3)0.5409 (2)0.0705 (6)
H50.1130060.8512380.5213760.085*
C60.0837 (2)0.7439 (2)0.4505 (2)0.0545 (5)
H60.0928320.7809960.3724470.065*
C70.2749 (2)0.45015 (19)0.73573 (18)0.0482 (4)
H70.3517650.3882370.7546340.058*
C80.1491 (2)0.4828 (2)0.82583 (19)0.0536 (5)
H80.1421300.4412800.9014000.064*
C90.0377 (2)0.5748 (2)0.80278 (18)0.0524 (5)
H90.0457810.5977250.8627820.063*
C100.49612 (18)0.19840 (15)0.32012 (15)0.0337 (3)
C110.5592 (2)0.08061 (15)0.23830 (16)0.0380 (3)
C120.6374 (2)0.09521 (16)0.11809 (16)0.0387 (3)
C130.6126 (2)0.20359 (18)0.04875 (16)0.0410 (3)
C140.4770 (2)0.2904 (2)0.06994 (18)0.0466 (4)
C150.5392 (3)0.04715 (18)0.28338 (19)0.0499 (4)
C160.8475 (3)0.0676 (3)0.1383 (3)0.0799 (8)
H16A0.9472260.0866250.0924500.120*
H16B0.7983970.1531160.1511620.120*
H16C0.8664510.0097610.2238910.120*
C170.7249 (2)0.2298 (2)0.04895 (19)0.0537 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03897 (18)0.02907 (15)0.03390 (16)0.00370 (11)0.01334 (12)0.00447 (11)
O10.0683 (9)0.0512 (8)0.0610 (8)0.0250 (7)0.0186 (7)0.0023 (6)
N10.0448 (7)0.0317 (6)0.0375 (6)0.0003 (5)0.0127 (5)0.0076 (5)
N20.0508 (8)0.0426 (7)0.0339 (7)0.0019 (6)0.0116 (6)0.0096 (6)
N30.0466 (8)0.0347 (7)0.0396 (7)0.0003 (6)0.0106 (6)0.0039 (5)
N40.0607 (11)0.0799 (13)0.0795 (13)0.0280 (10)0.0094 (10)0.0342 (11)
N50.1082 (17)0.0418 (9)0.0890 (14)0.0018 (10)0.0172 (12)0.0246 (9)
N60.0728 (13)0.1186 (19)0.0583 (11)0.0074 (12)0.0229 (10)0.0329 (12)
C10.0381 (8)0.0429 (8)0.0358 (7)0.0013 (6)0.0036 (6)0.0058 (6)
C20.0333 (7)0.0349 (7)0.0328 (7)0.0054 (6)0.0060 (5)0.0024 (5)
C30.0295 (7)0.0561 (10)0.0414 (8)0.0036 (7)0.0061 (6)0.0010 (7)
C40.0373 (9)0.0915 (16)0.0569 (11)0.0170 (10)0.0080 (8)0.0089 (11)
C50.0534 (12)0.0933 (17)0.0687 (14)0.0300 (12)0.0032 (10)0.0233 (12)
C60.0516 (11)0.0684 (12)0.0472 (10)0.0136 (9)0.0014 (8)0.0197 (9)
C70.0590 (11)0.0426 (9)0.0466 (9)0.0034 (8)0.0165 (8)0.0171 (7)
C80.0596 (11)0.0628 (12)0.0421 (9)0.0025 (9)0.0184 (8)0.0188 (8)
C90.0417 (9)0.0722 (13)0.0425 (9)0.0065 (9)0.0155 (7)0.0076 (8)
C100.0354 (7)0.0315 (7)0.0348 (7)0.0034 (5)0.0028 (6)0.0079 (5)
C110.0464 (9)0.0274 (7)0.0400 (8)0.0023 (6)0.0037 (6)0.0049 (6)
C120.0414 (8)0.0334 (7)0.0393 (8)0.0051 (6)0.0038 (6)0.0002 (6)
C130.0417 (8)0.0460 (9)0.0358 (7)0.0048 (7)0.0056 (6)0.0083 (6)
C140.0478 (10)0.0520 (10)0.0439 (9)0.0062 (8)0.0030 (7)0.0184 (7)
C150.0641 (12)0.0330 (8)0.0531 (10)0.0024 (8)0.0063 (9)0.0086 (7)
C160.0629 (14)0.0688 (15)0.110 (2)0.0318 (12)0.0115 (14)0.0208 (14)
C170.0528 (11)0.0691 (13)0.0415 (9)0.0055 (9)0.0068 (8)0.0154 (8)
Geometric parameters (Å, º) top
Fe1—N12.167 (1)C3—C91.422 (3)
Fe1—N22.190 (2)C4—C51.355 (3)
Fe1—N32.152 (1)C4—H40.9300
Fe1—N1i2.167 (1)C5—C61.404 (3)
Fe1—N2i2.190 (2)C5—H50.9300
Fe1—N3i2.152 (1)C6—H60.9300
O1—C121.3421 (19)C7—C81.398 (2)
O1—C161.433 (3)C7—H70.9300
N1—C71.320 (2)C8—C91.350 (3)
N1—C21.363 (2)C8—H80.9300
N2—C11.448 (2)C9—H90.9300
N2—H10.91 (3)C10—C111.405 (2)
N2—H20.90 (3)C11—C121.413 (2)
N3—C101.143 (2)C11—C151.416 (2)
N4—C141.143 (2)C12—C131.390 (2)
N5—C151.142 (2)C13—C141.418 (2)
N6—C171.141 (3)C13—C171.422 (2)
C1—C61.364 (3)C16—H16A0.9600
C1—C21.423 (2)C16—H16B0.9600
C2—C31.416 (2)C16—H16C0.9600
C3—C41.395 (3)
N1i—Fe1—N1180.0C5—C4—H4120.1
N2i—Fe1—N2180.0C3—C4—H4120.1
N3i—Fe1—N3180.0C4—C5—C6122.0 (2)
N3—Fe1—N194.72 (5)C4—C5—H5119.0
N3i—Fe1—N185.28 (5)C6—C5—H5119.0
N3—Fe1—N293.15 (6)C1—C6—C5119.83 (18)
N3—Fe1—N2i86.85 (6)C1—C6—H6120.1
N1—Fe1—N277.62 (5)C5—C6—H6120.1
N1i—Fe1—N2102.38 (5)N1—C7—C8123.26 (18)
N3i—Fe1—N1i94.72 (5)N1—C7—H7118.4
N3—Fe1—N1i85.28 (5)C8—C7—H7118.4
N3i—Fe1—N2i93.15 (6)C9—C8—C7119.78 (17)
N1i—Fe1—N2i77.62 (5)C9—C8—H8120.1
N1—Fe1—N2i102.38 (5)C7—C8—H8120.1
N3i—Fe1—N286.85 (6)C8—C9—C3119.47 (16)
C12—O1—C16121.08 (17)C8—C9—H9120.3
C7—N1—C2118.11 (14)C3—C9—H9120.3
C7—N1—Fe1127.48 (12)N3—C10—C11177.07 (17)
C2—N1—Fe1113.00 (9)C10—C11—C12119.28 (14)
C1—N2—Fe1109.58 (10)C10—C11—C15116.66 (15)
C1—N2—H1109.7 (15)C12—C11—C15124.06 (15)
Fe1—N2—H1113.0 (15)O1—C12—C13113.69 (15)
C1—N2—H2108.1 (17)O1—C12—C11121.78 (15)
Fe1—N2—H2110.5 (16)C13—C12—C11124.53 (14)
H1—N2—H2106 (2)C12—C13—C14122.64 (15)
C10—N3—Fe1149.11 (13)C12—C13—C17119.91 (16)
C6—C1—C2119.65 (16)C14—C13—C17117.45 (16)
C6—C1—N2123.29 (15)N4—C14—C13179.6 (2)
C2—C1—N2117.06 (14)N5—C15—C11178.3 (2)
N1—C2—C3122.40 (14)O1—C16—H16A109.5
N1—C2—C1118.37 (13)O1—C16—H16B109.5
C3—C2—C1119.22 (15)H16A—C16—H16B109.5
C4—C3—C2119.59 (17)O1—C16—H16C109.5
C4—C3—C9123.51 (17)H16A—C16—H16C109.5
C2—C3—C9116.91 (17)H16B—C16—H16C109.5
C5—C4—C3119.73 (19)N6—C17—C13178.9 (3)
Fe1—N2—C1—C6162.71 (16)N2—C1—C6—C5180.0 (2)
Fe1—N2—C1—C216.71 (18)C4—C5—C6—C10.0 (4)
C7—N1—C2—C32.6 (2)C2—N1—C7—C80.1 (3)
Fe1—N1—C2—C3164.88 (12)Fe1—N1—C7—C8165.26 (15)
C7—N1—C2—C1178.81 (15)N1—C7—C8—C91.5 (3)
Fe1—N1—C2—C113.75 (17)C7—C8—C9—C30.7 (3)
C6—C1—C2—N1177.05 (16)C4—C3—C9—C8178.2 (2)
N2—C1—C2—N12.4 (2)C2—C3—C9—C81.5 (3)
C6—C1—C2—C31.6 (2)C16—O1—C12—C13145.8 (2)
N2—C1—C2—C3178.93 (15)C16—O1—C12—C1134.8 (3)
N1—C2—C3—C4176.54 (17)C10—C11—C12—O1157.48 (16)
C1—C2—C3—C42.1 (2)C15—C11—C12—O122.5 (3)
N1—C2—C3—C93.3 (2)C10—C11—C12—C1323.2 (3)
C1—C2—C3—C9178.12 (15)C15—C11—C12—C13156.82 (19)
C2—C3—C4—C51.5 (3)O1—C12—C13—C14161.86 (17)
C9—C3—C4—C5178.7 (2)C11—C12—C13—C1417.5 (3)
C3—C4—C5—C60.5 (4)O1—C12—C13—C1717.4 (2)
C2—C1—C6—C50.6 (3)C11—C12—C13—C17163.18 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N5ii0.91 (3)2.26 (3)3.138 (3)162 (2)
C7—H7···N5iii0.932.583.392 (3)146
C6—H6···N6iv0.932.583.401 (3)148
C16—H16A···N6v0.962.643.355 (3)132
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z; (v) x+2, y, z.
 

Acknowledgements

La plateau technique CRISMAT de l'Université Caen Normandie is thanked for its support for the single-crystal X-ray crystallographic data collection and analysis.

Funding information

Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and the PRFU project (grant No. B00L01UN190120230003).

References

First citationAddala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.  Web of Science CSD CrossRef Google Scholar
First citationDmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHalcrow, M. A. (2013). Spin-Crossover Materials. Oxford, UK: John Wiley and Sons Ltd.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLétard, J.-F., Guionneau, P. & Goux-Capes, L. (2004). Top. Curr. Chem. 235, 221–249.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaadallah, Y., Setifi, Z., Geiger, D. K., Al-Douh, M. H., Satour, A. & Setifi, F. (2022). IUCrData, 7, x221180.  Google Scholar
First citationSetifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488–1491.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Bernès, S., Setifi, F., Kaur, M. & Jasinski, J. P. (2017). IUCrData, 2, x171007.  Google Scholar
First citationSetifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146