metal-organic compounds
trans-Bis(quinoline-8-amine-κ2N,N′)bis(1,1,3,3-tetracyano-2-methoxypropenido-κN)iron(II)
aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartment de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany, and dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de, m.aldouh@hu.edu.ye
The title compound, [Fe(C8H3N4O)2(C9H8N2)2], was synthesized solvothermally. The complex exhibits a distorted octahedral coordination geometry. The Fe2+ ion is located on an inversion centre. The octahedral FeN6 coordination sphere is composed of bidentate quinoline-8-amine in the equatorial sites while the axial sites are occupied by 1,1,3,3-tetracyano-2-methoxypropenide anions. The features hydrogen bonds parallel to the crystallographic b axis and parallel to (110).
Keywords: crystal structure; iron(II) complex; quinoline-8-amine; 1,1,3,3-tetracyano-2-methoxypropenide.
CCDC reference: 2411351
Structure description
The well known spin-crossover (SCO) phenomenon can occur for some transition-metal complexes for which the metal ion is in a d4-, d5-, d6- or d7-configuration. The spin state can be switched between high-spin (HS) and low-spin (LS) states by an external perturbation such as temperature, pressure, magnetic field, or light irradiation (Benmansour et al., 2010). In addition to the magnetic changes resulting from the spin state switching, this SCO behavior is accompanied by structural modifications and changes in the optical properties (color change), making the SCO system very promising for many potential applications such as the development of new generations of memory devices, sensors, displays, and organic light-emitting diodes (OLEDs) (Létard et al., 2004; Halcrow, 2013).
Regarding the preparation of such SCO materials, our strategy is based on the use of cyano-carbanion ligands for designing these compounds. Taking into account their strong ability to adopt different bridging or non-bridging coordination modes (Addala et al., 2015; Setifi et al., 2013, 2014; Dmitrienko et al., 2020), we have used them with other chelating ligands to explore their ability to generate a new series of FeII–SCO complexes.
Continuing our study of spin-crossover 3d-metal complexes formed by polydentate and polynitrile units, we report here the synthesis and of a new triclinic FeII complex, (I), which is the isostructural methoxy analogue of a previously described thiomethyl complex (Cuza et al., 2021). This complex does not show any structural modifications at low temperature.
The title compound shows an octahedral coordination around the Fe2+ ion. The positive charge of the central atom is compensated for by two 1,1,3,3-tetracyano-2-methoxypropenido anions. Two molecules of quinoline-8-amine are coordinated as well to the central atom. Thereby a neutral complex is generated, with the equal ligands in trans-position to each other. The iron atom is on a special position in the (x = ½, y = ½, z = ½) and the opposite ligands are generated by inversion around this position (Fig. 1). The trans angles in the complex are 180° due to the crystallographically imposed symmetry. However, there is substantial distortion from an ideal octahedron, as can be seen in the angle N3—Fe—N1 [94.72 (5)°] and the angle to the symmetry-equivalent nitrogen atom N3i—Fe—N1 [symmetry code: (i) −x + 1, −y + 1, −z + 1] of 85.28 (5)°.
The iron atom is coordinated to six nitrogen atoms with slightly different bond lengths (Table 1). The shortest bond is observed with N3 [2.152 (1) Å] from the anionic polynitrile ligand. The longest bond is to N2 [2.190 (2) Å], which is the NH2 group of the quinoline-8-amine. The bite angle of the quinoline-8-amine N1—Fe1—N2 is 77.62 (5)°, which is comparable to other complexes with this ligand (Setifi et al., 2016; Cuza et al., 2021).
The polynitrile anion 1,1,3,3-tetracyano-2-methoxypropenide is distorted in itself. The plane of the atoms N3–C10–C11–C15–N5 forms a dihedral angle of 36.7 (1)° with the other dicyanomethylene group (N4–C14–C13–C17–N6). This is due to the coordination of the nitrogen atom N3 to iron and the distribution of the negative charge in the anion. This type of distortion is often observed in polynitrile anions (Saadallah et al. 2022; Cuza et al., 2021; Setifi, et al. 2017).
The intermolecular interactions are dominated by hydrogen bonds (Table 2). On the one hand there are bifurcated hydrogen bonds to N5 (N2—H1⋯N5ii and C7—H7⋯N5iii), which form chains of molecules parallel to the crystallographic b axis (Fig. 2). On the other hand N6 acts as a dual acceptor of hydrogen bonds (C6—H6⋯N6iv and C16—H16⋯N6v), leading to the formation of layers parallel to (110) (Fig. 3; see Table 2 for numerical details). Both types of interactions combine to form a three-dimensional network of hydrogen bonds.
|
There is one isostructural iron complex in the literature (Cuza et al., 2021). This complex has nearly the same composition as the title compound. It differs only in having a Me–S-group instead the Me–O-group in the title complex. The same publication features two more very similar complexes with a thioethyl- and a thiopropyl group in the polynitrile anions, respectively.
Synthesis and crystallization
Compound (I) was prepared solvothermally from a mixture of iron(II) bis(tetrafluoridoborate) hexahydrate (34 mg, 0.1 mmol), 8-aminoquinoline (29 mg, 0.2 mmol) and potassium 1,1,3,3-tetracyano-2-methoxypropenide (89 mg, 0.2 mmol) in a mixture of water/ethanol (4:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 393 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h−1 to give the product in form of yellow plates (yield 38%). Elemental analysis calculated for C34H22FeN12O2: C, 59.49; H, 3.23; N, 24.48%. Found: C, 60.73; H, 3.35; N, 24.17%. FT—IR (ATR, cm−1): 2187 (vs, tcnoMe).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 2411351
https://doi.org/10.1107/S2414314624012197/zl4078sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624012197/zl4078Isup2.hkl
[Fe(C8H3N4O)2(C9H8N2)2] | Z = 1 |
Mr = 686.48 | F(000) = 352 |
Triclinic, P1 | Dx = 1.395 Mg m−3 |
a = 8.3617 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8067 (6) Å | Cell parameters from 3704 reflections |
c = 10.1251 (5) Å | θ = 2.9–28.5° |
α = 100.206 (3)° | µ = 0.51 mm−1 |
β = 90.276 (3)° | T = 299 K |
γ = 90.500 (3)° | Plate, yellow |
V = 817.08 (8) Å3 | 0.21 × 0.18 × 0.05 mm |
Bruker D8 VENTURE Duo diffractometer | 4640 independent reflections |
Radiation source: sealed tube | 3909 reflections with I > 2σ(I) |
TRIUMPH graphite monochromator | Rint = 0.048 |
ω and φ scans | θmax = 29.7°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.675, Tmax = 0.745 | k = −13→13 |
41760 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0412P)2 + 0.3359P] where P = (Fo2 + 2Fc2)/3 |
4640 reflections | (Δ/σ)max < 0.001 |
232 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms at N2 have been localized from residual electron density peaks and were freely refined. All other hydrogen atoms were placed in idealized positions and refined with a riding model. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.500000 | 0.500000 | 0.500000 | 0.03405 (10) | |
O1 | 0.74346 (19) | 0.00197 (15) | 0.05960 (15) | 0.0609 (4) | |
N1 | 0.29013 (17) | 0.50285 (13) | 0.62516 (13) | 0.0378 (3) | |
N2 | 0.32247 (19) | 0.59938 (16) | 0.38964 (14) | 0.0420 (3) | |
H1 | 0.364 (3) | 0.671 (3) | 0.354 (2) | 0.067 (7)* | |
H2 | 0.283 (3) | 0.538 (3) | 0.320 (3) | 0.073 (7)* | |
N3 | 0.45064 (17) | 0.29722 (14) | 0.38569 (14) | 0.0406 (3) | |
N4 | 0.3677 (2) | 0.3604 (2) | 0.0862 (2) | 0.0707 (5) | |
N5 | 0.5201 (3) | −0.14868 (19) | 0.3218 (2) | 0.0780 (6) | |
N6 | 0.8157 (3) | 0.2527 (3) | −0.1261 (2) | 0.0810 (6) | |
C1 | 0.1911 (2) | 0.64840 (17) | 0.47750 (16) | 0.0391 (3) | |
C2 | 0.17703 (18) | 0.59330 (15) | 0.59786 (15) | 0.0341 (3) | |
C3 | 0.04890 (19) | 0.6362 (2) | 0.68605 (17) | 0.0432 (4) | |
C4 | −0.0580 (2) | 0.7348 (3) | 0.6558 (2) | 0.0623 (6) | |
H4 | −0.140959 | 0.765119 | 0.714225 | 0.075* | |
C5 | −0.0405 (3) | 0.7861 (3) | 0.5409 (2) | 0.0705 (6) | |
H5 | −0.113006 | 0.851238 | 0.521376 | 0.085* | |
C6 | 0.0837 (2) | 0.7439 (2) | 0.4505 (2) | 0.0545 (5) | |
H6 | 0.092832 | 0.780996 | 0.372447 | 0.065* | |
C7 | 0.2749 (2) | 0.45015 (19) | 0.73573 (18) | 0.0482 (4) | |
H7 | 0.351765 | 0.388237 | 0.754634 | 0.058* | |
C8 | 0.1491 (2) | 0.4828 (2) | 0.82583 (19) | 0.0536 (5) | |
H8 | 0.142130 | 0.441280 | 0.901400 | 0.064* | |
C9 | 0.0377 (2) | 0.5748 (2) | 0.80278 (18) | 0.0524 (5) | |
H9 | −0.045781 | 0.597725 | 0.862782 | 0.063* | |
C10 | 0.49612 (18) | 0.19840 (15) | 0.32012 (15) | 0.0337 (3) | |
C11 | 0.5592 (2) | 0.08061 (15) | 0.23830 (16) | 0.0380 (3) | |
C12 | 0.6374 (2) | 0.09521 (16) | 0.11809 (16) | 0.0387 (3) | |
C13 | 0.6126 (2) | 0.20359 (18) | 0.04875 (16) | 0.0410 (3) | |
C14 | 0.4770 (2) | 0.2904 (2) | 0.06994 (18) | 0.0466 (4) | |
C15 | 0.5392 (3) | −0.04715 (18) | 0.28338 (19) | 0.0499 (4) | |
C16 | 0.8475 (3) | −0.0676 (3) | 0.1383 (3) | 0.0799 (8) | |
H16A | 0.947226 | −0.086625 | 0.092450 | 0.120* | |
H16B | 0.798397 | −0.153116 | 0.151162 | 0.120* | |
H16C | 0.866451 | −0.009761 | 0.223891 | 0.120* | |
C17 | 0.7249 (2) | 0.2298 (2) | −0.04895 (19) | 0.0537 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.03897 (18) | 0.02907 (15) | 0.03390 (16) | 0.00370 (11) | 0.01334 (12) | 0.00447 (11) |
O1 | 0.0683 (9) | 0.0512 (8) | 0.0610 (8) | 0.0250 (7) | 0.0186 (7) | 0.0023 (6) |
N1 | 0.0448 (7) | 0.0317 (6) | 0.0375 (6) | 0.0003 (5) | 0.0127 (5) | 0.0076 (5) |
N2 | 0.0508 (8) | 0.0426 (7) | 0.0339 (7) | 0.0019 (6) | 0.0116 (6) | 0.0096 (6) |
N3 | 0.0466 (8) | 0.0347 (7) | 0.0396 (7) | −0.0003 (6) | 0.0106 (6) | 0.0039 (5) |
N4 | 0.0607 (11) | 0.0799 (13) | 0.0795 (13) | 0.0280 (10) | 0.0094 (10) | 0.0342 (11) |
N5 | 0.1082 (17) | 0.0418 (9) | 0.0890 (14) | 0.0018 (10) | 0.0172 (12) | 0.0246 (9) |
N6 | 0.0728 (13) | 0.1186 (19) | 0.0583 (11) | 0.0074 (12) | 0.0229 (10) | 0.0329 (12) |
C1 | 0.0381 (8) | 0.0429 (8) | 0.0358 (7) | −0.0013 (6) | 0.0036 (6) | 0.0058 (6) |
C2 | 0.0333 (7) | 0.0349 (7) | 0.0328 (7) | −0.0054 (6) | 0.0060 (5) | 0.0024 (5) |
C3 | 0.0295 (7) | 0.0561 (10) | 0.0414 (8) | −0.0036 (7) | 0.0061 (6) | 0.0010 (7) |
C4 | 0.0373 (9) | 0.0915 (16) | 0.0569 (11) | 0.0170 (10) | 0.0080 (8) | 0.0089 (11) |
C5 | 0.0534 (12) | 0.0933 (17) | 0.0687 (14) | 0.0300 (12) | 0.0032 (10) | 0.0233 (12) |
C6 | 0.0516 (11) | 0.0684 (12) | 0.0472 (10) | 0.0136 (9) | 0.0014 (8) | 0.0197 (9) |
C7 | 0.0590 (11) | 0.0426 (9) | 0.0466 (9) | 0.0034 (8) | 0.0165 (8) | 0.0171 (7) |
C8 | 0.0596 (11) | 0.0628 (12) | 0.0421 (9) | −0.0025 (9) | 0.0184 (8) | 0.0188 (8) |
C9 | 0.0417 (9) | 0.0722 (13) | 0.0425 (9) | −0.0065 (9) | 0.0155 (7) | 0.0076 (8) |
C10 | 0.0354 (7) | 0.0315 (7) | 0.0348 (7) | −0.0034 (5) | 0.0028 (6) | 0.0079 (5) |
C11 | 0.0464 (9) | 0.0274 (7) | 0.0400 (8) | 0.0023 (6) | 0.0037 (6) | 0.0049 (6) |
C12 | 0.0414 (8) | 0.0334 (7) | 0.0393 (8) | 0.0051 (6) | 0.0038 (6) | 0.0002 (6) |
C13 | 0.0417 (8) | 0.0460 (9) | 0.0358 (7) | 0.0048 (7) | 0.0056 (6) | 0.0083 (6) |
C14 | 0.0478 (10) | 0.0520 (10) | 0.0439 (9) | 0.0062 (8) | 0.0030 (7) | 0.0184 (7) |
C15 | 0.0641 (12) | 0.0330 (8) | 0.0531 (10) | 0.0024 (8) | 0.0063 (9) | 0.0086 (7) |
C16 | 0.0629 (14) | 0.0688 (15) | 0.110 (2) | 0.0318 (12) | 0.0115 (14) | 0.0208 (14) |
C17 | 0.0528 (11) | 0.0691 (13) | 0.0415 (9) | 0.0055 (9) | 0.0068 (8) | 0.0154 (8) |
Fe1—N1 | 2.167 (1) | C3—C9 | 1.422 (3) |
Fe1—N2 | 2.190 (2) | C4—C5 | 1.355 (3) |
Fe1—N3 | 2.152 (1) | C4—H4 | 0.9300 |
Fe1—N1i | 2.167 (1) | C5—C6 | 1.404 (3) |
Fe1—N2i | 2.190 (2) | C5—H5 | 0.9300 |
Fe1—N3i | 2.152 (1) | C6—H6 | 0.9300 |
O1—C12 | 1.3421 (19) | C7—C8 | 1.398 (2) |
O1—C16 | 1.433 (3) | C7—H7 | 0.9300 |
N1—C7 | 1.320 (2) | C8—C9 | 1.350 (3) |
N1—C2 | 1.363 (2) | C8—H8 | 0.9300 |
N2—C1 | 1.448 (2) | C9—H9 | 0.9300 |
N2—H1 | 0.91 (3) | C10—C11 | 1.405 (2) |
N2—H2 | 0.90 (3) | C11—C12 | 1.413 (2) |
N3—C10 | 1.143 (2) | C11—C15 | 1.416 (2) |
N4—C14 | 1.143 (2) | C12—C13 | 1.390 (2) |
N5—C15 | 1.142 (2) | C13—C14 | 1.418 (2) |
N6—C17 | 1.141 (3) | C13—C17 | 1.422 (2) |
C1—C6 | 1.364 (3) | C16—H16A | 0.9600 |
C1—C2 | 1.423 (2) | C16—H16B | 0.9600 |
C2—C3 | 1.416 (2) | C16—H16C | 0.9600 |
C3—C4 | 1.395 (3) | ||
N1i—Fe1—N1 | 180.0 | C5—C4—H4 | 120.1 |
N2i—Fe1—N2 | 180.0 | C3—C4—H4 | 120.1 |
N3i—Fe1—N3 | 180.0 | C4—C5—C6 | 122.0 (2) |
N3—Fe1—N1 | 94.72 (5) | C4—C5—H5 | 119.0 |
N3i—Fe1—N1 | 85.28 (5) | C6—C5—H5 | 119.0 |
N3—Fe1—N2 | 93.15 (6) | C1—C6—C5 | 119.83 (18) |
N3—Fe1—N2i | 86.85 (6) | C1—C6—H6 | 120.1 |
N1—Fe1—N2 | 77.62 (5) | C5—C6—H6 | 120.1 |
N1i—Fe1—N2 | 102.38 (5) | N1—C7—C8 | 123.26 (18) |
N3i—Fe1—N1i | 94.72 (5) | N1—C7—H7 | 118.4 |
N3—Fe1—N1i | 85.28 (5) | C8—C7—H7 | 118.4 |
N3i—Fe1—N2i | 93.15 (6) | C9—C8—C7 | 119.78 (17) |
N1i—Fe1—N2i | 77.62 (5) | C9—C8—H8 | 120.1 |
N1—Fe1—N2i | 102.38 (5) | C7—C8—H8 | 120.1 |
N3i—Fe1—N2 | 86.85 (6) | C8—C9—C3 | 119.47 (16) |
C12—O1—C16 | 121.08 (17) | C8—C9—H9 | 120.3 |
C7—N1—C2 | 118.11 (14) | C3—C9—H9 | 120.3 |
C7—N1—Fe1 | 127.48 (12) | N3—C10—C11 | 177.07 (17) |
C2—N1—Fe1 | 113.00 (9) | C10—C11—C12 | 119.28 (14) |
C1—N2—Fe1 | 109.58 (10) | C10—C11—C15 | 116.66 (15) |
C1—N2—H1 | 109.7 (15) | C12—C11—C15 | 124.06 (15) |
Fe1—N2—H1 | 113.0 (15) | O1—C12—C13 | 113.69 (15) |
C1—N2—H2 | 108.1 (17) | O1—C12—C11 | 121.78 (15) |
Fe1—N2—H2 | 110.5 (16) | C13—C12—C11 | 124.53 (14) |
H1—N2—H2 | 106 (2) | C12—C13—C14 | 122.64 (15) |
C10—N3—Fe1 | 149.11 (13) | C12—C13—C17 | 119.91 (16) |
C6—C1—C2 | 119.65 (16) | C14—C13—C17 | 117.45 (16) |
C6—C1—N2 | 123.29 (15) | N4—C14—C13 | 179.6 (2) |
C2—C1—N2 | 117.06 (14) | N5—C15—C11 | 178.3 (2) |
N1—C2—C3 | 122.40 (14) | O1—C16—H16A | 109.5 |
N1—C2—C1 | 118.37 (13) | O1—C16—H16B | 109.5 |
C3—C2—C1 | 119.22 (15) | H16A—C16—H16B | 109.5 |
C4—C3—C2 | 119.59 (17) | O1—C16—H16C | 109.5 |
C4—C3—C9 | 123.51 (17) | H16A—C16—H16C | 109.5 |
C2—C3—C9 | 116.91 (17) | H16B—C16—H16C | 109.5 |
C5—C4—C3 | 119.73 (19) | N6—C17—C13 | 178.9 (3) |
Fe1—N2—C1—C6 | 162.71 (16) | N2—C1—C6—C5 | 180.0 (2) |
Fe1—N2—C1—C2 | −16.71 (18) | C4—C5—C6—C1 | 0.0 (4) |
C7—N1—C2—C3 | 2.6 (2) | C2—N1—C7—C8 | −0.1 (3) |
Fe1—N1—C2—C3 | −164.88 (12) | Fe1—N1—C7—C8 | 165.26 (15) |
C7—N1—C2—C1 | −178.81 (15) | N1—C7—C8—C9 | −1.5 (3) |
Fe1—N1—C2—C1 | 13.75 (17) | C7—C8—C9—C3 | 0.7 (3) |
C6—C1—C2—N1 | −177.05 (16) | C4—C3—C9—C8 | −178.2 (2) |
N2—C1—C2—N1 | 2.4 (2) | C2—C3—C9—C8 | 1.5 (3) |
C6—C1—C2—C3 | 1.6 (2) | C16—O1—C12—C13 | 145.8 (2) |
N2—C1—C2—C3 | −178.93 (15) | C16—O1—C12—C11 | −34.8 (3) |
N1—C2—C3—C4 | 176.54 (17) | C10—C11—C12—O1 | 157.48 (16) |
C1—C2—C3—C4 | −2.1 (2) | C15—C11—C12—O1 | −22.5 (3) |
N1—C2—C3—C9 | −3.3 (2) | C10—C11—C12—C13 | −23.2 (3) |
C1—C2—C3—C9 | 178.12 (15) | C15—C11—C12—C13 | 156.82 (19) |
C2—C3—C4—C5 | 1.5 (3) | O1—C12—C13—C14 | 161.86 (17) |
C9—C3—C4—C5 | −178.7 (2) | C11—C12—C13—C14 | −17.5 (3) |
C3—C4—C5—C6 | −0.5 (4) | O1—C12—C13—C17 | −17.4 (2) |
C2—C1—C6—C5 | −0.6 (3) | C11—C12—C13—C17 | 163.18 (17) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···N5ii | 0.91 (3) | 2.26 (3) | 3.138 (3) | 162 (2) |
C7—H7···N5iii | 0.93 | 2.58 | 3.392 (3) | 146 |
C6—H6···N6iv | 0.93 | 2.58 | 3.401 (3) | 148 |
C16—H16A···N6v | 0.96 | 2.64 | 3.355 (3) | 132 |
Symmetry codes: (ii) x, y+1, z; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z; (v) −x+2, −y, −z. |
Acknowledgements
La plateau technique CRISMAT de l'Université Caen Normandie is thanked for its support for the single-crystal X-ray crystallographic data collection and analysis.
Funding information
Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and the PRFU project (grant No. B00L01UN190120230003).
References
Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478. Web of Science CrossRef CAS Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501. Web of Science CSD CrossRef Google Scholar
Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092. Web of Science CSD CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Halcrow, M. A. (2013). Spin-Crossover Materials. Oxford, UK: John Wiley and Sons Ltd. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Létard, J.-F., Guionneau, P. & Goux-Capes, L. (2004). Top. Curr. Chem. 235, 221–249. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Saadallah, Y., Setifi, Z., Geiger, D. K., Al-Douh, M. H., Satour, A. & Setifi, F. (2022). IUCrData, 7, x221180. Google Scholar
Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488–1491. CSD CrossRef IUCr Journals Google Scholar
Setifi, Z., Bernès, S., Setifi, F., Kaur, M. & Jasinski, J. P. (2017). IUCrData, 2, x171007. Google Scholar
Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.