metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[di­aqua­[μ2-1,4-bis­­(pyridin-3-ylmeth­yl)piperazine][μ2-4-(2-carboxyl­atoeth­yl)benzoato]cobalt(II)]

crossmark logo

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by S. Parkin, University of Kentucky, USA (Received 5 December 2024; accepted 18 December 2024; online 24 December 2024)

A layered cobalt coordination polymer containing both 4-(2-carboxyl­atoeth­yl)benzoate (ceb) and 1,4-bis­(3-pyridyl­meth­yl)piperazine (3-bpmp) ligands, [Co(C10H8O4)(C16H20N4)(H2O)2]n or [Co(ceb)(3-bpmp)(H2O)2]n, was isolated and structurally characterized by single-crystal X-ray diffraction. Chain-like [Co(ceb)(H2O)2]n units are oriented parallel to [101]. These are connected into (4,4)-grid coordination polymer layers by tethering 3-bpmp ligands. The layer motifs stack in an AAA pattern mediated by O—H⋯N hydrogen-bonding inter­actions between the aqua ligands in one layer and 3-bpmp piperazinyl N atoms in the abutting layer.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was isolated during an exploratory synthetic effort aiming to produce a cobalt coordination polymer containing both 4-(2-carboxyl­atoeth­yl)benzoate (ceb) and N,N′-bis­(3-pyridyl­meth­yl)piperazine (3-bpmp) ligands. Zinc pyromellitate coordination polymers containing the 3-bpmp ligand and its related congener N,N′-bis­(4-pyridyl­meth­yl)piperazine (4-bpmp) exhibited intriguing and diverse self-penetrated topologies (Blake et al., 2011[Blake, K. M., Lucas, J. S. & LaDuca, R. L. (2011). Cryst. Growth Des. 11, 1287-1293.]).

The asymmetric unit of the title compound consists of a divalent Co atom, a fully deprotonated ceb ligand, a 3-bpmp ligand, and two bound water mol­ecules. The Co atom displays a {CoO4N2} octa­hedral coordination environment (Fig. 1[link]) with two trans pyridyl N-atom donors belonging to two 3-bpmp ligands, and two trans aqua ligands. The two remaining trans coordination sites are occupied by carboxyl­ate O atoms belonging to two ceb ligands, one from a shorter carboxyl­ate terminus, and one from the longer three-C-atom carboxyl­ate arm. Bond lengths and angles within the coordination environment are consistent with octa­hedral coordination without any chelating ligands at the Co atoms (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.068 (3) Co1—O6 2.135 (3)
Co1—O3i 2.099 (3) Co1—N1 2.172 (4)
Co1—O5 2.138 (3) Co1—N4ii 2.176 (4)
       
O1—Co1—O3i 177.25 (12) O3i—Co1—N4ii 88.62 (13)
O1—Co1—O5 87.36 (12) O5—Co1—N1 93.73 (14)
O1—Co1—O6 91.60 (12) O5—Co1—N4ii 91.36 (14)
O1—Co1—N1 91.83 (14) O6—Co1—O5 175.84 (12)
O1—Co1—N4ii 89.08 (14) O6—Co1—N1 90.33 (14)
O3i—Co1—O5 91.19 (12) O6—Co1—N4ii 84.59 (13)
O3i—Co1—O6 89.69 (12) N1—Co1—N4ii 174.87 (14)
O3i—Co1—N1 90.59 (13)    
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The coordination environment of the title compound, showing octa­hedral coordination at the Co1 atom. Displacement ellipsoids are drawn at the 50% probability level. Color code: Co, dark blue, N, light blue; O, red; C, black. H atom positions are shown as sticks.

Adjacent Co atoms are linked by bis­(monodentate) ceb ligands, thereby constructing mono-periodic [Co(ceb)(H2O)2]n coordination polymer chains (Fig. 2[link]), which are oriented parallel to [10[\overline{1}]]. Intra-chain O—H⋯O hydrogen bonding is observed between the aqua ligands and unligated ceb carboxyl­ate O atoms (Table 2[link]). The chain motifs are linked into [Co(ceb)(3-bpmp)(H2O)2)]n coordination polymer layers by tethering 3-bpmp ligands (Fig. 3[link]). Treating the Co atoms as four-connected nodes with ceb and 3-bpmp rod-like linkers reveals a (4,4) grid network with parallelogram apertures (Fig. 4[link]). Adjacent [Co(ceb)(3-bpmp)(H2O)2)]n coordination polymer layers form the complete three-dimensional crystal structure of the title compound by means of AAA parallel stacking along the a-axis direction. The stacking is mediated by inter­layer O—H⋯N hydrogen-bonding inter­actions between the aqua ligands in one layer and 3-bpmp piperazinyl N atoms in the adjacent layer (Fig. 5[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯N3iii 0.89 2.20 2.980 (5) 146
O5—H5B⋯O4i 0.89 1.81 2.600 (5) 147
O6—H6A⋯O3iv 0.90 1.92 2.760 (4) 154
O6—H6B⋯O2 0.90 1.84 2.641 (4) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
[Co(ceb)(H2O)2]n coordination polymer chain in the title compound, oriented parallel to [10[\overline{1}]].
[Figure 3]
Figure 3
[Co(ceb)(3-bpmp)(H2O)2)]n coordination polymer layer in the title compound. [Co(ceb)(H2O)2]n coordination polymer chains are drawn in red, and the 3-bpmp linkers are drawn in blue.
[Figure 4]
Figure 4
Schematic representation of the (4,4) grid layer motif in the title compound. The dark blue spheres represent the CoII ions. Red rods represent the ceb ligands, and blue rods represent the 3-bpmp linkers.
[Figure 5]
Figure 5
AAA parallel stacking of supra­molecular layer motifs in the title compound, mediated by inter­layer O—H⋯N hydrogen-bonding inter­actions, which are shown as dashed lines.

Synthesis and crystallization

Co(NO3)2·6H2O (108 mg, 0.37 mmol), 4-(2-carboxyl­atoeth­yl)benzoic acid (72 mg, 0.37 mmol), 3-bpmp (110 mg, 0.37 mmol) and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml of distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 2 d, and then cooled slowly to 273 K. Pale-orange crystals of the title complex were isolated after washing with distilled water and acetone, and drying in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Co(C10H8O4)(C16H20N4)(H2O)2]
Mr 555.48
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 8.792 (5), 11.674 (7), 24.976 (14)
β (°) 92.06 (2)
V3) 2562 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.15 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.619, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18006, 4662, 2979
Rint 0.101
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.143, 1.02
No. of reflections 4662
No. of parameters 336
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −0.32
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO, Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and CrystalMaker X (Palmer, 2020[Palmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.]).

Structural data


Computing details top

Poly[diaqua[µ2-1,4-bis(pyridin-3-ylmethyl)piperazine][µ2-4-(2-carboxylatoethyl)benzoato]cobalt(II)] top
Crystal data top
[Co(C10H8O4)(C16H20N4)(H2O)2]F(000) = 1164
Mr = 555.48Dx = 1.440 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.792 (5) ÅCell parameters from 3606 reflections
b = 11.674 (7) Åθ = 2.4–25.2°
c = 24.976 (14) ŵ = 0.72 mm1
β = 92.06 (2)°T = 173 K
V = 2562 (2) Å3Block, orange
Z = 40.15 × 0.14 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
4662 independent reflections
Radiation source: sealed tube2979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
Detector resolution: 8.36 pixels mm-1θmax = 25.3°, θmin = 1.6°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.619, Tmax = 0.745l = 2929
18006 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0562P)2 + 1.877P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4662 reflectionsΔρmax = 0.82 e Å3
336 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Experimental. Data was collected using a Bruker CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO (Bruker, 2009) where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT (Bruker, 2014) on all observed reflections. Data reduction was performed using the SAINT software, which corrects for Lorentz/polarization effects. Scaling and absorption corrections were applied using SADABS (Krause et al., 2015). The structure was solved by the dual-space direct methods program SHELXT program and refined by least squares method on F2 using SHELXL, called from within OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2018/3 of SHELXL (Sheldrick, 2015) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.53449 (7)0.34158 (5)0.92351 (2)0.02444 (19)
O10.6159 (4)0.3598 (3)0.84732 (12)0.0299 (8)
O20.7352 (4)0.5298 (3)0.85176 (12)0.0318 (8)
O30.9573 (3)0.1845 (2)0.50111 (12)0.0284 (8)
O40.9032 (4)0.3718 (3)0.49603 (14)0.0423 (9)
O50.4295 (4)0.1859 (2)0.89624 (13)0.0315 (8)
H5A0.3387400.1997080.8804120.047*
H5B0.4068790.1420080.9240530.047*
O60.6547 (3)0.4905 (2)0.95095 (12)0.0291 (8)
H6A0.5917890.5412600.9656970.044*
H6B0.6912650.5297330.9233060.044*
N10.3355 (4)0.4453 (3)0.90337 (15)0.0261 (9)
N20.3174 (4)0.6616 (3)0.76873 (15)0.0297 (9)
N30.3692 (4)0.6242 (3)0.65617 (15)0.0294 (9)
N40.7573 (4)0.7512 (3)0.55286 (15)0.0271 (9)
C10.3447 (5)0.5353 (4)0.87023 (18)0.0288 (11)
H10.4410960.5528130.8562740.035*
C20.2216 (6)0.6045 (4)0.85506 (19)0.0312 (11)
C30.0823 (6)0.5764 (4)0.8761 (2)0.0375 (13)
H30.0055920.6201110.8664410.045*
C40.0712 (6)0.4852 (4)0.9110 (2)0.0400 (13)
H40.0235540.4664570.9259210.048*
C50.1990 (6)0.4222 (4)0.9238 (2)0.0352 (12)
H50.1910570.3598470.9480390.042*
C60.2433 (6)0.7020 (4)0.81655 (19)0.0332 (12)
H6C0.1432480.7357730.8062410.040*
H6D0.3064220.7622890.8341970.040*
C70.2151 (5)0.5910 (4)0.73545 (19)0.0328 (12)
H7A0.1315680.6389430.7200730.039*
H7B0.1697260.5306200.7576660.039*
C80.3007 (6)0.5366 (4)0.6910 (2)0.0349 (12)
H8A0.3820570.4869260.7065470.042*
H8B0.2303270.4879420.6690950.042*
C90.4633 (5)0.7035 (4)0.6898 (2)0.0323 (12)
H9A0.5010620.7662230.6671110.039*
H9B0.5526790.6616820.7050980.039*
C100.3739 (5)0.7538 (4)0.73472 (19)0.0302 (11)
H10A0.4397690.8059890.7564930.036*
H10B0.2869940.7986960.7195930.036*
C110.4631 (6)0.5622 (4)0.6176 (2)0.0340 (12)
H11A0.3976520.5055990.5983400.041*
H11B0.5428390.5190760.6380440.041*
C120.5397 (5)0.6355 (4)0.57655 (19)0.0294 (11)
C130.4773 (6)0.6520 (4)0.5257 (2)0.0379 (12)
H130.3827320.6173390.5157300.045*
C140.5520 (6)0.7189 (4)0.4891 (2)0.0399 (13)
H140.5085230.7319960.4542350.048*
C150.6912 (6)0.7662 (4)0.5044 (2)0.0363 (12)
H150.7424390.8115630.4790930.044*
C160.6830 (5)0.6862 (4)0.5880 (2)0.0315 (12)
H160.7296980.6737340.6223760.038*
C170.6953 (5)0.4403 (4)0.82744 (18)0.0264 (11)
C180.7392 (5)0.4246 (4)0.77044 (19)0.0262 (11)
C190.7005 (5)0.3283 (4)0.74147 (19)0.0328 (12)
H190.6453410.2689960.7581180.039*
C200.7400 (6)0.3154 (4)0.6885 (2)0.0380 (13)
H200.7113480.2476640.6696370.046*
C210.8213 (5)0.4006 (4)0.66270 (18)0.0294 (11)
C220.8622 (5)0.4969 (4)0.69193 (19)0.0278 (11)
H220.9180310.5559620.6753650.033*
C230.8237 (5)0.5091 (4)0.74467 (19)0.0281 (11)
H230.8548860.5758280.7638970.034*
C240.8544 (7)0.3947 (4)0.6038 (2)0.0413 (14)
H24A0.7647990.4254680.5833670.050*
H24B0.9408190.4466600.5973000.050*
C250.8912 (6)0.2806 (4)0.5808 (2)0.0408 (13)
H25A0.8057730.2278040.5874200.049*
H25B0.9824300.2500480.6003640.049*
C260.9205 (5)0.2796 (4)0.52184 (19)0.0295 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0261 (3)0.0250 (3)0.0225 (3)0.0008 (3)0.0044 (3)0.0005 (3)
O10.0378 (19)0.0258 (18)0.0265 (18)0.0025 (15)0.0079 (15)0.0003 (14)
O20.035 (2)0.0297 (19)0.0307 (19)0.0084 (15)0.0075 (16)0.0053 (15)
O30.0359 (19)0.0250 (18)0.0247 (17)0.0018 (15)0.0067 (15)0.0028 (14)
O40.066 (3)0.026 (2)0.035 (2)0.0050 (17)0.0016 (19)0.0022 (16)
O50.0353 (19)0.0271 (18)0.0321 (19)0.0044 (15)0.0036 (15)0.0026 (14)
O60.0328 (19)0.0280 (18)0.0269 (19)0.0002 (14)0.0068 (15)0.0006 (14)
N10.023 (2)0.029 (2)0.027 (2)0.0016 (17)0.0019 (17)0.0027 (17)
N20.031 (2)0.029 (2)0.029 (2)0.0005 (19)0.0005 (18)0.0021 (19)
N30.031 (2)0.023 (2)0.033 (2)0.0023 (17)0.0009 (19)0.0033 (17)
N40.028 (2)0.025 (2)0.028 (2)0.0009 (18)0.0041 (19)0.0009 (17)
C10.030 (3)0.030 (3)0.027 (3)0.003 (2)0.001 (2)0.001 (2)
C20.037 (3)0.028 (3)0.028 (3)0.001 (2)0.001 (2)0.003 (2)
C30.026 (3)0.042 (3)0.044 (3)0.005 (2)0.001 (2)0.003 (3)
C40.029 (3)0.048 (3)0.044 (3)0.001 (3)0.005 (2)0.006 (3)
C50.035 (3)0.035 (3)0.035 (3)0.006 (2)0.001 (2)0.003 (2)
C60.031 (3)0.034 (3)0.034 (3)0.001 (2)0.005 (2)0.001 (2)
C70.031 (3)0.030 (3)0.037 (3)0.007 (2)0.000 (2)0.001 (2)
C80.033 (3)0.027 (3)0.044 (3)0.011 (2)0.000 (2)0.003 (2)
C90.027 (3)0.029 (3)0.041 (3)0.006 (2)0.002 (2)0.005 (2)
C100.032 (3)0.025 (3)0.033 (3)0.007 (2)0.006 (2)0.003 (2)
C110.033 (3)0.028 (3)0.041 (3)0.003 (2)0.002 (2)0.001 (2)
C120.030 (3)0.019 (2)0.039 (3)0.002 (2)0.004 (2)0.003 (2)
C130.030 (3)0.041 (3)0.042 (3)0.006 (3)0.002 (2)0.006 (3)
C140.037 (3)0.051 (3)0.031 (3)0.003 (3)0.004 (3)0.001 (3)
C150.036 (3)0.036 (3)0.037 (3)0.000 (2)0.000 (3)0.005 (2)
C160.033 (3)0.030 (3)0.032 (3)0.006 (2)0.002 (2)0.003 (2)
C170.021 (3)0.032 (3)0.026 (3)0.005 (2)0.002 (2)0.001 (2)
C180.025 (3)0.023 (2)0.031 (3)0.003 (2)0.002 (2)0.000 (2)
C190.040 (3)0.029 (3)0.030 (3)0.007 (2)0.004 (2)0.008 (2)
C200.050 (3)0.033 (3)0.031 (3)0.009 (2)0.004 (3)0.007 (2)
C210.034 (3)0.028 (3)0.026 (3)0.003 (2)0.001 (2)0.001 (2)
C220.025 (3)0.029 (3)0.029 (3)0.004 (2)0.004 (2)0.005 (2)
C230.029 (3)0.023 (3)0.032 (3)0.002 (2)0.001 (2)0.002 (2)
C240.062 (4)0.030 (3)0.032 (3)0.009 (3)0.009 (3)0.003 (2)
C250.048 (3)0.042 (3)0.033 (3)0.008 (3)0.005 (3)0.001 (2)
C260.023 (3)0.039 (3)0.026 (3)0.003 (2)0.002 (2)0.005 (2)
Geometric parameters (Å, º) top
Co1—O12.068 (3)C7—C81.504 (7)
Co1—O3i2.099 (3)C8—H8A0.9900
Co1—O52.138 (3)C8—H8B0.9900
Co1—O62.135 (3)C9—H9A0.9900
Co1—N12.172 (4)C9—H9B0.9900
Co1—N4ii2.176 (4)C9—C101.513 (6)
O1—C171.282 (5)C10—H10A0.9900
O2—C171.252 (5)C10—H10B0.9900
O3—C261.272 (5)C11—H11A0.9900
O4—C261.261 (6)C11—H11B0.9900
O5—H5A0.8924C11—C121.511 (6)
O5—H5B0.8915C12—C131.378 (7)
O6—H6A0.8985C12—C161.412 (7)
O6—H6B0.8977C13—H130.9500
N1—C11.342 (6)C13—C141.386 (7)
N1—C51.349 (6)C14—H140.9500
N2—C61.459 (6)C14—C151.384 (7)
N2—C71.458 (6)C15—H150.9500
N2—C101.469 (6)C16—H160.9500
N3—C81.484 (6)C17—C181.500 (6)
N3—C91.482 (6)C18—C191.373 (6)
N3—C111.480 (6)C18—C231.406 (6)
N4—C151.336 (6)C19—H190.9500
N4—C161.346 (6)C19—C201.387 (6)
C1—H10.9500C20—H200.9500
C1—C21.393 (6)C20—C211.397 (7)
C2—C31.389 (7)C21—C221.381 (6)
C2—C61.507 (7)C21—C241.512 (7)
C3—H30.9500C22—H220.9500
C3—C41.383 (7)C22—C231.379 (6)
C4—H40.9500C23—H230.9500
C4—C51.371 (7)C24—H24A0.9900
C5—H50.9500C24—H24B0.9900
C6—H6C0.9900C24—C251.490 (7)
C6—H6D0.9900C25—H25A0.9900
C7—H7A0.9900C25—H25B0.9900
C7—H7B0.9900C25—C261.505 (7)
O1—Co1—O3i177.25 (12)N3—C9—H9B109.3
O1—Co1—O587.36 (12)N3—C9—C10111.6 (4)
O1—Co1—O691.60 (12)H9A—C9—H9B108.0
O1—Co1—N191.83 (14)C10—C9—H9A109.3
O1—Co1—N4ii89.08 (14)C10—C9—H9B109.3
O3i—Co1—O591.19 (12)N2—C10—C9109.9 (4)
O3i—Co1—O689.69 (12)N2—C10—H10A109.7
O3i—Co1—N190.59 (13)N2—C10—H10B109.7
O3i—Co1—N4ii88.62 (13)C9—C10—H10A109.7
O5—Co1—N193.73 (14)C9—C10—H10B109.7
O5—Co1—N4ii91.36 (14)H10A—C10—H10B108.2
O6—Co1—O5175.84 (12)N3—C11—H11A108.3
O6—Co1—N190.33 (14)N3—C11—H11B108.3
O6—Co1—N4ii84.59 (13)N3—C11—C12115.9 (4)
N1—Co1—N4ii174.87 (14)H11A—C11—H11B107.4
C17—O1—Co1130.0 (3)C12—C11—H11A108.3
C26—O3—Co1iii126.7 (3)C12—C11—H11B108.3
Co1—O5—H5A110.9C13—C12—C11122.1 (4)
Co1—O5—H5B110.3C13—C12—C16116.7 (4)
H5A—O5—H5B103.2C16—C12—C11121.1 (4)
Co1—O6—H6A111.3C12—C13—H13119.8
Co1—O6—H6B110.8C12—C13—C14120.3 (5)
H6A—O6—H6B102.8C14—C13—H13119.8
C1—N1—Co1120.9 (3)C13—C14—H14120.7
C1—N1—C5117.7 (4)C15—C14—C13118.5 (5)
C5—N1—Co1121.4 (3)C15—C14—H14120.7
C6—N2—C10114.0 (4)N4—C15—C14123.3 (5)
C7—N2—C6111.4 (4)N4—C15—H15118.3
C7—N2—C10107.4 (4)C14—C15—H15118.3
C9—N3—C8109.2 (4)N4—C16—C12123.7 (4)
C11—N3—C8107.0 (4)N4—C16—H16118.2
C11—N3—C9111.1 (4)C12—C16—H16118.2
C15—N4—Co1iv121.1 (3)O1—C17—C18116.1 (4)
C15—N4—C16117.3 (4)O2—C17—O1124.8 (4)
C16—N4—Co1iv121.3 (3)O2—C17—C18119.0 (4)
N1—C1—H1118.0C19—C18—C17122.2 (4)
N1—C1—C2123.9 (4)C19—C18—C23117.3 (4)
C2—C1—H1118.0C23—C18—C17120.5 (4)
C1—C2—C6119.8 (4)C18—C19—H19119.1
C3—C2—C1116.6 (4)C18—C19—C20121.7 (4)
C3—C2—C6123.6 (4)C20—C19—H19119.1
C2—C3—H3119.9C19—C20—H20119.6
C4—C3—C2120.3 (5)C19—C20—C21120.8 (4)
C4—C3—H3119.9C21—C20—H20119.6
C3—C4—H4120.5C20—C21—C24122.5 (4)
C5—C4—C3119.0 (5)C22—C21—C20117.6 (4)
C5—C4—H4120.5C22—C21—C24119.8 (4)
N1—C5—C4122.5 (5)C21—C22—H22119.3
N1—C5—H5118.8C23—C22—C21121.4 (4)
C4—C5—H5118.8C23—C22—H22119.3
N2—C6—C2110.4 (4)C18—C23—H23119.4
N2—C6—H6C109.6C22—C23—C18121.1 (4)
N2—C6—H6D109.6C22—C23—H23119.4
C2—C6—H6C109.6C21—C24—H24A107.8
C2—C6—H6D109.6C21—C24—H24B107.8
H6C—C6—H6D108.1H24A—C24—H24B107.2
N2—C7—H7A109.6C25—C24—C21117.8 (4)
N2—C7—H7B109.6C25—C24—H24A107.8
N2—C7—C8110.2 (4)C25—C24—H24B107.8
H7A—C7—H7B108.1C24—C25—H25A108.4
C8—C7—H7A109.6C24—C25—H25B108.4
C8—C7—H7B109.6C24—C25—C26115.5 (4)
N3—C8—C7111.5 (4)H25A—C25—H25B107.5
N3—C8—H8A109.3C26—C25—H25A108.4
N3—C8—H8B109.3C26—C25—H25B108.4
C7—C8—H8A109.3O3—C26—C25117.4 (4)
C7—C8—H8B109.3O4—C26—O3124.4 (4)
H8A—C8—H8B108.0O4—C26—C25118.2 (4)
N3—C9—H9A109.3
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N3v0.892.202.980 (5)146
O5—H5B···O4i0.891.812.600 (5)147
O6—H6A···O3iv0.901.922.760 (4)154
O6—H6B···O20.901.842.641 (4)147
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (iv) x+3/2, y+1/2, z+3/2; (v) x+1/2, y1/2, z+3/2.
 

Acknowledgements

We thank Dr Marcy Epstein of the University of Michigan for helpful discussions.

Funding information

Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.

References

First citationBlake, K. M., Lucas, J. S. & LaDuca, R. L. (2011). Cryst. Growth Des. 11, 1287–1293.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). COSMO, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPalmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146