IUCrData

ISSN 2414-3146

Received 5 December 2024 Accepted 18 December 2024

Edited by S. Parkin, University of Kentucky, USA

**Keywords:** crystal structure; layered coordination polymer; cobalt.

CCDC reference: 1977424

**Structural data:** full structural data are available from iucrdata.iucr.org

# Poly[diaqua[ $\mu_2$ -1,4-bis(pyridin-3-ylmethyl)piperazine][ $\mu_2$ -4-(2-carboxylatoethyl)benzoato]cobalt(II)]

### Frederick C. Ezenyilimba and Robert L. LaDuca\*

E-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA. \*Correspondence e-mail: laduca@msu.edu

A layered cobalt coordination polymer containing both 4-(2-carboxylatoethyl)benzoate (ceb) and 1,4-bis(3-pyridylmethyl)piperazine (3-bpmp) ligands,  $[Co(C_{10}H_8O_4)(C_{16}H_{20}N_4)(H_2O)_2]_n$  or  $[Co(ceb)(3-bpmp)(H_2O)_2]_n$ , was isolated and structurally characterized by single-crystal X-ray diffraction. Chain-like  $[Co(ceb)(H_2O)_2]_n$  units are oriented parallel to  $[10\overline{1}]$ . These are connected into (4,4)-grid coordination polymer layers by tethering 3-bpmp ligands. The layer motifs stack in an *AAA* pattern mediated by  $O-H\cdots$ N hydrogen-bonding interactions between the aqua ligands in one layer and 3-bpmp piperazinyl N atoms in the abutting layer.



### Structure description

The title compound was isolated during an exploratory synthetic effort aiming to produce a cobalt coordination polymer containing both 4-(2-carboxylatoethyl)benzoate (ceb) and N,N'-bis(3-pyridylmethyl)piperazine (3-bpmp) ligands. Zinc pyromellitate coordination polymers containing the 3-bpmp ligand and its related congener N,N'-bis(4-pyridylmethyl)piperazine (4-bpmp) exhibited intriguing and diverse self-penetrated topologies (Blake *et al.*, 2011).

The asymmetric unit of the title compound consists of a divalent Co atom, a fully deprotonated ceb ligand, a 3-bpmp ligand, and two bound water molecules. The Co atom displays a  $\{CoO_4N_2\}$  octahedral coordination environment (Fig. 1) with two *trans* pyridyl N-atom donors belonging to two 3-bpmp ligands, and two *trans* aqua ligands. The two remaining *trans* coordination sites are occupied by carboxylate O atoms belonging to two ceb ligands, one from a shorter carboxylate terminus, and one from the longer three-C-atom carboxylate arm. Bond lengths and angles within the coordination environment are consistent with octahedral coordination without any chelating ligands at the Co atoms (Table 1).





Figure 1

The coordination environment of the title compound, showing octahedral coordination at the Co1 atom. Displacement ellipsoids are drawn at the 50% probability level. Color code: Co, dark blue, N, light blue; O, red; C, black. H atom positions are shown as sticks.

Adjacent Co atoms are linked by bis(monodentate) ceb ligands, thereby constructing mono-periodic  $[Co(ceb)(H_2O)_2]_n$  coordination polymer chains (Fig. 2), which are oriented parallel to  $[10\overline{1}]$ . Intra-chain O-H···O hydrogen bonding is observed between the aqua ligands and unligated ceb carboxylate O atoms (Table 2). The chain motifs are linked into  $[Co(ceb)(3-bpmp)(H_2O)_2)]_n$  coordination polymer layers by tethering 3-bpmp ligands (Fig. 3). Treating the Co atoms as four-connected nodes with ceb and 3-bpmp rod-like linkers reveals a (4,4) grid network with parallelogram apertures (Fig. 4). Adjacent [Co(ceb)(3-bpmp)(H<sub>2</sub>O)<sub>2</sub>)]<sub>n</sub> coordination polymer layers form the complete three-dimensional crystal structure of the title compound by means of AAA parallel stacking along the *a*-axis direction. The stacking is mediated by interlayer O-H···N hydrogen-bonding inter-



Figure 2  $[Co(ceb)(H_2O)_2]_n$  coordination polymer chain in the title compound, oriented parallel to  $[10\overline{1}]$ .



#### Figure 3

 $[Co(ceb)(3-bpmp)(H_2O)_2]_n$  coordination polymer layer in the title compound.  $[Co(ceb)(H_2O)_2]_n$  coordination polymer chains are drawn in red, and the 3-bpmp linkers are drawn in blue.

 Table 1

 Selected geometric parameters (Å, °).

| Co1-O1                  | 2.068 (3)   | Co1-O6                                | 2.135 (3)   |
|-------------------------|-------------|---------------------------------------|-------------|
| Co1-O3 <sup>i</sup>     | 2.099 (3)   | Co1-N1                                | 2.172 (4)   |
| Co1-O5                  | 2.138 (3)   | Co1-N4 <sup>ii</sup>                  | 2.176 (4)   |
| O1-Co1-O3 <sup>i</sup>  | 177.25 (12) | O3 <sup>i</sup> -Co1-N4 <sup>ii</sup> | 88.62 (13)  |
| O1-Co1-O5               | 87.36 (12)  | O5-Co1-N1                             | 93.73 (14)  |
| O1-Co1-O6               | 91.60 (12)  | O5-Co1-N4 <sup>ii</sup>               | 91.36 (14)  |
| O1-Co1-N1               | 91.83 (14)  | O6-Co1-O5                             | 175.84 (12) |
| O1-Co1-N4 <sup>ii</sup> | 89.08 (14)  | O6-Co1-N1                             | 90.33 (14)  |
| O3 <sup>i</sup> -Co1-O5 | 91.19 (12)  | O6-Co1-N4 <sup>ii</sup>               | 84.59 (13)  |
| O3 <sup>i</sup> -Co1-O6 | 89.69 (12)  | N1-Co1-N4 <sup>ii</sup>               | 174.87 (14) |
| O3 <sup>i</sup> -Co1-N1 | 90.59 (13)  |                                       |             |

Symmetry codes: (i)  $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii)  $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$ 

| Table 2       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$                                                  | D-H                      | $H \cdot \cdot \cdot A$             | $D \cdot \cdot \cdot A$                   | $D - \mathbf{H} \cdot \cdot \cdot A$  |
|------------------------------------------------------------------------------|--------------------------|-------------------------------------|-------------------------------------------|---------------------------------------|
| $O5-H5A\cdots N3^{iii}$                                                      | 0.89                     | 2.20                                | 2.980 (5)                                 | 146                                   |
| $O5-H5B\cdots O4^{i}$                                                        | 0.89                     | 1.81                                | 2.600 (5)                                 | 147                                   |
| $O6-H6A\cdots O3^{iv}$                                                       | 0.90                     | 1.92                                | 2.760 (4)                                 | 154                                   |
| $O6-H6B\cdots O2$                                                            | 0.90                     | 1.84                                | 2.641 (4)                                 | 147                                   |
| Symmetry codes: (<br>$-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ ; | i) $x - \frac{1}{2}, -y$ | $z + \frac{1}{2}, z + \frac{1}{2};$ | (iii) $-x + \frac{1}{2}, y - \frac{1}{2}$ | $\frac{1}{2}, -z + \frac{3}{2};$ (iv) |

actions between the aqua ligands in one layer and 3-bpmp piperazinyl N atoms in the adjacent layer (Fig. 5, Table 2).





Schematic representation of the (4,4) grid layer motif in the title compound. The dark blue spheres represent the Co<sup>II</sup> ions. Red rods represent the ceb ligands, and blue rods represent the 3-bpmp linkers.



### Figure 5

AAA parallel stacking of supramolecular layer motifs in the title compound, mediated by interlayer  $O-H \cdots N$  hydrogen-bonding interactions, which are shown as dashed lines.

### Synthesis and crystallization

 $Co(NO_3)_2 \cdot 6H_2O$  (108 mg, 0.37 mmol), 4-(2-carboxylatoethyl)benzoic acid (72 mg, 0.37 mmol), 3-bpmp (110 mg, 0.37 mmol) and 0.75 ml of a 1.0 *M* NaOH solution were placed into 10 ml of distilled H<sub>2</sub>O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 2 d, and then cooled slowly to 273 K. Pale-orange crystals of the title complex were isolated after washing with distilled water and acetone, and drying in air.

### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

### Acknowledgements

We thank Dr Marcy Epstein of the University of Michigan for helpful discussions.

### **Funding information**

Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.

### References

- Blake, K. M., Lucas, J. S. & LaDuca, R. L. (2011). *Cryst. Growth Des.* **11**, 1287–1293.
- Bruker (2009). COSMO, Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

### Table 3

Experimental details.

| Crystal data                                                             |                                               |
|--------------------------------------------------------------------------|-----------------------------------------------|
| Chemical formula                                                         | $[Co(C_{10}H_8O_4)(C_{16}H_{20}N_4)(H_2O)_2]$ |
| Mr                                                                       | 555.48                                        |
| Crystal system, space group                                              | Monoclinic, $P2_1/n$                          |
| Temperature (K)                                                          | 173                                           |
| a, b, c (Å)                                                              | 8.792 (5), 11.674 (7), 24.976 (14)            |
| β (°)                                                                    | 92.06 (2)                                     |
| $V(Å^3)$                                                                 | 2562 (2)                                      |
| Ζ                                                                        | 4                                             |
| Radiation type                                                           | Μο Κα                                         |
| $\mu \text{ (mm}^{-1})$                                                  | 0.72                                          |
| Crystal size (mm)                                                        | $0.15 \times 0.14 \times 0.10$                |
| Data collection                                                          |                                               |
| Diffractometer                                                           | Bruker APEXII CCD                             |
| Absorption correction                                                    | Multi-scan (SADABS; Krause et al., 2015)      |
| $T_{\min}, T_{\max}$                                                     | 0.619, 0.745                                  |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 18006, 4662, 2979                             |
| R <sub>int</sub>                                                         | 0.101                                         |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                     | 0.602                                         |
| Refinement                                                               |                                               |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.064, 0.143, 1.02                            |
| No. of reflections                                                       | 4662                                          |
| No. of parameters                                                        | 336                                           |
| H-atom treatment                                                         | H-atom parameters constrained                 |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å <sup>-3</sup> )      | 0.82, -0.32                                   |

Computer programs: COSMO (Bruker, 2009), SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and CrystalMaker X (Palmer, 2020).

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Palmer, D. (2020). *CrystalMaker X*. CrystalMaker Software, Begbroke, England.
- Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.

# full crystallographic data

### *IUCrData* (2024). 9, x241225 [https://doi.org/10.1107/S2414314624012252]

# Poly[diaqua[ $\mu_2$ -1,4-bis(pyridin-3-ylmethyl)piperazine][ $\mu_2$ -4-(2-carboxylato-ethyl)benzoato]cobalt(II)]

## Frederick C. Ezenyilimba and Robert L. LaDuca

Poly[diaqua[ $\mu_2$ -1,4-bis(pyridin-3-ylmethyl)piperazine][ $\mu_2$ -4-(2-carboxylatoethyl)benzoato]cobalt(II)]

### Crystal data

 $\begin{bmatrix} \text{Co}(\text{C}_{10}\text{H}_8\text{O}_4)(\text{C}_{16}\text{H}_{20}\text{N}_4)(\text{H}_2\text{O})_2 \end{bmatrix}$   $M_r = 555.48$ Monoclinic,  $P2_1/n$  a = 8.792 (5) Å b = 11.674 (7) Å c = 24.976 (14) Å  $\beta = 92.06$  (2)° V = 2562 (2) Å<sup>3</sup> Z = 4

### Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8.36 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015)  $T_{\min} = 0.619, T_{\max} = 0.745$ 

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.064$  $wR(F^2) = 0.143$ S = 1.024662 reflections 336 parameters 0 restraints F(000) = 1164  $D_x = 1.440 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3606 reflections  $\theta = 2.4-25.2^{\circ}$   $\mu = 0.72 \text{ mm}^{-1}$  T = 173 KBlock, orange  $0.15 \times 0.14 \times 0.10 \text{ mm}$ 

18006 measured reflections 4662 independent reflections 2979 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.101$  $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 1.6^{\circ}$  $h = -10 \rightarrow 10$  $k = -14 \rightarrow 14$  $l = -29 \rightarrow 29$ 

Primary atom site location: dual Hydrogen site location: mixed H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0562P)^2 + 1.877P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.82$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.32$  e Å<sup>-3</sup>

### Special details

**Experimental**. Data was collected using a Bruker CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program *COSMO* (Bruker, 2009) where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using *SAINT* (Bruker, 2014) on all observed reflections. Data reduction was performed using the *SAINT* software, which corrects for Lorentz/polarization effects. Scaling and absorption corrections were applied using *SADABS* (Krause *et al.*, 2015). The structure was solved by the dual-space direct methods program *SHELXT* program and refined by least squares method on F<sup>2</sup> using *SHELXL*, called from within *OLEX2*.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. The structure was refined by Least Squares using version 2018/3 of *SHELXL* (Sheldrick, 2015) incorporated in *Olex2* (Dolomanov *et al.*, 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically.

|     | x           | у           | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|-------------|--------------|-----------------------------|--|
| Col | 0.53449 (7) | 0.34158 (5) | 0.92351 (2)  | 0.02444 (19)                |  |
| 01  | 0.6159 (4)  | 0.3598 (3)  | 0.84732 (12) | 0.0299 (8)                  |  |
| O2  | 0.7352 (4)  | 0.5298 (3)  | 0.85176 (12) | 0.0318 (8)                  |  |
| 03  | 0.9573 (3)  | 0.1845 (2)  | 0.50111 (12) | 0.0284 (8)                  |  |
| 04  | 0.9032 (4)  | 0.3718 (3)  | 0.49603 (14) | 0.0423 (9)                  |  |
| 05  | 0.4295 (4)  | 0.1859 (2)  | 0.89624 (13) | 0.0315 (8)                  |  |
| H5A | 0.338740    | 0.199708    | 0.880412     | 0.047*                      |  |
| H5B | 0.406879    | 0.142008    | 0.924053     | 0.047*                      |  |
| 06  | 0.6547 (3)  | 0.4905 (2)  | 0.95095 (12) | 0.0291 (8)                  |  |
| H6A | 0.591789    | 0.541260    | 0.965697     | 0.044*                      |  |
| H6B | 0.691265    | 0.529733    | 0.923306     | 0.044*                      |  |
| N1  | 0.3355 (4)  | 0.4453 (3)  | 0.90337 (15) | 0.0261 (9)                  |  |
| N2  | 0.3174 (4)  | 0.6616 (3)  | 0.76873 (15) | 0.0297 (9)                  |  |
| N3  | 0.3692 (4)  | 0.6242 (3)  | 0.65617 (15) | 0.0294 (9)                  |  |
| N4  | 0.7573 (4)  | 0.7512 (3)  | 0.55286 (15) | 0.0271 (9)                  |  |
| C1  | 0.3447 (5)  | 0.5353 (4)  | 0.87023 (18) | 0.0288 (11)                 |  |
| H1  | 0.441096    | 0.552813    | 0.856274     | 0.035*                      |  |
| C2  | 0.2216 (6)  | 0.6045 (4)  | 0.85506 (19) | 0.0312 (11)                 |  |
| C3  | 0.0823 (6)  | 0.5764 (4)  | 0.8761 (2)   | 0.0375 (13)                 |  |
| Н3  | -0.005592   | 0.620111    | 0.866441     | 0.045*                      |  |
| C4  | 0.0712 (6)  | 0.4852 (4)  | 0.9110 (2)   | 0.0400 (13)                 |  |
| H4  | -0.023554   | 0.466457    | 0.925921     | 0.048*                      |  |
| C5  | 0.1990 (6)  | 0.4222 (4)  | 0.9238 (2)   | 0.0352 (12)                 |  |
| Н5  | 0.191057    | 0.359847    | 0.948039     | 0.042*                      |  |
| C6  | 0.2433 (6)  | 0.7020 (4)  | 0.81655 (19) | 0.0332 (12)                 |  |
| H6C | 0.143248    | 0.735773    | 0.806241     | 0.040*                      |  |
| H6D | 0.306422    | 0.762289    | 0.834197     | 0.040*                      |  |
| C7  | 0.2151 (5)  | 0.5910 (4)  | 0.73545 (19) | 0.0328 (12)                 |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H7A  | 0.131568   | 0.638943   | 0.720073     | 0.039*      |
|------|------------|------------|--------------|-------------|
| H7B  | 0.169726   | 0.530620   | 0.757666     | 0.039*      |
| C8   | 0.3007 (6) | 0.5366 (4) | 0.6910(2)    | 0.0349 (12) |
| H8A  | 0.382057   | 0.486926   | 0.706547     | 0.042*      |
| H8B  | 0.230327   | 0.487942   | 0.669095     | 0.042*      |
| С9   | 0.4633 (5) | 0.7035 (4) | 0.6898 (2)   | 0.0323 (12) |
| H9A  | 0.501062   | 0.766223   | 0.667111     | 0.039*      |
| H9B  | 0.552679   | 0.661682   | 0.705098     | 0.039*      |
| C10  | 0.3739 (5) | 0.7538 (4) | 0.73472 (19) | 0.0302 (11) |
| H10A | 0.439769   | 0.805989   | 0.756493     | 0.036*      |
| H10B | 0.286994   | 0.798696   | 0.719593     | 0.036*      |
| C11  | 0.4631 (6) | 0.5622 (4) | 0.6176 (2)   | 0.0340 (12) |
| H11A | 0.397652   | 0.505599   | 0.598340     | 0.041*      |
| H11B | 0.542839   | 0.519076   | 0.638044     | 0.041*      |
| C12  | 0.5397 (5) | 0.6355 (4) | 0.57655 (19) | 0.0294 (11) |
| C13  | 0.4773 (6) | 0.6520 (4) | 0.5257 (2)   | 0.0379 (12) |
| H13  | 0.382732   | 0.617339   | 0.515730     | 0.045*      |
| C14  | 0.5520 (6) | 0.7189 (4) | 0.4891 (2)   | 0.0399 (13) |
| H14  | 0.508523   | 0.731996   | 0.454235     | 0.048*      |
| C15  | 0.6912 (6) | 0.7662 (4) | 0.5044 (2)   | 0.0363 (12) |
| H15  | 0.742439   | 0.811563   | 0.479093     | 0.044*      |
| C16  | 0.6830 (5) | 0.6862 (4) | 0.5880 (2)   | 0.0315 (12) |
| H16  | 0.729698   | 0.673734   | 0.622376     | 0.038*      |
| C17  | 0.6953 (5) | 0.4403 (4) | 0.82744 (18) | 0.0264 (11) |
| C18  | 0.7392 (5) | 0.4246 (4) | 0.77044 (19) | 0.0262 (11) |
| C19  | 0.7005 (5) | 0.3283 (4) | 0.74147 (19) | 0.0328 (12) |
| H19  | 0.645341   | 0.268996   | 0.758118     | 0.039*      |
| C20  | 0.7400 (6) | 0.3154 (4) | 0.6885 (2)   | 0.0380 (13) |
| H20  | 0.711348   | 0.247664   | 0.669637     | 0.046*      |
| C21  | 0.8213 (5) | 0.4006 (4) | 0.66270 (18) | 0.0294 (11) |
| C22  | 0.8622 (5) | 0.4969 (4) | 0.69193 (19) | 0.0278 (11) |
| H22  | 0.918031   | 0.555962   | 0.675365     | 0.033*      |
| C23  | 0.8237 (5) | 0.5091 (4) | 0.74467 (19) | 0.0281 (11) |
| H23  | 0.854886   | 0.575828   | 0.763897     | 0.034*      |
| C24  | 0.8544 (7) | 0.3947 (4) | 0.6038 (2)   | 0.0413 (14) |
| H24A | 0.764799   | 0.425468   | 0.583367     | 0.050*      |
| H24B | 0.940819   | 0.446660   | 0.597300     | 0.050*      |
| C25  | 0.8912 (6) | 0.2806 (4) | 0.5808 (2)   | 0.0408 (13) |
| H25A | 0.805773   | 0.227804   | 0.587420     | 0.049*      |
| H25B | 0.982430   | 0.250048   | 0.600364     | 0.049*      |
| C26  | 0.9205 (5) | 0.2796 (4) | 0.52184 (19) | 0.0295 (11) |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| Co1 | 0.0261 (3)  | 0.0250 (3)  | 0.0225 (3)  | 0.0008 (3)   | 0.0044 (3)  | 0.0005 (3)   |
| 01  | 0.0378 (19) | 0.0258 (18) | 0.0265 (18) | -0.0025 (15) | 0.0079 (15) | -0.0003 (14) |
| 02  | 0.035 (2)   | 0.0297 (19) | 0.0307 (19) | -0.0084 (15) | 0.0075 (16) | -0.0053 (15) |

| O3  | 0.0359 (19) | 0.0250 (18) | 0.0247 (17) | -0.0018 (15) | 0.0067 (15)  | -0.0028 (14) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| O4  | 0.066 (3)   | 0.026 (2)   | 0.035 (2)   | 0.0050 (17)  | 0.0016 (19)  | -0.0022 (16) |
| O5  | 0.0353 (19) | 0.0271 (18) | 0.0321 (19) | -0.0044 (15) | 0.0036 (15)  | 0.0026 (14)  |
| O6  | 0.0328 (19) | 0.0280 (18) | 0.0269 (19) | 0.0002 (14)  | 0.0068 (15)  | 0.0006 (14)  |
| N1  | 0.023 (2)   | 0.029 (2)   | 0.027 (2)   | 0.0016 (17)  | -0.0019 (17) | 0.0027 (17)  |
| N2  | 0.031 (2)   | 0.029 (2)   | 0.029 (2)   | -0.0005 (19) | -0.0005 (18) | 0.0021 (19)  |
| N3  | 0.031 (2)   | 0.023 (2)   | 0.033 (2)   | -0.0023 (17) | 0.0009 (19)  | 0.0033 (17)  |
| N4  | 0.028 (2)   | 0.025 (2)   | 0.028 (2)   | 0.0009 (18)  | 0.0041 (19)  | -0.0009 (17) |
| C1  | 0.030 (3)   | 0.030 (3)   | 0.027 (3)   | 0.003 (2)    | -0.001 (2)   | 0.001 (2)    |
| C2  | 0.037 (3)   | 0.028 (3)   | 0.028 (3)   | 0.001 (2)    | -0.001 (2)   | -0.003 (2)   |
| C3  | 0.026 (3)   | 0.042 (3)   | 0.044 (3)   | 0.005 (2)    | -0.001 (2)   | 0.003 (3)    |
| C4  | 0.029 (3)   | 0.048 (3)   | 0.044 (3)   | -0.001 (3)   | 0.005 (2)    | 0.006 (3)    |
| C5  | 0.035 (3)   | 0.035 (3)   | 0.035 (3)   | -0.006 (2)   | -0.001 (2)   | 0.003 (2)    |
| C6  | 0.031 (3)   | 0.034 (3)   | 0.034 (3)   | 0.001 (2)    | -0.005 (2)   | 0.001 (2)    |
| C7  | 0.031 (3)   | 0.030 (3)   | 0.037 (3)   | -0.007 (2)   | 0.000 (2)    | 0.001 (2)    |
| C8  | 0.033 (3)   | 0.027 (3)   | 0.044 (3)   | -0.011 (2)   | 0.000 (2)    | 0.003 (2)    |
| C9  | 0.027 (3)   | 0.029 (3)   | 0.041 (3)   | -0.006 (2)   | -0.002 (2)   | 0.005 (2)    |
| C10 | 0.032 (3)   | 0.025 (3)   | 0.033 (3)   | -0.007 (2)   | -0.006 (2)   | 0.003 (2)    |
| C11 | 0.033 (3)   | 0.028 (3)   | 0.041 (3)   | 0.003 (2)    | 0.002 (2)    | 0.001 (2)    |
| C12 | 0.030 (3)   | 0.019 (2)   | 0.039 (3)   | 0.002 (2)    | 0.004 (2)    | -0.003 (2)   |
| C13 | 0.030 (3)   | 0.041 (3)   | 0.042 (3)   | -0.006 (3)   | 0.002 (2)    | -0.006 (3)   |
| C14 | 0.037 (3)   | 0.051 (3)   | 0.031 (3)   | -0.003 (3)   | -0.004 (3)   | 0.001 (3)    |
| C15 | 0.036 (3)   | 0.036 (3)   | 0.037 (3)   | 0.000 (2)    | 0.000 (3)    | 0.005 (2)    |
| C16 | 0.033 (3)   | 0.030 (3)   | 0.032 (3)   | 0.006 (2)    | -0.002 (2)   | 0.003 (2)    |
| C17 | 0.021 (3)   | 0.032 (3)   | 0.026 (3)   | 0.005 (2)    | 0.002 (2)    | 0.001 (2)    |
| C18 | 0.025 (3)   | 0.023 (2)   | 0.031 (3)   | 0.003 (2)    | 0.002 (2)    | 0.000 (2)    |
| C19 | 0.040 (3)   | 0.029 (3)   | 0.030 (3)   | -0.007 (2)   | 0.004 (2)    | 0.008 (2)    |
| C20 | 0.050 (3)   | 0.033 (3)   | 0.031 (3)   | -0.009 (2)   | 0.004 (3)    | -0.007 (2)   |
| C21 | 0.034 (3)   | 0.028 (3)   | 0.026 (3)   | 0.003 (2)    | 0.001 (2)    | -0.001 (2)   |
| C22 | 0.025 (3)   | 0.029 (3)   | 0.029 (3)   | -0.004 (2)   | 0.004 (2)    | 0.005 (2)    |
| C23 | 0.029 (3)   | 0.023 (3)   | 0.032 (3)   | -0.002 (2)   | -0.001 (2)   | -0.002 (2)   |
| C24 | 0.062 (4)   | 0.030 (3)   | 0.032 (3)   | -0.009 (3)   | 0.009 (3)    | -0.003 (2)   |
| C25 | 0.048 (3)   | 0.042 (3)   | 0.033 (3)   | 0.008 (3)    | 0.005 (3)    | 0.001 (2)    |
| C26 | 0.023 (3)   | 0.039 (3)   | 0.026 (3)   | -0.003 (2)   | 0.002 (2)    | -0.005 (2)   |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| Col—Ol               | 2.068 (3) | C7—C8    | 1.504 (7) |  |
|----------------------|-----------|----------|-----------|--|
| Co1—O3 <sup>i</sup>  | 2.099 (3) | C8—H8A   | 0.9900    |  |
| Co1—O5               | 2.138 (3) | C8—H8B   | 0.9900    |  |
| Co1—O6               | 2.135 (3) | С9—Н9А   | 0.9900    |  |
| Co1—N1               | 2.172 (4) | C9—H9B   | 0.9900    |  |
| Co1—N4 <sup>ii</sup> | 2.176 (4) | C9—C10   | 1.513 (6) |  |
| O1—C17               | 1.282 (5) | C10—H10A | 0.9900    |  |
| O2—C17               | 1.252 (5) | C10—H10B | 0.9900    |  |
| O3—C26               | 1.272 (5) | C11—H11A | 0.9900    |  |
| O4—C26               | 1.261 (6) | C11—H11B | 0.9900    |  |
| O5—H5A               | 0.8924    | C11—C12  | 1.511 (6) |  |
|                      |           |          |           |  |

| O5—H5B                                | 0.8915      | C12—C13                    | 1.378 (7) |
|---------------------------------------|-------------|----------------------------|-----------|
| O6—H6A                                | 0.8985      | C12—C16                    | 1.412 (7) |
| O6—H6B                                | 0.8977      | C13—H13                    | 0.9500    |
| N1—C1                                 | 1.342 (6)   | C13—C14                    | 1.386 (7) |
| N1—C5                                 | 1.349 (6)   | C14—H14                    | 0.9500    |
| N2—C6                                 | 1.459 (6)   | C14—C15                    | 1.384 (7) |
| N2—C7                                 | 1.458 (6)   | C15—H15                    | 0.9500    |
| N2—C10                                | 1.469 (6)   | C16—H16                    | 0.9500    |
| N3—C8                                 | 1.484 (6)   | C17—C18                    | 1.500(6)  |
| N3—C9                                 | 1.482 (6)   | C18—C19                    | 1.373 (6) |
| N3—C11                                | 1.480 (6)   | C18—C23                    | 1.406 (6) |
| N4—C15                                | 1.336 (6)   | C19—H19                    | 0.9500    |
| N4—C16                                | 1.346 (6)   | C19—C20                    | 1.387 (6) |
| C1—H1                                 | 0.9500      | C20—H20                    | 0.9500    |
| C1C2                                  | 1,393 (6)   | C20—C21                    | 1.397 (7) |
| C2—C3                                 | 1.389 (7)   | C21—C22                    | 1.381 (6) |
| C2C6                                  | 1.507 (7)   | C21—C24                    | 1.512 (7) |
| С3—Н3                                 | 0.9500      | C22—H22                    | 0.9500    |
| C3-C4                                 | 1,383(7)    | $C^{22}$ $C^{23}$          | 1 379 (6) |
| C4—H4                                 | 0.9500      | C23—H23                    | 0.9500    |
| C4—C5                                 | 1.371(7)    | C24—H24A                   | 0.9900    |
| С5—Н5                                 | 0.9500      | C24—H24B                   | 0.9900    |
| С6—Н6С                                | 0.9900      | $C^{24}$                   | 1 490 (7) |
| С6—Н6Д                                | 0.9900      | C25—H25A                   | 0.9900    |
| С7—Н7А                                | 0.9900      | C25—H25B                   | 0.9900    |
| C7—H7B                                | 0.9900      | $C_{25} = C_{26}$          | 1.505(7)  |
|                                       | 0.7700      | 025 020                    | 1.505 (7) |
| 01—Co1—O3 <sup>i</sup>                | 177.25 (12) | N3—C9—H9B                  | 109.3     |
| O1—Co1—O5                             | 87.36 (12)  | N3—C9—C10                  | 111.6 (4) |
| O1—Co1—O6                             | 91.60 (12)  | H9A—C9—H9B                 | 108.0     |
| O1—Co1—N1                             | 91.83 (14)  | С10—С9—Н9А                 | 109.3     |
| O1—Co1—N4 <sup>ii</sup>               | 89.08 (14)  | C10—C9—H9B                 | 109.3     |
| O3 <sup>i</sup> —Co1—O5               | 91.19 (12)  | N2—C10—C9                  | 109.9 (4) |
| O3 <sup>i</sup> —Co1—O6               | 89.69 (12)  | N2—C10—H10A                | 109.7     |
| O3 <sup>i</sup> —Co1—N1               | 90.59 (13)  | N2-C10-H10B                | 109.7     |
| O3 <sup>i</sup> —Co1—N4 <sup>ii</sup> | 88.62 (13)  | C9—C10—H10A                | 109.7     |
| O5—Co1—N1                             | 93.73 (14)  | C9—C10—H10B                | 109.7     |
| 05—Co1—N4 <sup>ii</sup>               | 91.36 (14)  | H10A—C10—H10B              | 108.2     |
| O6—Co1—O5                             | 175.84 (12) | N3—C11—H11A                | 108.3     |
| 06—Co1—N1                             | 90.33 (14)  | N3—C11—H11B                | 108.3     |
| $O6-Co1-N4^{ii}$                      | 84.59 (13)  | $N_{3}$ —C11—C12           | 115.9 (4) |
| N1—Co1—N4 <sup>ii</sup>               | 174.87 (14) | H11A—C11—H11B              | 107.4     |
| C17-O1-Co1                            | 130.0 (3)   | C12—C11—H11A               | 108.3     |
| C26-03-Co1 <sup>iii</sup>             | 126.7 (3)   | C12—C11—H11B               | 108.3     |
| Co1-05-H5A                            | 110.9       | $C_{13}$ $C_{12}$ $C_{11}$ | 122 1 (4) |
| Co1-05-H5B                            | 110.3       | C13 - C12 - C16            | 1167(4)   |
| H5A-05-H5B                            | 103.2       | $C_{16}$ $C_{12}$ $C_{11}$ | 121.1(4)  |
| Co1-O6-H6A                            | 111.3       | C12—C13—H13                | 119.8     |
|                                       |             |                            |           |

| Co1—O6—H6B            | 110.8     | C12—C13—C14   | 120.3 (5) |
|-----------------------|-----------|---------------|-----------|
| H6A—O6—H6B            | 102.8     | C14—C13—H13   | 119.8     |
| C1—N1—Co1             | 120.9 (3) | C13—C14—H14   | 120.7     |
| C1—N1—C5              | 117.7 (4) | C15—C14—C13   | 118.5 (5) |
| C5—N1—Co1             | 121.4 (3) | C15—C14—H14   | 120.7     |
| C6—N2—C10             | 114.0 (4) | N4—C15—C14    | 123.3 (5) |
| C7—N2—C6              | 111.4 (4) | N4—C15—H15    | 118.3     |
| C7—N2—C10             | 107.4 (4) | C14—C15—H15   | 118.3     |
| C9—N3—C8              | 109.2 (4) | N4—C16—C12    | 123.7 (4) |
| C11—N3—C8             | 107.0 (4) | N4—C16—H16    | 118.2     |
| C11—N3—C9             | 111.1 (4) | С12—С16—Н16   | 118.2     |
| $C15$ —N4— $Co1^{iv}$ | 121.1 (3) | 01-C17-C18    | 116.1 (4) |
| C15 - N4 - C16        | 117.3 (4) | 02-C17-01     | 124.8 (4) |
| $C16$ —N4— $Co1^{iv}$ | 121.3 (3) | 02-C17-C18    | 119.0 (4) |
| N1—C1—H1              | 118.0     | C19—C18—C17   | 122.2 (4) |
| N1—C1—C2              | 123.9 (4) | C19—C18—C23   | 117.3 (4) |
| C2—C1—H1              | 118.0     | C23—C18—C17   | 120.5 (4) |
| C1—C2—C6              | 119.8 (4) | С18—С19—Н19   | 119.1     |
| C3—C2—C1              | 116.6 (4) | C18—C19—C20   | 121.7 (4) |
| C3—C2—C6              | 123.6 (4) | С20—С19—Н19   | 119.1     |
| С2—С3—Н3              | 119.9     | С19—С20—Н20   | 119.6     |
| C4—C3—C2              | 120.3 (5) | C19—C20—C21   | 120.8 (4) |
| С4—С3—Н3              | 119.9     | C21—C20—H20   | 119.6     |
| C3—C4—H4              | 120.5     | C20—C21—C24   | 122.5 (4) |
| C5—C4—C3              | 119.0 (5) | C22—C21—C20   | 117.6 (4) |
| C5—C4—H4              | 120.5     | C22—C21—C24   | 119.8 (4) |
| N1—C5—C4              | 122.5 (5) | C21—C22—H22   | 119.3     |
| N1—C5—H5              | 118.8     | C23—C22—C21   | 121.4 (4) |
| С4—С5—Н5              | 118.8     | C23—C22—H22   | 119.3     |
| N2—C6—C2              | 110.4 (4) | C18—C23—H23   | 119.4     |
| N2—C6—H6C             | 109.6     | C22—C23—C18   | 121.1 (4) |
| N2—C6—H6D             | 109.6     | С22—С23—Н23   | 119.4     |
| С2—С6—Н6С             | 109.6     | C21—C24—H24A  | 107.8     |
| C2—C6—H6D             | 109.6     | C21—C24—H24B  | 107.8     |
| H6C—C6—H6D            | 108.1     | H24A—C24—H24B | 107.2     |
| N2—C7—H7A             | 109.6     | C25—C24—C21   | 117.8 (4) |
| N2—C7—H7B             | 109.6     | C25—C24—H24A  | 107.8     |
| N2—C7—C8              | 110.2 (4) | C25—C24—H24B  | 107.8     |
| H7A—C7—H7B            | 108.1     | С24—С25—Н25А  | 108.4     |
| С8—С7—Н7А             | 109.6     | С24—С25—Н25В  | 108.4     |
| С8—С7—Н7В             | 109.6     | C24—C25—C26   | 115.5 (4) |
| N3—C8—C7              | 111.5 (4) | H25A—C25—H25B | 107.5     |
| N3—C8—H8A             | 109.3     | C26—C25—H25A  | 108.4     |
| N3—C8—H8B             | 109.3     | C26—C25—H25B  | 108.4     |
| С7—С8—Н8А             | 109.3     | O3—C26—C25    | 117.4 (4) |
| С7—С8—Н8В             | 109.3     | O4—C26—O3     | 124.4 (4) |

| H8A—C8—H8B | 108.0 | O4—C26—C25 | 118.2 (4) |
|------------|-------|------------|-----------|
| N3—C9—H9A  | 109.3 |            |           |

Symmetry codes: (i) x-1/2, -y+1/2, z+1/2; (ii) -x+3/2, y-1/2, -z+3/2; (iii) x+1/2, -y+1/2, z-1/2; (iv) -x+3/2, y+1/2, -z+3/2.

# Hydrogen-bond geometry (Å, °)

| D—H···A                           | D—H  | Н…А  | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------------------|------|------|-----------|-------------------------|
| O5—H5 <i>A</i> ···N3 <sup>v</sup> | 0.89 | 2.20 | 2.980 (5) | 146                     |
| O5—H5 <i>B</i> ···O4 <sup>i</sup> | 0.89 | 1.81 | 2.600 (5) | 147                     |
| O6—H6A···O3 <sup>iv</sup>         | 0.90 | 1.92 | 2.760 (4) | 154                     |
| O6—H6 <i>B</i> ···O2              | 0.90 | 1.84 | 2.641 (4) | 147                     |

Symmetry codes: (i) x-1/2, -y+1/2, z+1/2; (iv) -x+3/2, y+1/2, -z+3/2; (v) -x+1/2, y-1/2, -z+3/2.