organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 4-[(2-hy­dr­oxy­eth­yl)amino]-2-(4-meth­oxyphen­yl)-1-methyl-5-oxo-2,5-di­hydro-1H-pyrrole-3-carboxyl­ate

crossmark logo

aCentre of Chemical Synthesis & Polymer Technology, Institute of Science, Universiti Teknologi MARA Puncak Alam, 42300 Puncak Alam, Selangor, Malaysia, bFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and cEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: mohdfazli@uitm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 4 December 2024; accepted 18 December 2024; online 20 December 2024)

In the title compound, C17H22N2O5 the pyrrolidine ring is almost planar and subtends a dihedral angle of 85.77 (7)° with the pendant phenyl ring. An intra­molecular N—H⋯O hydrogen bond generates an S(6) loop. In the crystal, the compound forms inversion dimers through O—H⋯O hydrogen bonds from the disordered hydroxyl group to either the hydroxyl or ester carbonyl O atom of the adjacent mol­ecule.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mol­ecules bearing a γ-lactam moiety are receiving attention from researchers since examples of these compounds have been shown to exhibit potential medicinal uses, for example to inhibit the proteasome in cancer therapy (Ōmura & Crump, 2019[Ōmura, S. & Crump, A. (2019). J. Antibiot. 72, 189-201.]), or to act as a potent inhibitor against methicillin-resistant Staphylococcus aureus (Miranda et al., 2018[Miranda, A. C., Barbosa, L. C., Masood, M. A., Varejão, J. O. S., Sordi, M., Benfatti, C. A. & Pimenta, A. L. (2018). ACS Omega, 3, 18475-18480.]; Wang et al., 2020[Wang, C., Wu, X., Bai, H., Zaman, K. A. U., Hou, S., Saito, J., Wongwiwatthananukit, S., Kim, K. S. & Cao, S. (2020). J. Nat. Prod. 83, 2233-2240.]; Chen et al., 2022[Chen, X. M., Lu, W., Zhang, Z. H., Zhang, J. Y., Tuong, T. M. L., Liu, L. L., Kim, Y. H., Li, C. H. & Gao, J. M. (2022). Phytochemistry, 196, 113082.]). A facile method to prepare γ-lactams from readily available starting materials via one-pot multicomponent reactions has been reported in the literature (Metten et al., 2006[Metten, B., Kostermans, M., Van Baelen, G., Smet, M. & Dehaen, W. (2006). Tetrahedron, 62, 6018-6028.]): these versatile precursors contain numerous functionalities that can be modified and transformed to other useful inter­mediates. In our previous work, a γ-lactam precursor was subjected to a Leuckart-type reaction (Rashid et al., 2020[Rashid, F. N. A. A., Mohammat, M. F., Bouchamma, F. E., Shaameri, Z. & Hamzah, A. S. (2020). Russ. J. Org. Chem. 56, 1082-1088.]) and herein we report the crystal structure of the title compound.

The title compound, C17H22N2O5, crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit (Fig. 1[link]). The five-membered pyrrolidine ring (C2–C5/N1) adopts a near planar conformation (r.m.s. deviation from planarity = 0.003 Å), with meth­oxy­benzene, ethyl ester and hy­droxy­ethyl amino substitutions at the 2, 3 and 4 ring positions, respectively. The dihedral angle between the pyrrolidine and phenyl rings is 85.77 (7)° and the N19—C20—C21—O22 torsion angle is −65.47 (16)°. The configuration of atom C2 in the asymmetric unit is R but crystal symmetry generates a racemic mixture. A weak intra­molecular N19—H19⋯O15 hydrogen bond (Table 1[link]) occurs, which closes an S(6) ring. A similar feature was observed in the structure of ethyl 1-(2-hy­droxy­eth­yl)-4-[(4-meth­oxy­phen­yl)amino]-5-oxo-2,5-di­hydro-1H-pyrrole-3-carboxyl­ate (Abdul Rashid et al., 2023[Abdul Rashid, F. N. A., Bacho, M. Z., Slawin, A. M., Abdul Manan, M. A. F., Johari, S. A. & Mohammat, M. F. (2023). Z. Kristallogr. New Cryst. Struct. 238, 113-115.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N19—H19⋯O15 0.92 (1) 2.19 (2) 2.8595 (15) 129 (2)
O22—H22A⋯O15i 0.98 (1) 2.08 (2) 3.0131 (16) 157 (4)
O22—H22B⋯O22i 0.98 (2) 1.83 (2) 2.796 (2) 167 (4)
C6—H6B⋯O22ii 0.98 2.57 3.4152 (18) 144
C8—H8⋯O13iii 0.95 2.34 3.2556 (17) 162
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x, y+1, z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Both orientations of the disordered hydroxyl hydrogen atom are shown.

The terminal hydroxyl group of the hy­droxy­ethyl amino moiety exhibits positional disorder of its hydrogen atom. Both positions correspond to inter­molecular O—H⋯O hydrogen bonds to either the hydroxyl (O22) or ester carbonyl (O15) oxygen atom, of a neighbouring mol­ecule thereby forming R22(11) rings that are either ‘anti-clockwise’ or ‘clockwise’ (Fig. 2[link]). These dimers pack into the overall structure through a variety of weak C—H⋯O non-classical hydrogen bonds (Table 1[link]).

[Figure 2]
Figure 2
View of the supra­molecular dimers with both N—H⋯O intra­molecular and O—H⋯O inter­molecular hydrogen bonds. The disordered hydroxyl hydrogen atoms are shown in the ‘anti-clockwise’ conformation with the green dashed lines indicating the alternate ‘clockwise’ hydrogen-bonding scheme.

Synthesis and crystallization

The γ-lactam precursor, ethyl 4-hy­droxy-2-(4-meth­oxy­phen­yl)-1-methyl-5-oxo-2,5-di­hydro-1H-pyrrole-3-carboxyl­ate was synthesized following the reported method for related compounds (Rashid et al., 2020[Rashid, F. N. A. A., Mohammat, M. F., Bouchamma, F. E., Shaameri, Z. & Hamzah, A. S. (2020). Russ. J. Org. Chem. 56, 1082-1088.]). The title compound was prepared by adding ethano­lamine (0.25 ml, 4.12 mmol) to a solution of the γ-lactam precursor (1.00 g, 3.43 mmol) and formic acid (0.21 ml, 5.49 mmol) in ethanol (25 ml) and allowed to reflux for 12 h. After completion of the reaction, the solution was removed in vacuo and the crude product was dissolved in ethyl acetate, which was washed with water. The combined organic layers were dried over anhydrous MgSO4 before being concentrated under reduced pressure to yield a solid precipitate. Further washing of the precipitate with diethyl ether furnished the title compound as a dark-yellow solid (yield: 0.69 g, 60%). m.p. 89–90°C; IR (KBr, ν, cm−1): 3478 (NH), 1692 (C=O), 1621 (C=C), 1242 (C—N); 1H NMR (400 MHz, CDCl3 -d1) δ 7.03 (d, J = 8.7 Hz, 2H, CHAr), 6.80 (d, J = 8.7 Hz, 2H, CHAr), 4.87 (s, 1H, ArCHNCH3), 4.10–3.90 (m, 4H, OCH2 & CH2OH), 3.76–3.74 (m, 5H, OCH3 & NHCH2), 2.70 (s, 3H, NCH3), 1.01 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3 -d1) δ 165.9 (C=O), 165.5 (C=O), 159.4 (quat. ArC), 147.6 (C—N), 129.0 (CHAr), 128.8 (quat. ArC), 113.8 (CHAr), 103.6 (CCO), 63.4 (CH2OH), 63.2 (OCH3), 59.5 (OCH2), 55.3 (ArCHNCH3), 44.6 (NHCH2), 27.6 (NCH3), 14.1 (CH3); CHN: found C, 59.64; H, 6.54; N, 7.74 requires C, 61.07; H, 6.63; N, 8.38%; LCMS (ESI): calculated for C17H22N2O5 357.1 [M + Na]+, found 357.1. Crystals suitable for X-ray diffraction were grown by slow evaporation of an ethyl acetate solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N– and O-bound hydrogen atoms were located in a difference map and refined isotropically with distance restraints. The OH hydrogen atom was found to be disordered over two positions, its occupancy was fixed at 1/2, with Ueq riding on the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C17H22N2O5
Mr 334.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.17216 (8), 9.24320 (6), 17.64603 (14)
β (°) 101.5111 (8)
V3) 1625.77 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.84
Crystal size (mm) 0.09 × 0.07 × 0.01
 
Data collection
Diffractometer Rigaku XtaLAB P200K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.735, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 57922, 3336, 3074
Rint 0.071
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.06
No. of reflections 3336
No. of parameters 230
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Ethyl 4-[(2-hydroxyethyl)amino]-2-(4-methoxyphenyl)-1-methyl-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate top
Crystal data top
C17H22N2O5F(000) = 712
Mr = 334.36Dx = 1.366 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.17216 (8) ÅCell parameters from 26738 reflections
b = 9.24320 (6) Åθ = 4.6–75.3°
c = 17.64603 (14) ŵ = 0.84 mm1
β = 101.5111 (8)°T = 100 K
V = 1625.77 (2) Å3Plate, colourless
Z = 40.09 × 0.07 × 0.01 mm
Data collection top
Rigaku XtaLAB P200K
diffractometer
3336 independent reflections
Radiation source: Rotating Anode, Rigaku MM-007HF3074 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.071
Detector resolution: 5.8140 pixels mm-1θmax = 75.6°, θmin = 4.7°
shutterless scansh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2024)
k = 1111
Tmin = 0.735, Tmax = 1.000l = 2222
57922 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.7868P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3336 reflectionsΔρmax = 0.28 e Å3
230 parametersΔρmin = 0.27 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were placed in calculated positions except the on hydroxyl and amine groups (N19 and O22) which were located from Fmap and refined subject to distance restraints and the Ueq of the hydroxyl hydrogens riding on O22. Hydrogens on O22 were observed in two distinct hydrogen bonding locations, both of which are modelled with occupancy fixed at 0.5 and H22B in part -1 as it was orientated towards a symmetry related H22B—O22.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O50.34109 (10)0.32829 (11)0.29196 (6)0.0283 (2)
O130.93989 (10)0.92848 (11)0.31984 (6)0.0289 (2)
O150.80294 (10)0.22664 (11)0.49182 (6)0.0316 (3)
O160.80905 (9)0.46054 (10)0.52944 (5)0.0236 (2)
O220.40444 (12)0.06392 (13)0.44164 (6)0.0394 (3)
H22A0.321 (2)0.096 (5)0.457 (2)0.059*0.5
H22B0.480 (4)0.017 (5)0.477 (2)0.059*0.5
N10.45573 (11)0.51525 (12)0.36200 (7)0.0223 (2)
N190.57207 (12)0.15014 (12)0.37782 (7)0.0229 (3)
H190.6474 (15)0.1133 (19)0.4098 (10)0.035 (5)*
C20.57805 (13)0.54035 (14)0.42004 (7)0.0201 (3)
H20.5533840.5750740.4690320.024*
C30.63422 (13)0.38870 (14)0.43190 (7)0.0203 (3)
C40.55360 (13)0.29314 (14)0.38504 (7)0.0202 (3)
C50.43611 (13)0.37609 (15)0.33929 (8)0.0218 (3)
C60.36725 (14)0.63225 (15)0.32925 (9)0.0273 (3)
H6A0.4106810.6900470.2946760.041*
H6B0.3481310.6937500.3709830.041*
H6C0.2831860.5919640.2999790.041*
C70.67047 (13)0.64984 (14)0.39345 (7)0.0200 (3)
C80.70629 (14)0.63505 (15)0.32152 (8)0.0247 (3)
H80.6702040.5577120.2883500.030*
C90.79374 (14)0.73181 (16)0.29807 (8)0.0266 (3)
H90.8162020.7218650.2485900.032*
C100.84893 (13)0.84382 (14)0.34690 (8)0.0226 (3)
C110.81191 (14)0.86208 (14)0.41785 (8)0.0235 (3)
H110.8473410.9400020.4507700.028*
C120.72214 (13)0.76474 (14)0.44028 (8)0.0221 (3)
H120.6959730.7775710.4886030.027*
C141.00316 (18)1.03976 (19)0.36932 (11)0.0411 (4)
H14A1.0627761.0951040.3428620.062*
H14B1.0556170.9968040.4165850.062*
H14C0.9348201.1042890.3827110.062*
C150.75500 (13)0.34857 (14)0.48560 (7)0.0212 (3)
C170.93178 (14)0.43252 (15)0.58571 (8)0.0245 (3)
H17A1.0037090.3987230.5595860.029*
H17B0.9163990.3578270.6232000.029*
C180.96974 (15)0.57457 (16)0.62607 (8)0.0301 (3)
H18A0.9824300.6477200.5879740.045*
H18B1.0533410.5627750.6642540.045*
H18C0.8981220.6056100.6522380.045*
C200.47715 (15)0.04845 (15)0.33305 (8)0.0267 (3)
H20A0.5252090.0419220.3255560.032*
H20B0.4419950.0904150.2813570.032*
C210.36072 (16)0.01227 (17)0.37099 (8)0.0304 (3)
H21A0.3152230.1027080.3813470.036*
H21B0.2951030.0476980.3353900.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0270 (5)0.0245 (5)0.0287 (5)0.0031 (4)0.0058 (4)0.0000 (4)
O130.0292 (5)0.0295 (5)0.0276 (5)0.0053 (4)0.0047 (4)0.0077 (4)
O150.0321 (6)0.0207 (5)0.0361 (6)0.0034 (4)0.0076 (4)0.0020 (4)
O160.0247 (5)0.0208 (5)0.0222 (5)0.0009 (4)0.0028 (4)0.0002 (4)
O220.0470 (7)0.0409 (6)0.0277 (6)0.0162 (5)0.0015 (5)0.0051 (5)
N10.0201 (5)0.0198 (6)0.0251 (6)0.0000 (4)0.0000 (4)0.0006 (4)
N190.0243 (6)0.0181 (5)0.0240 (6)0.0011 (4)0.0007 (5)0.0002 (4)
C20.0211 (6)0.0192 (6)0.0189 (6)0.0005 (5)0.0015 (5)0.0004 (5)
C30.0228 (6)0.0191 (6)0.0189 (6)0.0016 (5)0.0037 (5)0.0007 (5)
C40.0219 (6)0.0207 (6)0.0180 (6)0.0015 (5)0.0043 (5)0.0019 (5)
C50.0224 (6)0.0205 (6)0.0220 (6)0.0010 (5)0.0034 (5)0.0019 (5)
C60.0244 (7)0.0223 (7)0.0327 (7)0.0031 (5)0.0000 (6)0.0026 (6)
C70.0202 (6)0.0184 (6)0.0198 (6)0.0018 (5)0.0004 (5)0.0018 (5)
C80.0293 (7)0.0234 (7)0.0202 (6)0.0025 (6)0.0020 (5)0.0028 (5)
C90.0305 (7)0.0307 (7)0.0191 (6)0.0009 (6)0.0059 (5)0.0020 (5)
C100.0217 (6)0.0208 (6)0.0237 (6)0.0010 (5)0.0008 (5)0.0075 (5)
C110.0259 (7)0.0188 (6)0.0237 (6)0.0016 (5)0.0000 (5)0.0013 (5)
C120.0247 (7)0.0211 (6)0.0200 (6)0.0006 (5)0.0033 (5)0.0006 (5)
C140.0409 (9)0.0382 (9)0.0460 (9)0.0194 (7)0.0129 (7)0.0030 (7)
C150.0235 (6)0.0199 (6)0.0203 (6)0.0035 (5)0.0042 (5)0.0012 (5)
C170.0222 (7)0.0261 (7)0.0224 (6)0.0003 (5)0.0020 (5)0.0021 (5)
C180.0309 (8)0.0290 (8)0.0268 (7)0.0033 (6)0.0026 (6)0.0018 (6)
C200.0316 (7)0.0222 (7)0.0239 (7)0.0022 (6)0.0004 (6)0.0030 (5)
C210.0356 (8)0.0259 (7)0.0285 (7)0.0056 (6)0.0037 (6)0.0017 (6)
Geometric parameters (Å, º) top
O5—C51.2267 (16)C7—C81.3955 (19)
O13—C101.3684 (16)C7—C121.3833 (18)
O13—C141.4178 (19)C8—H80.9500
O15—C151.2242 (17)C8—C91.382 (2)
O16—C151.3424 (16)C9—H90.9500
O16—C171.4549 (15)C9—C101.392 (2)
O22—H22A0.983 (5)C10—C111.3879 (19)
O22—H22B0.983 (19)C11—H110.9500
O22—C211.4236 (18)C11—C121.3944 (19)
N1—C21.4636 (16)C12—H120.9500
N1—C51.3502 (17)C14—H14A0.9800
N1—C61.4512 (17)C14—H14B0.9800
N19—H190.922 (14)C14—H14C0.9800
N19—C41.3447 (17)C17—H17A0.9900
N19—C201.4613 (17)C17—H17B0.9900
C2—H21.0000C17—C181.507 (2)
C2—C31.5124 (18)C18—H18A0.9800
C2—C71.5180 (18)C18—H18B0.9800
C3—C41.3659 (18)C18—H18C0.9800
C3—C151.4423 (18)C20—H20A0.9900
C4—C51.5109 (18)C20—H20B0.9900
C6—H6A0.9800C20—C211.510 (2)
C6—H6B0.9800C21—H21A0.9900
C6—H6C0.9800C21—H21B0.9900
C10—O13—C14117.09 (11)O13—C10—C11124.70 (12)
C15—O16—C17116.94 (10)C11—C10—C9120.04 (12)
H22A—O22—H22B125 (4)C10—C11—H11120.4
C21—O22—H22A105 (3)C10—C11—C12119.25 (12)
C21—O22—H22B114 (3)C12—C11—H11120.4
C5—N1—C2114.42 (11)C7—C12—C11121.20 (12)
C5—N1—C6123.27 (11)C7—C12—H12119.4
C6—N1—C2122.25 (11)C11—C12—H12119.4
C4—N19—H19114.8 (12)O13—C14—H14A109.5
C4—N19—C20126.42 (12)O13—C14—H14B109.5
C20—N19—H19118.2 (12)O13—C14—H14C109.5
N1—C2—H2109.3H14A—C14—H14B109.5
N1—C2—C3101.24 (10)H14A—C14—H14C109.5
N1—C2—C7112.45 (10)H14B—C14—H14C109.5
C3—C2—H2109.3O15—C15—O16123.23 (12)
C3—C2—C7114.87 (11)O15—C15—C3124.58 (12)
C7—C2—H2109.3O16—C15—C3112.19 (11)
C4—C3—C2110.54 (11)O16—C17—H17A110.6
C4—C3—C15124.14 (12)O16—C17—H17B110.6
C15—C3—C2125.31 (11)O16—C17—C18105.76 (11)
N19—C4—C3127.92 (13)H17A—C17—H17B108.7
N19—C4—C5123.97 (12)C18—C17—H17A110.6
C3—C4—C5108.10 (11)C18—C17—H17B110.6
O5—C5—N1126.51 (13)C17—C18—H18A109.5
O5—C5—C4127.79 (12)C17—C18—H18B109.5
N1—C5—C4105.69 (11)C17—C18—H18C109.5
N1—C6—H6A109.5H18A—C18—H18B109.5
N1—C6—H6B109.5H18A—C18—H18C109.5
N1—C6—H6C109.5H18B—C18—H18C109.5
H6A—C6—H6B109.5N19—C20—H20A108.9
H6A—C6—H6C109.5N19—C20—H20B108.9
H6B—C6—H6C109.5N19—C20—C21113.26 (12)
C8—C7—C2120.40 (12)H20A—C20—H20B107.7
C12—C7—C2120.81 (11)C21—C20—H20A108.9
C12—C7—C8118.79 (12)C21—C20—H20B108.9
C7—C8—H8119.7O22—C21—C20111.24 (13)
C9—C8—C7120.63 (13)O22—C21—H21A109.4
C9—C8—H8119.7O22—C21—H21B109.4
C8—C9—H9120.0C20—C21—H21A109.4
C8—C9—C10120.03 (12)C20—C21—H21B109.4
C10—C9—H9120.0H21A—C21—H21B108.0
O13—C10—C9115.26 (12)
O13—C10—C11—C12177.32 (12)C5—N1—C2—C7122.29 (12)
N1—C2—C3—C40.97 (14)C6—N1—C2—C3177.89 (12)
N1—C2—C3—C15178.34 (12)C6—N1—C2—C754.80 (16)
N1—C2—C7—C850.65 (16)C6—N1—C5—O53.4 (2)
N1—C2—C7—C12130.23 (13)C6—N1—C5—C4177.42 (12)
N19—C4—C5—O52.1 (2)C7—C2—C3—C4120.45 (12)
N19—C4—C5—N1178.77 (12)C7—C2—C3—C1560.24 (17)
N19—C20—C21—O2265.47 (16)C7—C8—C9—C101.2 (2)
C2—N1—C5—O5179.51 (13)C8—C7—C12—C112.1 (2)
C2—N1—C5—C40.36 (15)C8—C9—C10—O13176.51 (12)
C2—C3—C4—N19178.21 (13)C8—C9—C10—C112.7 (2)
C2—C3—C4—C50.81 (14)C9—C10—C11—C121.8 (2)
C2—C3—C15—O15176.13 (13)C10—C11—C12—C70.6 (2)
C2—C3—C15—O164.74 (18)C12—C7—C8—C91.2 (2)
C2—C7—C8—C9177.94 (12)C14—O13—C10—C9177.18 (14)
C2—C7—C12—C11177.04 (12)C14—O13—C10—C112.0 (2)
C3—C2—C7—C864.43 (16)C15—O16—C17—C18179.91 (11)
C3—C2—C7—C12114.69 (14)C15—C3—C4—N192.5 (2)
C3—C4—C5—O5178.84 (13)C15—C3—C4—C5178.51 (12)
C3—C4—C5—N10.30 (14)C17—O16—C15—O151.01 (19)
C4—N19—C20—C2174.66 (17)C17—O16—C15—C3179.84 (10)
C4—C3—C15—O154.7 (2)C20—N19—C4—C3173.28 (13)
C4—C3—C15—O16174.48 (12)C20—N19—C4—C57.8 (2)
C5—N1—C2—C30.80 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19···O150.92 (1)2.19 (2)2.8595 (15)129 (2)
O22—H22A···O15i0.98 (1)2.08 (2)3.0131 (16)157 (4)
O22—H22B···O22i0.98 (2)1.83 (2)2.796 (2)167 (4)
C6—H6B···O22ii0.982.573.4152 (18)144
C8—H8···O13iii0.952.343.2556 (17)162
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge Universiti Teknologi MARA for financial support and the Centre of Chemical Synthesis & Polymer Technology (CCSPT), Institute of Science, Universiti Teknologi MARA Puncak Alam, Selangor, Malaysia for the provision of laboratory facilities.

References

First citationAbdul Rashid, F. N. A., Bacho, M. Z., Slawin, A. M., Abdul Manan, M. A. F., Johari, S. A. & Mohammat, M. F. (2023). Z. Kristallogr. New Cryst. Struct. 238, 113–115.  CSD CrossRef CAS Google Scholar
First citationChen, X. M., Lu, W., Zhang, Z. H., Zhang, J. Y., Tuong, T. M. L., Liu, L. L., Kim, Y. H., Li, C. H. & Gao, J. M. (2022). Phytochemistry, 196, 113082.  CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMetten, B., Kostermans, M., Van Baelen, G., Smet, M. & Dehaen, W. (2006). Tetrahedron, 62, 6018–6028.  CrossRef CAS Google Scholar
First citationMiranda, A. C., Barbosa, L. C., Masood, M. A., Varejão, J. O. S., Sordi, M., Benfatti, C. A. & Pimenta, A. L. (2018). ACS Omega, 3, 18475–18480.  CrossRef CAS Google Scholar
First citationŌmura, S. & Crump, A. (2019). J. Antibiot. 72, 189–201.  Google Scholar
First citationRashid, F. N. A. A., Mohammat, M. F., Bouchamma, F. E., Shaameri, Z. & Hamzah, A. S. (2020). Russ. J. Org. Chem. 56, 1082–1088.  CrossRef Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, C., Wu, X., Bai, H., Zaman, K. A. U., Hou, S., Saito, J., Wongwiwatthananukit, S., Kim, K. S. & Cao, S. (2020). J. Nat. Prod. 83, 2233–2240.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146