

ISSN 2414-3146

Received 4 December 2024 Accepted 18 December 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; oxopyrrolidine; racemic; hydrogen bond.

CCDC reference: 2411088

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 4-[(2-hydroxyethyl)amino]-2-(4-methoxyphenyl)-1-methyl-5-oxo-2,5-dihydro-1*H*-pyrrole-3carboxylate

Fatin Nur Ain Abdul Rashid,^a Mohd Fazli Mohammat,^a* Mohd Abdul Fatah Abdul Manan,^b Ayisy Amirul Afti Bakhtiar Afendy,^b David B. Cordes^c and Aidan P. McKay^c

^aCentre of Chemical Synthesis & Polymer Technology, Institute of Science, Universiti Teknologi MARA Puncak Alam, 42300 Puncak Alam, Selangor, Malaysia, ^bFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and ^cEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom. *Correspondence e-mail: mohdfazli@uitm.edu.my

In the title compound, $C_{17}H_{22}N_2O_5$ the pyrrolidine ring is almost planar and subtends a dihedral angle of 85.77 (7)° with the pendant phenyl ring. An intramolecular N-H···O hydrogen bond generates an *S*(6) loop. In the crystal, the compound forms inversion dimers through O-H···O hydrogen bonds from the disordered hydroxyl group to either the hydroxyl or ester carbonyl O atom of the adjacent molecule.

Structure description

Molecules bearing a γ -lactam moiety are receiving attention from researchers since examples of these compounds have been shown to exhibit potential medicinal uses, for example to inhibit the proteasome in cancer therapy (Õmura & Crump, 2019), or to act as a potent inhibitor against methicillin-resistant *Staphylococcus aureus* (Miranda *et al.*, 2018; Wang *et al.*, 2020; Chen *et al.*, 2022). A facile method to prepare γ -lactams from readily available starting materials *via* one-pot multicomponent reactions has been reported in the literature (Metten *et al.*, 2006): these versatile precursors contain numerous functionalities that can be modified and transformed to other useful intermediates. In our previous work, a γ -lactam precursor was subjected to a Leuckart-type reaction (Rashid *et al.*, 2020) and herein we report the crystal structure of the title compound.

The title compound, $C_{17}H_{22}N_2O_5$, crystallizes in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit (Fig. 1). The five-membered pyrrolidine ring (C2–C5/N1) adopts a near planar conformation (r.m.s. deviation from planarity = 0.003 Å),

Та	ble 1	1							
Hy	drog	en-b	ond geo	metry	(Å,	ິ).			
D	тт	4		D	тт	т	T	4	

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N19-H19···O15	0.92(1)	2.19 (2)	2.8595 (15)	129 (2)
$O22-H22A\cdots O15^{i}$	0.98(1)	2.08 (2)	3.0131 (16)	157 (4)
$O22 - H22B \cdot \cdot \cdot O22^{i}$	0.98 (2)	1.83 (2)	2.796 (2)	167 (4)
$C6-H6B\cdots O22^{ii}$	0.98	2.57	3.4152 (18)	144
C8−H8···O13 ⁱⁱⁱ	0.95	2.34	3.2556 (17)	162

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, y + 1, z; (iii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

with methoxybenzene, ethyl ester and hydroxyethyl amino substitutions at the 2, 3 and 4 ring positions, respectively. The dihedral angle between the pyrrolidine and phenyl rings is $85.77 (7)^{\circ}$ and the N19-C20-C21-O22 torsion angle is $-65.47 (16)^{\circ}$. The configuration of atom C2 in the asymmetric unit is *R* but crystal symmetry generates a racemic mixture. A weak intramolecular N19-H19···O15 hydrogen bond (Table 1) occurs, which closes an *S*(6) ring. A similar feature was observed in the structure of ethyl 1-(2-hydroxyethyl)-4-[(4-methoxyphenyl)amino]-5-oxo-2,5-dihydro-1*H*-pyrrole-3carboxylate (Abdul Rashid *et al.*, 2023).

The terminal hydroxyl group of the hydroxyethyl amino moiety exhibits positional disorder of its hydrogen atom. Both positions correspond to intermolecular $O-H\cdots O$ hydrogen bonds to either the hydroxyl (O22) or ester carbonyl (O15) oxygen atom, of a neighbouring molecule thereby forming $R_2^2(11)$ rings that are either 'anti-clockwise' or 'clockwise' (Fig. 2). These dimers pack into the overall structure through a variety of weak $C-H\cdots O$ non-classical hydrogen bonds (Table 1).

Synthesis and crystallization

The γ -lactam precursor, ethyl 4-hydroxy-2-(4-methoxyphenyl)-1-methyl-5-oxo-2,5-dihydro-1*H*-pyrrole-3-carboxylate was synthesized following the reported method for related compounds (Rashid *et al.*, 2020). The title compound was prepared by adding ethanolamine (0.25 ml, 4.12 mmol) to a solution of the γ -lactam precursor (1.00 g, 3.43 mmol) and formic acid (0.21 ml, 5.49 mmol) in ethanol (25 ml) and

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Both orientations of the disordered hydroxyl hydrogen atom are shown.

Table 2	
Experimental	details.

Crystal data	
Chemical formula	C ₁₇ H ₂₂ N ₂ O ₅
M _r	334.36
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
a, b, c (Å)	10.17216 (8), 9.24320 (6),
	17.64603 (14)
β (°)	101.5111 (8)
$V(\dot{A}^3)$	1625.77 (2)
Z	4
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	0.84
Crystal size (mm)	$0.09\times0.07\times0.01$
Data collection	
Diffractometer	Rigaku XtaLAB P200K
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2024)
T_{\min}, T_{\max}	0.735, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	57922, 3336, 3074
R _{int}	0.071
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.628
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.106, 1.06
No. of reflections	3336
No. of parameters	230
No. of restraints	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.28, -0.27

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2019/3 (Sheldrick, 2015b), Mercury (Macrae et al., 2020), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

allowed to reflux for 12 h. After completion of the reaction, the solution was removed *in vacuo* and the crude product was dissolved in ethyl acetate, which was washed with water. The combined organic layers were dried over anhydrous MgSO₄ before being concentrated under reduced pressure to yield a solid precipitate. Further washing of the precipitate with diethyl ether furnished the title compound as a dark-yellow solid (yield: 0.69 g, 60%). m.p. 89–90°C; IR (KBr, ν , cm⁻¹): 3478 (NH), 1692 (C=O), 1621 (C=C), 1242 (C-N); ¹H NMR (400 MHz, CDCl₃ -d₁) δ 7.03 (d, J = 8.7 Hz, 2H,

Figure 2

View of the supramolecular dimers with both N-H···O intramolecular and O-H···O intermolecular hydrogen bonds. The disordered hydroxyl hydrogen atoms are shown in the 'anti-clockwise' conformation with the green dashed lines indicating the alternate 'clockwise' hydrogen-bonding scheme.

CHAr), 6.80 (*d*, J = 8.7 Hz, 2H, CHAr), 4.87 (*s*, 1H, ArCHNCH₃), 4.10–3.90 (*m*, 4H, OCH₂ & CH₂OH), 3.76–3.74 (*m*, 5H, OCH₃ & NHCH₂), 2.70 (*s*, 3H, NCH₃), 1.01 (*t*, J = 7.1 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃ -*d*₁) δ 165.9 (C=O), 165.5 (C=O), 159.4 (quat. ArC), 147.6 (C-N), 129.0 (CHAr), 128.8 (quat. ArC), 113.8 (CHAr), 103.6 (CCO), 63.4 (CH₂OH), 63.2 (OCH₃), 59.5 (OCH₂), 55.3 (ArCHNCH₃), 44.6 (NHCH₂), 27.6 (NCH₃), 14.1 (CH₃); CHN: found C, 59.64; H, 6.54; N, 7.74 requires C, 61.07; H, 6.63; N, 8.38%; LCMS (ESI): calculated for C₁₇H₂₂N₂O₅ 357.1 [*M* + Na]⁺, found 357.1. Crystals suitable for X-ray diffraction were grown by slow evaporation of an ethyl acetate solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The N– and O-bound hydrogen atoms were located in a difference map and refined isotropically with distance restraints. The OH hydrogen atom was found to be disordered over two positions, its occupancy was fixed at 1/2, with U_{eq} riding on the parent atom.

Acknowledgements

The authors acknowledge Universiti Teknologi MARA for financial support and the Centre of Chemical Synthesis & Polymer Technology (CCSPT), Institute of Science, Universiti Teknologi MARA Puncak Alam, Selangor, Malaysia for the provision of laboratory facilities.

References

- Abdul Rashid, F. N. A., Bacho, M. Z., Slawin, A. M., Abdul Manan, M. A. F., Johari, S. A. & Mohammat, M. F. (2023). Z. Kristallogr. New Cryst. Struct. 238, 113–115.
- Chen, X. M., Lu, W., Zhang, Z. H., Zhang, J. Y., Tuong, T. M. L., Liu, L. L., Kim, Y. H., Li, C. H. & Gao, J. M. (2022). *Phytochemistry*, **196**, 113082.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Metten, B., Kostermans, M., Van Baelen, G., Smet, M. & Dehaen, W. (2006). *Tetrahedron*, **62**, 6018–6028.
- Miranda, A. C., Barbosa, L. C., Masood, M. A., Varejão, J. O. S., Sordi, M., Benfatti, C. A. & Pimenta, A. L. (2018). ACS Omega, 3, 18475–18480.
- Ōmura, S. & Crump, A. (2019). J. Antibiot. 72, 189-201.
- Rashid, F. N. A. A., Mohammat, M. F., Bouchamma, F. E., Shaameri, Z. & Hamzah, A. S. (2020). *Russ. J. Org. Chem.* **56**, 1082–1088.
- Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, C., Wu, X., Bai, H., Zaman, K. A. U., Hou, S., Saito, J., Wongwiwatthananukit, S., Kim, K. S. & Cao, S. (2020). *J. Nat. Prod.* 83, 2233–2240.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2024). **9**, x241222 [https://doi.org/10.1107/S2414314624012227]

Ethyl 4-[(2-hydroxyethyl)amino]-2-(4-methoxyphenyl)-1-methyl-5-oxo-2,5-dihydro-1*H*-pyrrole-3-carboxylate

Fatin Nur Ain Abdul Rashid, Mohd Fazli Mohammat, Mohd Abdul Fatah Abdul Manan, Ayisy Amirul Afti Bakhtiar Afendy, David B. Cordes and Aidan P. McKay

Ethyl 4-[(2-hydroxyethyl)amino]-2-(4-methoxyphenyl)-1-methyl-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate

Crystal data

C₁₇H₂₂N₂O₅ $M_r = 334.36$ Monoclinic, $P2_1/n$ a = 10.17216 (8) Å b = 9.24320 (6) Å c = 17.64603 (14) Å $\beta = 101.5111$ (8)° V = 1625.77 (2) Å³ Z = 4

Data collection

Rigaku XtaLAB P200K diffractometer Radiation source: Rotating Anode, Rigaku MM-007HF Rigaku Osmic Confocal Optical System monochromator Detector resolution: 5.8140 pixels mm⁻¹ shutterless scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2024)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.106$ S = 1.063336 reflections 230 parameters 3 restraints Primary atom site location: dual F(000) = 712 $D_x = 1.366 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 26738 reflections $\theta = 4.6-75.3^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.09 \times 0.07 \times 0.01 \text{ mm}$

 $T_{\min} = 0.735, T_{\max} = 1.000$ 57922 measured reflections 3336 independent reflections 3074 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 75.6^{\circ}, \theta_{min} = 4.7^{\circ}$ $h = -12 \rightarrow 12$ $k = -11 \rightarrow 11$ $l = -22 \rightarrow 22$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0505P)^2 + 0.7868P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.27 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were placed in calculated positions except the on hydroxyl and amine groups (N19 and O22) which were located from F_{map} and refined subject to distance restraints and the U_{eq} of the hydroxyl hydrogens riding on O22. Hydrogens on O22 were observed in two distinct hydrogen bonding locations, both of which are modelled with occupancy fixed at 0.5 and H22B in part -1 as it was orientated towards a symmetry related H22B—O22.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
05	0.34109 (10)	0.32829 (11)	0.29196 (6)	0.0283 (2)	
O13	0.93989 (10)	0.92848 (11)	0.31984 (6)	0.0289 (2)	
O15	0.80294 (10)	0.22664 (11)	0.49182 (6)	0.0316 (3)	
O16	0.80905 (9)	0.46054 (10)	0.52944 (5)	0.0236 (2)	
O22	0.40444 (12)	-0.06392 (13)	0.44164 (6)	0.0394 (3)	
H22A	0.321 (2)	-0.096 (5)	0.457 (2)	0.059*	0.5
H22B	0.480 (4)	-0.017 (5)	0.477 (2)	0.059*	0.5
N1	0.45573 (11)	0.51525 (12)	0.36200 (7)	0.0223 (2)	
N19	0.57207 (12)	0.15014 (12)	0.37782 (7)	0.0229 (3)	
H19	0.6474 (15)	0.1133 (19)	0.4098 (10)	0.035 (5)*	
C2	0.57805 (13)	0.54035 (14)	0.42004 (7)	0.0201 (3)	
H2	0.553384	0.575074	0.469032	0.024*	
C3	0.63422 (13)	0.38870 (14)	0.43190 (7)	0.0203 (3)	
C4	0.55360 (13)	0.29314 (14)	0.38504 (7)	0.0202 (3)	
C5	0.43611 (13)	0.37609 (15)	0.33929 (8)	0.0218 (3)	
C6	0.36725 (14)	0.63225 (15)	0.32925 (9)	0.0273 (3)	
H6A	0.410681	0.690047	0.294676	0.041*	
H6B	0.348131	0.693750	0.370983	0.041*	
H6C	0.283186	0.591964	0.299979	0.041*	
C7	0.67047 (13)	0.64984 (14)	0.39345 (7)	0.0200 (3)	
C8	0.70629 (14)	0.63505 (15)	0.32152 (8)	0.0247 (3)	
H8	0.670204	0.557712	0.288350	0.030*	
С9	0.79374 (14)	0.73181 (16)	0.29807 (8)	0.0266 (3)	
H9	0.816202	0.721865	0.248590	0.032*	
C10	0.84893 (13)	0.84382 (14)	0.34690 (8)	0.0226 (3)	
C11	0.81191 (14)	0.86208 (14)	0.41785 (8)	0.0235 (3)	
H11	0.847341	0.940002	0.450770	0.028*	
C12	0.72214 (13)	0.76474 (14)	0.44028 (8)	0.0221 (3)	
H12	0.695973	0.777571	0.488603	0.027*	
C14	1.00316 (18)	1.03976 (19)	0.36932 (11)	0.0411 (4)	
H14A	1.062776	1.095104	0.342862	0.062*	
H14B	1.055617	0.996804	0.416585	0.062*	
H14C	0.934820	1.104289	0.382711	0.062*	
C15	0.75500 (13)	0.34857 (14)	0.48560 (7)	0.0212 (3)	
C17	0.93178 (14)	0.43252 (15)	0.58571 (8)	0.0245 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H17A	1.003709	0.398723	0.559586	0.029*
H17B	0.916399	0.357827	0.623200	0.029*
C18	0.96974 (15)	0.57457 (16)	0.62607 (8)	0.0301 (3)
H18A	0.982430	0.647720	0.587974	0.045*
H18B	1.053341	0.562775	0.664254	0.045*
H18C	0.898122	0.605610	0.652238	0.045*
C20	0.47715 (15)	0.04845 (15)	0.33305 (8)	0.0267 (3)
H20A	0.525209	-0.041922	0.325556	0.032*
H20B	0.441995	0.090415	0.281357	0.032*
C21	0.36072 (16)	0.01227 (17)	0.37099 (8)	0.0304 (3)
H21A	0.315223	0.102708	0.381347	0.036*
H21B	0.295103	-0.047698	0.335390	0.036*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
05	0.0270 (5)	0.0245 (5)	0.0287 (5)	-0.0031 (4)	-0.0058 (4)	0.0000 (4)
O13	0.0292 (5)	0.0295 (5)	0.0276 (5)	-0.0053 (4)	0.0047 (4)	0.0077 (4)
015	0.0321 (6)	0.0207 (5)	0.0361 (6)	0.0034 (4)	-0.0076 (4)	-0.0020 (4)
O16	0.0247 (5)	0.0208 (5)	0.0222 (5)	-0.0009 (4)	-0.0028 (4)	0.0002 (4)
O22	0.0470 (7)	0.0409 (6)	0.0277 (6)	-0.0162 (5)	0.0015 (5)	0.0051 (5)
N1	0.0201 (5)	0.0198 (6)	0.0251 (6)	0.0000 (4)	0.0000 (4)	0.0006 (4)
N19	0.0243 (6)	0.0181 (5)	0.0240 (6)	-0.0011 (4)	-0.0007 (5)	0.0002 (4)
C2	0.0211 (6)	0.0192 (6)	0.0189 (6)	-0.0005 (5)	0.0015 (5)	-0.0004 (5)
C3	0.0228 (6)	0.0191 (6)	0.0189 (6)	-0.0016 (5)	0.0037 (5)	0.0007 (5)
C4	0.0219 (6)	0.0207 (6)	0.0180 (6)	-0.0015 (5)	0.0043 (5)	0.0019 (5)
C5	0.0224 (6)	0.0205 (6)	0.0220 (6)	-0.0010 (5)	0.0034 (5)	0.0019 (5)
C6	0.0244 (7)	0.0223 (7)	0.0327 (7)	0.0031 (5)	0.0000 (6)	0.0026 (6)
C7	0.0202 (6)	0.0184 (6)	0.0198 (6)	0.0018 (5)	0.0004 (5)	0.0018 (5)
C8	0.0293 (7)	0.0234 (7)	0.0202 (6)	-0.0025 (6)	0.0020 (5)	-0.0028 (5)
С9	0.0305 (7)	0.0307 (7)	0.0191 (6)	-0.0009 (6)	0.0059 (5)	0.0020 (5)
C10	0.0217 (6)	0.0208 (6)	0.0237 (6)	0.0010 (5)	0.0008 (5)	0.0075 (5)
C11	0.0259 (7)	0.0188 (6)	0.0237 (6)	-0.0016 (5)	0.0000 (5)	-0.0013 (5)
C12	0.0247 (7)	0.0211 (6)	0.0200 (6)	0.0006 (5)	0.0033 (5)	-0.0006 (5)
C14	0.0409 (9)	0.0382 (9)	0.0460 (9)	-0.0194 (7)	0.0129 (7)	-0.0030 (7)
C15	0.0235 (6)	0.0199 (6)	0.0203 (6)	-0.0035 (5)	0.0042 (5)	0.0012 (5)
C17	0.0222 (7)	0.0261 (7)	0.0224 (6)	-0.0003 (5)	-0.0020 (5)	0.0021 (5)
C18	0.0309 (8)	0.0290 (8)	0.0268 (7)	-0.0033 (6)	-0.0026 (6)	-0.0018 (6)
C20	0.0316 (7)	0.0222 (7)	0.0239 (7)	-0.0022 (6)	-0.0004 (6)	-0.0030 (5)
C21	0.0356 (8)	0.0259 (7)	0.0285 (7)	-0.0056 (6)	0.0037 (6)	-0.0017 (6)

Geometric parameters (Å, °)

05—C5	1.2267 (16)	C7—C8	1.3955 (19)	
O13—C10	1.3684 (16)	C7—C12	1.3833 (18)	
O13—C14	1.4178 (19)	C8—H8	0.9500	
O15—C15	1.2242 (17)	C8—C9	1.382 (2)	
O16—C15	1.3424 (16)	С9—Н9	0.9500	

O16—C17	1.4549 (15)	C9—C10	1.392 (2)
O22—H22A	0.983 (5)	C10—C11	1.3879 (19)
O22—H22B	0.983 (19)	C11—H11	0.9500
O22—C21	1.4236 (18)	C11—C12	1.3944 (19)
N1—C2	1.4636 (16)	С12—Н12	0.9500
N1—C5	1.3502 (17)	C14—H14A	0.9800
N1—C6	1.4512 (17)	C14—H14B	0.9800
N19—H19	0.922 (14)	C14—H14C	0.9800
N19—C4	1.3447 (17)	C17—H17A	0.9900
N19—C20	1.4613 (17)	C17—H17B	0.9900
С2—Н2	1.0000	C17—C18	1.507 (2)
C2—C3	1.5124 (18)	C18—H18A	0.9800
C2—C7	1.5180 (18)	C18—H18B	0.9800
C3—C4	1.3659 (18)	C18—H18C	0.9800
C3—C15	1.4423 (18)	С20—Н20А	0.9900
C4—C5	1.5109 (18)	C20—H20B	0.9900
С6—Н6А	0.9800	C20—C21	1.510(2)
C6—H6B	0.9800	C21—H21A	0.9900
C6—H6C	0.9800	C21—H21B	0.9900
			0.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C10—O13—C14	117.09 (11)	O13—C10—C11	124.70 (12)
C15-016-C17	116.94 (10)	C11—C10—C9	120.04(12)
H22A-022-H22B	125 (4)	C10—C11—H11	120.4
$C_{21} = 022 = H_{22}A$	105 (3)	C10-C11-C12	119.25 (12)
$C_{21} = 0.22 = H_{22}R$	114 (3)	C12 - C11 - H11	120.4
$C_{2} = 0.22$ $H_{2} = 0.22$	114 42 (11)	C7-C12-C11	120.1 121.20(12)
C_5 N1 C_6	123 27 (11)	C7-C12-H12	119.4
C6-N1-C2	122.25 (11)	$C_{11} - C_{12} - H_{12}$	119.4
C4 - N19 - H19	1122.23(11)	013 - C14 - H14A	109.5
C4-N19-C20	126 42 (12)	013— $C14$ — $H14B$	109.5
$C_{20} = N_{19} = H_{19}$	118.2(12)	013 - C14 - H14C	109.5
N1_C2_H2	109.3	$H_{14} - C_{14} + H_{14}B$	109.5
N1-C2-C3	101 24 (10)	H14A - C14 - H14C	109.5
N1 - C2 - C7	1124(10)	$H_{14B} - C_{14} - H_{14C}$	109.5
C_{3} C_{2} H_{2}	109 3	015-015-016	109.5 123.23(12)
C_{3} C_{2} C_{7}	114 87 (11)	015 - 015 - 010	123.23(12) 124.58(12)
C_{7} C_{2} H_{2}	109 3	016-015-03	124.30(12) 112 19(11)
$C_{4} - C_{3} - C_{2}$	110 54 (11)	016 - C17 - H17A	110.6
$C_{4} - C_{3} - C_{15}$	124 14 (12)	016-017-117	110.6
$C_{1} = C_{2} = C_{12}$	124.14(12) 125.31(11)	$016 \ C17 \ C18$	105.76(11)
$N_{10} = C_{10} = C_{10} = C_{10}$	125.51(11) 127.02(13)	H17A C17 H17P	103.70 (11)
N19 C4 C5	127.92(13) 123.07(12)	$\frac{1117}{A} = \frac{117}{H17}$	110.6
$C_{3} = C_{4} = C_{5}$	123.97(12) 108 10 (11)	$C_{18} = C_{17} = H_{17} R$	110.6
$C_{3} - C_{4} - C_{3}$	106.10(11) 126.51(13)	$C_{10} - C_{17} - H_{18}$	100.5
05 - 05 - 04	120.31(13) 127.70(12)	C17 C18 H18P	109.5
$V_{3} = C_{3} = C_{4}$	127.77(12) 105 60 (11)	$C_{17} = C_{10} = 1110D$ $C_{17} = C_{18} = H_{18}C$	109.5
N1 C6 H6A	100.07 (11)		109.5
N1 C6 H6P	107.5	$\mathbf{H}_{0}^{\mathbf{H}} \mathbf{O}_{0}^{\mathbf{H}} \mathbf{O}_{0}$	109.5
	107.3	1110A-UIO-IIIOU	107.3

N1—C6—H6C	109.5	H18B—C18—H18C	109.5
H6A—C6—H6B	109.5	N19—C20—H20A	108.9
H6A—C6—H6C	109.5	N19—C20—H20B	108.9
H6B—C6—H6C	109.5	N19—C20—C21	113.26 (12)
C8—C7—C2	120.40 (12)	H20A-C20-H20B	107.7
C12—C7—C2	120.81 (11)	C21—C20—H20A	108.9
С12—С7—С8	118.79 (12)	C21—C20—H20B	108.9
С7—С8—Н8	119.7	O22—C21—C20	111.24 (13)
C9—C8—C7	120.63 (13)	O22—C21—H21A	109.4
С9—С8—Н8	119.7	O22—C21—H21B	109.4
С8—С9—Н9	120.0	C20—C21—H21A	109.4
C8—C9—C10	120.03 (12)	C20—C21—H21B	109.4
С10—С9—Н9	120.0	H21A—C21—H21B	108.0
O13—C10—C9	115.26 (12)		
O13—C10—C11—C12	-177.32 (12)	C5—N1—C2—C7	122.29 (12)
N1—C2—C3—C4	0.97 (14)	C6—N1—C2—C3	-177.89 (12)
N1—C2—C3—C15	-178.34 (12)	C6—N1—C2—C7	-54.80 (16)
N1—C2—C7—C8	-50.65 (16)	C6—N1—C5—O5	-3.4 (2)
N1—C2—C7—C12	130.23 (13)	C6—N1—C5—C4	177.42 (12)
N19—C4—C5—O5	2.1 (2)	C7—C2—C3—C4	-120.45 (12)
N19—C4—C5—N1	-178.77 (12)	C7—C2—C3—C15	60.24 (17)
N19—C20—C21—O22	-65.47 (16)	C7—C8—C9—C10	1.2 (2)
C2—N1—C5—O5	179.51 (13)	C8—C7—C12—C11	-2.1 (2)
C2—N1—C5—C4	0.36 (15)	C8—C9—C10—O13	176.51 (12)
C2-C3-C4-N19	178.21 (13)	C8—C9—C10—C11	-2.7 (2)
C2—C3—C4—C5	-0.81 (14)	C9—C10—C11—C12	1.8 (2)
C2—C3—C15—O15	-176.13 (13)	C10-C11-C12-C7	0.6 (2)
C2-C3-C15-O16	4.74 (18)	C12—C7—C8—C9	1.2 (2)
C2—C7—C8—C9	-177.94 (12)	C14—O13—C10—C9	-177.18 (14)
C2-C7-C12-C11	177.04 (12)	C14-013-C10-C11	2.0 (2)
C3—C2—C7—C8	64.43 (16)	C15—O16—C17—C18	179.91 (11)
C3—C2—C7—C12	-114.69 (14)	C15—C3—C4—N19	-2.5 (2)
C3—C4—C5—O5	-178.84 (13)	C15—C3—C4—C5	178.51 (12)
C3—C4—C5—N1	0.30 (14)	C17—O16—C15—O15	1.01 (19)
C4—N19—C20—C21	-74.66 (17)	C17—O16—C15—C3	-179.84 (10)
C4—C3—C15—O15	4.7 (2)	C20—N19—C4—C3	173.28 (13)
C4—C3—C15—O16	-174.48 (12)	C20—N19—C4—C5	-7.8 (2)
C5—N1—C2—C3	-0.80 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
N19—H19…O15	0.92 (1)	2.19 (2)	2.8595 (15)	129 (2)
O22—H22A····O15 ⁱ	0.98 (1)	2.08 (2)	3.0131 (16)	157 (4)
O22— $H22B$ ···O22 ⁱ	0.98 (2)	1.83 (2)	2.796 (2)	167 (4)

				data reports
С6—Н6 <i>В</i> …О22 ^{іі}	0.98	2.57	3.4152 (18)	144
C8—H8…O13 ⁱⁱⁱ	0.95	2.34	3.2556 (17)	162

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) -*x*+3/2, *y*-1/2, -*z*+1/2.