organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Bromo-9,9-di­ethyl-N,N-di­phenyl­fluoren-2-amine

crossmark logo

aDepartment of Chemistry, Dhanamanjuri University, Manipur 795 001, India, bDepartment of Chemistry, Anjalai Ammal Mahalingam Engineering College, Kovilvenni, Tiruvarur 614 403, Tamil Nadu, India, cDepartment of Chemistry, National College, Tiruchirappalli, Tamil Nadu, India, and dDepartment of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India
*Correspondence e-mail: jerelewin.mine@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 20 November 2024; accepted 3 December 2024; online 20 December 2024)

In the title compound, C29H26BrN, the dihedral angles between the fluorene fused-ring system and the pendant phenyl groups are 67.76 (12) and 88.38 (12)°. In the crystal, weak pairwise C—H⋯π inter­actions link the mol­ecules into inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Some fluoren-9-imines show fluorescence properties (Dufresne et al., 2011[Dufresne, S., Skalski, T. & Skene, W. G. (2011). Can. J. Chem. 89, 173-180.]) and potential as organic components in materials with flexible HOMO–LUMO gaps (Eakins et al., 2013[Eakins, G. L., Cooper, M. W., Gerasimchuk, N. N., Phillips, T. J., Breyfogle, B. E. & Stearman, C. J. (2013). Can. J. Chem. 91, 1059-1071.]). The crystal structures of N-mesityl-9H-fluoren-9-imine (Evans et al., 2016[Evans, P., Izod, K. & Waddell, P. G. (2016). Private communication (refcode CCDC 1488084). CCDC, Cambridge, England.]), N-(4-chloro­phen­yl)-9H-fluoren-9-imine (Crundwell et al., 2019[Crundwell, G., Glagovich, N. M., Heinrich, E. M. R. & Ouellette, P. (2019). IUCrData, 4, x190553.]), 9-(4-bromo­but­yl)-9H-fluorene-9-carb­oxy­lic acid (Zhang et al., 2014[Zhang, X.-Y., Liu, B.-N., Wang, P.-B. & Liu, D.-K. (2014). Acta Cryst. E70, o1118-o1119.]) and 9,9-diethyl-9H-fluorene-2,4,7-tricarb­aldehyde (Seidel et al., 2021[Seidel, P., Schwarzer, A. & Mazik, M. (2021). Acta Cryst. E77, 1029-1032.]) have been reported. As part of our research in this field, we present the synthesis and structural characterization of the title compound, C29H26BrN, (I).

The asymmetric unit of (I) contains one mol­ecule (Fig. 1[link]) in space group P21/c. The dihedral angles between the C13–C25 fluorene fused ring (r.m.s. deviation = 0.030 Å) and the pendant C1–C6 and C7–C12 phenyl groups are 67.76 (12) and 88.38 (12)°, respectively; the dihedral angle between the phenyl groups is 60.96 (16)°. The packing of the crystal structure is illustrated in Fig. 2[link]. Neighboring mol­ecules within the structure are linked by pairwise C—H⋯π inter­actions, as detailed in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H19⋯Cg5i 0.93 2.87 3.692 (4) 148
Symmetry code: (i) [-x+2, -y+1, -z+1].
[Figure 1]
Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of (I).

A search of the Cambridge Structural Database (Version 5.43, update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the fluoren-9-imine fragment with additional substituents yielded 9H-fluoren-9-imine (CSD refcode EPAJEN: Kent et al., 2021[Kent, G. T., Cook, A. W., Damon, P. L., Lewis, R. A., Wu, G. & Hayton, T. W. (2021). Inorg. Chem. 60, 4996-5004.]), N-[(2-nitro­phen­yl)sulfan­yl]-9H-fluoren-9-imine (REQXUI: Melen et al., 2013[Melen, R. L., Eisler, D. J., Hewitt, R. A. & Rawson, J. M. (2013). Dalton Trans. 42, 3888-3895.]), N-hy­droxy-9H-fluoren-9-imine (NIXWUO: Bugenhagen et al., 2014[Bugenhagen, B., Al Jasem, Y., Al-Azani, M. & Thiemann, T. (2014). Acta Cryst. E70, o265.]), and N,N′-([1,1′-biphen­yl]-4,4′-di­yl)bis­(9H-fluoren-9-imine) (LODQEE: Sprachmann et al., 2023[Sprachmann, J., Grabicki, N., Möckel, A., Maltitz, J., Monroy, J. R., Smales, G. J. & Dumele, O. (2023). Chem. Commun. 59, 13639-13642.]).

Synthesis and crystallization

The title compound was prepared by the literature method (Thomas et al., 2005[Justin Thomas, K. R., Velusamy, M., Lin, J. T., Chuen, C.-H. & Tao, Y.-T. (2005). Chem. Mater. 17, 1860-1866.]). Crystals suitable for X-ray diffraction were grown by recrystallization from di­chloro­methane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C29H26BrN
Mr 468.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.7044 (14), 10.5123 (17), 18.2491 (19)
β (°) 105.372 (12)
V3) 2350.0 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.77
Crystal size (mm) 0.37 × 0.32 × 0.29
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.507, 0.578
No. of measured, independent and observed [I > 2σ(I)] reflections 8476, 4762, 2977
Rint 0.029
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.117, 1.02
No. of reflections 4762
No. of parameters 282
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.60
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

6-Bromo-9,9-diethyl-N,N-diphenylfluoren-2-amine top
Crystal data top
C29H26BrNF(000) = 968
Mr = 468.42Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7044 (14) ÅCell parameters from 9567 reflections
b = 10.5123 (17) Åθ = 3.6–26.5°
c = 18.2491 (19) ŵ = 1.77 mm1
β = 105.372 (12)°T = 293 K
V = 2350.0 (5) Å3Plate, colourless
Z = 40.37 × 0.32 × 0.28 mm
Data collection top
Agilent Xcalibur, Atlas, Gemini
diffractometer
2977 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
ω scansθmax = 26.4°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 915
Tmin = 0.507, Tmax = 0.578k = 136
8476 measured reflectionsl = 2022
4762 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0391P)2 + 1.125P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4762 reflectionsΔρmax = 0.54 e Å3
282 parametersΔρmin = 0.60 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.95429 (3)0.61601 (5)0.10095 (2)0.0858 (2)
N10.6358 (2)0.3480 (3)0.52774 (13)0.0483 (7)
C60.6913 (2)0.4055 (3)0.59604 (15)0.0397 (7)
C120.5429 (2)0.2704 (3)0.52127 (15)0.0403 (7)
C50.6402 (2)0.4278 (3)0.65293 (16)0.0457 (8)
H160.5677200.4038930.6460450.055*
C250.6902 (2)0.4777 (3)0.43321 (15)0.0425 (7)
H20.6684300.5507280.4539920.051*
C10.7982 (2)0.4448 (3)0.60737 (16)0.0462 (8)
H200.8333600.4321180.5692970.055*
C240.7358 (2)0.4858 (3)0.37282 (15)0.0389 (7)
C160.7665 (2)0.3769 (3)0.34112 (15)0.0417 (7)
C40.6958 (3)0.4849 (3)0.71935 (17)0.0510 (8)
H170.6608120.4989290.7574100.061*
C220.8134 (2)0.5466 (3)0.27537 (15)0.0415 (7)
C170.8142 (2)0.4145 (3)0.27948 (16)0.0429 (7)
C230.7604 (2)0.6046 (3)0.33320 (15)0.0420 (7)
C210.8555 (2)0.6077 (3)0.22258 (16)0.0489 (8)
H60.8569000.6960320.2201380.059*
C70.5403 (2)0.1756 (3)0.57312 (17)0.0502 (8)
H220.6007670.1616270.6140110.060*
C130.6774 (2)0.3589 (3)0.46244 (16)0.0439 (7)
C260.6551 (3)0.6756 (3)0.29330 (19)0.0572 (9)
H30A0.6204780.7049730.3316150.069*
H30B0.6744930.7501560.2683810.069*
C110.4529 (3)0.2877 (3)0.46116 (17)0.0525 (8)
H260.4532560.3507360.4254750.063*
C30.8025 (3)0.5218 (3)0.73041 (19)0.0550 (9)
H180.8401370.5598720.7758010.066*
C140.7071 (3)0.2511 (3)0.43068 (17)0.0538 (9)
H130.6973150.1718790.4506040.065*
C20.8527 (3)0.5018 (3)0.67364 (18)0.0530 (8)
H190.9247720.5272920.6803770.064*
C150.7516 (3)0.2588 (3)0.36916 (18)0.0534 (8)
H120.7709370.1855470.3472910.064*
C280.8353 (3)0.6960 (3)0.38836 (18)0.0554 (9)
H28A0.8537990.7659010.3593890.066*
H28B0.7950450.7311820.4219690.066*
C180.8542 (3)0.3425 (3)0.22966 (17)0.0538 (9)
H90.8538860.2540870.2320490.065*
C200.8952 (2)0.5344 (4)0.17374 (16)0.0534 (9)
C190.8947 (3)0.4046 (4)0.17605 (17)0.0594 (10)
H80.9216080.3579490.1416440.071*
C100.3627 (3)0.2128 (4)0.4534 (2)0.0614 (10)
H250.3023880.2250920.4121740.074*
C80.4492 (3)0.1026 (3)0.5645 (2)0.0616 (9)
H230.4481490.0393060.5998970.074*
C90.3599 (3)0.1205 (4)0.5050 (2)0.0631 (10)
H240.2978710.0705850.4997360.076*
C270.5732 (3)0.5986 (4)0.2352 (2)0.0750 (12)
H31A0.6035640.5769060.1939230.112*
H31B0.5079570.6477110.2162450.112*
H31C0.5560580.5221990.2584330.112*
C290.9385 (3)0.6393 (4)0.4357 (2)0.0774 (12)
H29A0.9746010.5939770.4036660.116*
H29B0.9221030.5816550.4719990.116*
H29C0.9854180.7057120.4620890.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0712 (3)0.1406 (5)0.0560 (2)0.0011 (3)0.03493 (19)0.0268 (2)
N10.0527 (15)0.0639 (18)0.0314 (13)0.0212 (14)0.0167 (11)0.0053 (12)
C60.0426 (16)0.0447 (18)0.0320 (14)0.0033 (15)0.0100 (12)0.0057 (14)
C120.0406 (15)0.0489 (19)0.0327 (15)0.0046 (15)0.0121 (12)0.0013 (14)
C50.0433 (16)0.056 (2)0.0402 (16)0.0045 (16)0.0147 (13)0.0002 (15)
C250.0476 (17)0.0478 (19)0.0346 (15)0.0043 (16)0.0155 (13)0.0045 (14)
C10.0435 (16)0.058 (2)0.0377 (16)0.0037 (16)0.0123 (13)0.0026 (15)
C240.0422 (16)0.0428 (18)0.0326 (14)0.0032 (15)0.0114 (12)0.0000 (14)
C160.0496 (17)0.0450 (19)0.0338 (15)0.0045 (16)0.0167 (13)0.0039 (14)
C40.064 (2)0.051 (2)0.0419 (17)0.0019 (18)0.0213 (15)0.0049 (16)
C220.0375 (15)0.056 (2)0.0310 (14)0.0012 (16)0.0099 (12)0.0033 (14)
C170.0428 (16)0.055 (2)0.0339 (15)0.0055 (16)0.0153 (13)0.0044 (15)
C230.0485 (17)0.0449 (18)0.0355 (15)0.0003 (16)0.0162 (13)0.0021 (14)
C210.0434 (16)0.067 (2)0.0377 (16)0.0026 (17)0.0133 (13)0.0083 (16)
C70.0452 (18)0.056 (2)0.0460 (18)0.0095 (17)0.0069 (14)0.0107 (16)
C130.0485 (17)0.053 (2)0.0332 (15)0.0129 (16)0.0153 (13)0.0025 (14)
C260.058 (2)0.060 (2)0.058 (2)0.0127 (19)0.0254 (17)0.0139 (18)
C110.0548 (19)0.060 (2)0.0405 (17)0.0001 (18)0.0084 (15)0.0087 (16)
C30.064 (2)0.049 (2)0.0468 (18)0.0053 (19)0.0054 (16)0.0097 (16)
C140.074 (2)0.0434 (19)0.0515 (19)0.0135 (18)0.0290 (17)0.0006 (16)
C20.0447 (17)0.059 (2)0.052 (2)0.0061 (17)0.0069 (15)0.0015 (17)
C150.072 (2)0.0405 (19)0.0551 (19)0.0057 (18)0.0306 (17)0.0086 (16)
C280.067 (2)0.051 (2)0.0523 (19)0.0091 (19)0.0234 (17)0.0034 (17)
C180.0571 (19)0.062 (2)0.0465 (18)0.0045 (18)0.0215 (15)0.0113 (17)
C200.0428 (17)0.087 (3)0.0330 (16)0.002 (2)0.0141 (13)0.0087 (18)
C190.0536 (19)0.091 (3)0.0381 (17)0.003 (2)0.0211 (15)0.0135 (19)
C100.0425 (18)0.078 (3)0.056 (2)0.000 (2)0.0001 (15)0.009 (2)
C80.064 (2)0.059 (2)0.064 (2)0.014 (2)0.0204 (18)0.0081 (19)
C90.0455 (19)0.070 (3)0.074 (2)0.0159 (19)0.0153 (18)0.012 (2)
C270.050 (2)0.115 (3)0.058 (2)0.007 (2)0.0118 (17)0.004 (2)
C290.059 (2)0.100 (3)0.068 (2)0.005 (2)0.0079 (19)0.018 (2)
Geometric parameters (Å, º) top
Br1—C201.896 (3)C13—C141.371 (4)
N1—C61.397 (4)C26—C271.509 (5)
N1—C121.413 (4)C26—H30A0.9700
N1—C131.431 (3)C26—H30B0.9700
C6—C11.381 (4)C11—C101.367 (4)
C6—C51.383 (4)C11—H260.9300
C12—C111.371 (4)C3—C21.370 (4)
C12—C71.380 (4)C3—H180.9300
C5—C41.369 (4)C14—C151.387 (4)
C5—H160.9300C14—H130.9300
C25—C241.376 (4)C2—H190.9300
C25—C131.385 (4)C15—H120.9300
C25—H20.9300C28—C291.491 (5)
C1—C21.363 (4)C28—H28A0.9700
C1—H200.9300C28—H28B0.9700
C24—C161.385 (4)C18—C191.384 (4)
C24—C231.517 (4)C18—H90.9300
C16—C151.375 (4)C20—C191.365 (5)
C16—C171.466 (4)C19—H80.9300
C4—C31.373 (4)C10—C91.359 (5)
C4—H170.9300C10—H250.9300
C22—C211.378 (4)C8—C91.360 (5)
C22—C171.391 (4)C8—H230.9300
C22—C231.522 (4)C9—H240.9300
C17—C181.380 (4)C27—H31A0.9600
C23—C281.527 (4)C27—H31B0.9600
C23—C261.536 (4)C27—H31C0.9600
C21—C201.372 (4)C29—H29A0.9600
C21—H60.9300C29—H29B0.9600
C7—C81.363 (4)C29—H29C0.9600
C7—H220.9300
C6—N1—C12122.5 (2)H30A—C26—H30B107.5
C6—N1—C13119.9 (2)C10—C11—C12120.3 (3)
C12—N1—C13117.5 (2)C10—C11—H26119.8
C1—C6—C5118.4 (3)C12—C11—H26119.8
C1—C6—N1120.5 (2)C2—C3—C4119.0 (3)
C5—C6—N1121.1 (3)C2—C3—H18120.5
C11—C12—C7118.5 (3)C4—C3—H18120.5
C11—C12—N1119.4 (3)C13—C14—C15120.7 (3)
C7—C12—N1122.1 (3)C13—C14—H13119.6
C4—C5—C6120.3 (3)C15—C14—H13119.6
C4—C5—H16119.9C1—C2—C3120.6 (3)
C6—C5—H16119.9C1—C2—H19119.7
C24—C25—C13118.8 (3)C3—C2—H19119.7
C24—C25—H2120.6C16—C15—C14118.7 (3)
C13—C25—H2120.6C16—C15—H12120.6
C2—C1—C6120.8 (3)C14—C15—H12120.6
C2—C1—H20119.6C29—C28—C23115.4 (3)
C6—C1—H20119.6C29—C28—H28A108.4
C25—C24—C16120.6 (3)C23—C28—H28A108.4
C25—C24—C23128.0 (3)C29—C28—H28B108.4
C16—C24—C23111.4 (2)C23—C28—H28B108.4
C15—C16—C24120.6 (3)H28A—C28—H28B107.5
C15—C16—C17130.9 (3)C17—C18—C19118.5 (3)
C24—C16—C17108.5 (3)C17—C18—H9120.7
C5—C4—C3120.8 (3)C19—C18—H9120.7
C5—C4—H17119.6C19—C20—C21122.4 (3)
C3—C4—H17119.6C19—C20—Br1118.7 (3)
C21—C22—C17120.3 (3)C21—C20—Br1118.9 (3)
C21—C22—C23128.5 (3)C20—C19—C18119.9 (3)
C17—C22—C23111.2 (2)C20—C19—H8120.0
C18—C17—C22120.8 (3)C18—C19—H8120.0
C18—C17—C16131.0 (3)C9—C10—C11121.0 (3)
C22—C17—C16108.2 (3)C9—C10—H25119.5
C24—C23—C22100.7 (2)C11—C10—H25119.5
C24—C23—C28112.0 (2)C9—C8—C7121.2 (3)
C22—C23—C28113.3 (2)C9—C8—H23119.4
C24—C23—C26111.2 (2)C7—C8—H23119.4
C22—C23—C26110.8 (2)C10—C9—C8118.8 (3)
C28—C23—C26108.6 (3)C10—C9—H24120.6
C20—C21—C22118.0 (3)C8—C9—H24120.6
C20—C21—H6121.0C26—C27—H31A109.5
C22—C21—H6121.0C26—C27—H31B109.5
C8—C7—C12120.1 (3)H31A—C27—H31B109.5
C8—C7—H22119.9C26—C27—H31C109.5
C12—C7—H22119.9H31A—C27—H31C109.5
C14—C13—C25120.6 (3)H31B—C27—H31C109.5
C14—C13—N1119.3 (3)C28—C29—H29A109.5
C25—C13—N1120.0 (3)C28—C29—H29B109.5
C27—C26—C23115.1 (3)H29A—C29—H29B109.5
C27—C26—H30A108.5C28—C29—H29C109.5
C23—C26—H30A108.5H29A—C29—H29C109.5
C27—C26—H30B108.5H29B—C29—H29C109.5
C23—C26—H30B108.5
C12—N1—C6—C1158.9 (3)C17—C22—C23—C26115.5 (3)
C13—N1—C6—C116.4 (4)C17—C22—C21—C201.5 (4)
C12—N1—C6—C522.9 (4)C23—C22—C21—C20177.1 (3)
C13—N1—C6—C5161.8 (3)C11—C12—C7—C80.7 (5)
C6—N1—C12—C11133.9 (3)N1—C12—C7—C8179.7 (3)
C13—N1—C12—C1150.7 (4)C24—C25—C13—C141.6 (4)
C6—N1—C12—C747.1 (4)C24—C25—C13—N1176.6 (3)
C13—N1—C12—C7128.2 (3)C6—N1—C13—C14118.5 (3)
C1—C6—C5—C41.4 (5)C12—N1—C13—C1457.0 (4)
N1—C6—C5—C4179.6 (3)C6—N1—C13—C2559.7 (4)
C5—C6—C1—C21.3 (5)C12—N1—C13—C25124.8 (3)
N1—C6—C1—C2179.5 (3)C24—C23—C26—C2757.7 (3)
C13—C25—C24—C161.0 (4)C22—C23—C26—C2753.5 (4)
C13—C25—C24—C23178.2 (3)C28—C23—C26—C27178.6 (3)
C25—C24—C16—C150.4 (4)C7—C12—C11—C100.3 (5)
C23—C24—C16—C15179.7 (3)N1—C12—C11—C10179.3 (3)
C25—C24—C16—C17178.8 (3)C5—C4—C3—C20.6 (5)
C23—C24—C16—C170.5 (3)C25—C13—C14—C150.7 (5)
C6—C5—C4—C30.5 (5)N1—C13—C14—C15177.5 (3)
C21—C22—C17—C181.8 (5)C6—C1—C2—C30.2 (5)
C23—C22—C17—C18177.1 (3)C4—C3—C2—C10.7 (5)
C21—C22—C17—C16179.0 (3)C24—C16—C15—C141.2 (5)
C23—C22—C17—C162.1 (3)C17—C16—C15—C14177.7 (3)
C15—C16—C17—C182.8 (6)C13—C14—C15—C160.7 (5)
C24—C16—C17—C18178.1 (3)C24—C23—C28—C2952.8 (4)
C15—C16—C17—C22178.1 (3)C22—C23—C28—C2960.3 (4)
C24—C16—C17—C221.0 (3)C26—C23—C28—C29176.1 (3)
C25—C24—C23—C22177.6 (3)C22—C17—C18—C190.8 (5)
C16—C24—C23—C221.7 (3)C16—C17—C18—C19179.8 (3)
C25—C24—C23—C2856.9 (4)C22—C21—C20—C190.3 (5)
C16—C24—C23—C28122.4 (3)C22—C21—C20—Br1179.6 (2)
C25—C24—C23—C2664.9 (4)C21—C20—C19—C180.7 (5)
C16—C24—C23—C26115.8 (3)Br1—C20—C19—C18178.6 (2)
C21—C22—C23—C24178.9 (3)C17—C18—C19—C200.5 (5)
C17—C22—C23—C242.3 (3)C12—C11—C10—C90.4 (5)
C21—C22—C23—C2859.1 (4)C12—C7—C8—C90.4 (5)
C17—C22—C23—C28122.1 (3)C11—C10—C9—C80.8 (5)
C21—C22—C23—C2663.3 (4)C7—C8—C9—C100.4 (6)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
C2—H19···Cg5i0.932.873.692 (4)148
Symmetry code: (i) x+2, y+1, z+1.
 

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBugenhagen, B., Al Jasem, Y., Al-Azani, M. & Thiemann, T. (2014). Acta Cryst. E70, o265.  CSD CrossRef IUCr Journals Google Scholar
First citationCrundwell, G., Glagovich, N. M., Heinrich, E. M. R. & Ouellette, P. (2019). IUCrData, 4, x190553.  Google Scholar
First citationDufresne, S., Skalski, T. & Skene, W. G. (2011). Can. J. Chem. 89, 173–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationEakins, G. L., Cooper, M. W., Gerasimchuk, N. N., Phillips, T. J., Breyfogle, B. E. & Stearman, C. J. (2013). Can. J. Chem. 91, 1059–1071.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, P., Izod, K. & Waddell, P. G. (2016). Private communication (refcode CCDC 1488084). CCDC, Cambridge, England.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJustin Thomas, K. R., Velusamy, M., Lin, J. T., Chuen, C.-H. & Tao, Y.-T. (2005). Chem. Mater. 17, 1860–1866.  Web of Science CrossRef Google Scholar
First citationKent, G. T., Cook, A. W., Damon, P. L., Lewis, R. A., Wu, G. & Hayton, T. W. (2021). Inorg. Chem. 60, 4996–5004.  CSD CrossRef CAS PubMed Google Scholar
First citationMelen, R. L., Eisler, D. J., Hewitt, R. A. & Rawson, J. M. (2013). Dalton Trans. 42, 3888–3895.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeidel, P., Schwarzer, A. & Mazik, M. (2021). Acta Cryst. E77, 1029–1032.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSprachmann, J., Grabicki, N., Möckel, A., Maltitz, J., Monroy, J. R., Smales, G. J. & Dumele, O. (2023). Chem. Commun. 59, 13639–13642.  CSD CrossRef CAS Google Scholar
First citationZhang, X.-Y., Liu, B.-N., Wang, P.-B. & Liu, D.-K. (2014). Acta Cryst. E70, o1118–o1119.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146