

ISSN 2414-3146

Received 20 November 2024 Accepted 3 December 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

**Keywords:** crystal structure; C—H··· $\pi$  interactions.

CCDC reference: 2407284

**Structural data:** full structural data are available from iucrdata.iucr.org

# \_\_\_\_\_

### 6-Bromo-9,9-diethyl-N,N-diphenylfluoren-2-amine

## Themmila Khamrang,<sup>a</sup> A. Kannan,<sup>b</sup> C. Ponraj,<sup>c</sup> Madhukar Hemamalini,<sup>d</sup> G. Jerald Maria Antony<sup>c</sup>\* and Dhandayutham Saravanan<sup>c</sup>

<sup>a</sup>Department of Chemistry, Dhanamanjuri University, Manipur 795 001, India, <sup>b</sup>Department of Chemistry, Anjalai Ammal Mahalingam Engineering College, Kovilvenni, Tiruvarur 614 403, Tamil Nadu, India, <sup>c</sup>Department of Chemistry, National College, Tiruchirappalli, Tamil Nadu, India, and <sup>d</sup>Department of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India. \*Correspondence e-mail: jerelewin.mine@gmail.com

In the title compound,  $C_{29}H_{26}BrN$ , the dihedral angles between the fluorene fused-ring system and the pendant phenyl groups are 67.76 (12) and 88.38 (12)°. In the crystal, weak pairwise  $C-H\cdots\pi$  interactions link the molecules into inversion dimers.



#### **Structure description**

Some fluoren-9-imines show fluorescence properties (Dufresne *et al.*, 2011) and potential as organic components in materials with flexible HOMO–LUMO gaps (Eakins *et al.*, 2013). The crystal structures of *N*-mesityl-9*H*-fluoren-9-imine (Evans *et al.*, 2016), *N*-(4-chlorophenyl)-9*H*-fluoren-9-imine (Crundwell *et al.*, 2019), 9-(4-bromobutyl)-9*H*-fluorene-9-carboxylic acid (Zhang *et al.*, 2014) and 9,9-diethyl-9*H*-fluorene-2,4,7-tricarbaldehyde (Seidel *et al.*, 2021) have been reported. As part of our research in this field, we present the synthesis and structural characterization of the title compound,  $C_{29}H_{26}BrN$ , (I).

The asymmetric unit of (I) contains one molecule (Fig. 1) in space group  $P2_1/c$ . The dihedral angles between the C13–C25 fluorene fused ring (r.m.s. deviation = 0.030 Å) and the pendant C1–C6 and C7–C12 phenyl groups are 67.76 (12) and 88.38 (12)°, respectively; the dihedral angle between the phenyl groups is 60.96 (16)°. The packing of the crystal structure is illustrated in Fig. 2. Neighboring molecules within the structure are linked by pairwise C–H··· $\pi$  interactions, as detailed in Table 1.

A search of the Cambridge Structural Database (Version 5.43, update November 2022; Groom *et al.*, 2016) for the fluoren-9-imine fragment with additional substituents yielded 9*H*-fluoren-9-imine (CSD refcode EPAJEN: Kent *et al.*, 2021), *N*-[(2-nitrophenyl) sulfanyl]-9*H*-fluoren-9-imine (REQXUI: Melen *et al.*, 2013), *N*-hydroxy-9*H*-fluoren-9-imine (NIXWUO: Bugenhagen *et al.*, 2014), and N,N'-([1,1'-biphenyl]-4,4'-diyl)bis(9*H*-fluoren-9-imine) (LODQEE: Sprachmann *et al.*, 2023).





#### Figure 1

The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.

#### Synthesis and crystallization

The title compound was prepared by the literature method (Thomas *et al.*, 2005). Crystals suitable for X-ray diffraction were grown by recrystallization from dichloromethane solution.

#### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

#### References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.
- Bugenhagen, B., Al Jasem, Y., Al-Azani, M. & Thiemann, T. (2014). Acta Cryst. E70, o265.
- Crundwell, G., Glagovich, N. M., Heinrich, E. M. R. & Ouellette, P. (2019). *IUCrData*, **4**, x190553.



The crystal packing of (I).

#### Table 1

Hydrogen-bond geometry (Å,  $^{\circ}$ ).

Cg5 is the centroid of the C17–C22 ring.

| $D - H \cdots A$       | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------|------|-------------------------|-------------------------|--------------------------------------|
| $C2-H19\cdots Cg5^{i}$ | 0.93 | 2.87                    | 3.692 (4)               | 148                                  |

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

#### Table 2

Experimental details.

| G                                                                        |                                             |
|--------------------------------------------------------------------------|---------------------------------------------|
| Crystal data                                                             |                                             |
| Chemical formula                                                         | C <sub>29</sub> H <sub>26</sub> BrN         |
| $M_{\rm r}$                                                              | 468.42                                      |
| Crystal system, space group                                              | Monoclinic, $P2_1/c$                        |
| Temperature (K)                                                          | 293                                         |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                       | 12.7044 (14), 10.5123 (17),<br>18.2491 (19) |
| $\beta$ (°)                                                              | 105.372 (12)                                |
| $V(Å^3)$                                                                 | 2350.0 (5)                                  |
| Z                                                                        | 4                                           |
| Radiation type                                                           | Μο Κα                                       |
| $\mu (\text{mm}^{-1})$                                                   | 1.77                                        |
| Crystal size (mm)                                                        | $0.37 \times 0.32 \times 0.29$              |
|                                                                          |                                             |
| Data collection                                                          |                                             |
| Diffractometer                                                           | Agilent Xcalibur, Atlas, Gemini             |
| Absorption correction                                                    | Multi-scan (CrvsAlis RED:                   |
| 1                                                                        | Agilent, 2012)                              |
| Tmin, Tmax                                                               | 0.507, 0.578                                |
| No. of measured, independent and                                         | 8476, 4762, 2977                            |
| observed $[I > 2\sigma(I)]$ reflections                                  |                                             |
| Rint                                                                     | 0.029                                       |
| $(\sin \theta/\lambda) = (Å^{-1})$                                       | 0.625                                       |
| (Shi ono)max (Pr                                                         | 0.025                                       |
| Refinement                                                               |                                             |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.048, 0.117, 1.02                          |
| No. of reflections                                                       | 4762                                        |
| No. of parameters                                                        | 282                                         |
| H-atom treatment                                                         | H-atom parameters constrained               |
| $\Delta \rho_{\text{max}} = \Delta \rho_{\text{max}} (e \text{ Å}^{-3})$ | 0.54 - 0.60                                 |
| $\Delta \rho \max$ , $\Delta \rho \min (C I I)$                          | 0.01, 0.00                                  |

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and PLATON (Spek, 2020).

- Dufresne, S., Skalski, T. & Skene, W. G. (2011). *Can. J. Chem.* **89**, 173–180.
- Eakins, G. L., Cooper, M. W., Gerasimchuk, N. N., Phillips, T. J., Breyfogle, B. E. & Stearman, C. J. (2013). *Can. J. Chem.* **91**, 1059– 1071.
- Evans, P., Izod, K. & Waddell, P. G. (2016). Private communication (refcode CCDC 1488084). CCDC, Cambridge, England.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Justin Thomas, K. R., Velusamy, M., Lin, J. T., Chuen, C.-H. & Tao, Y.-T. (2005). *Chem. Mater.* 17, 1860–1866.
- Kent, G. T., Cook, A. W., Damon, P. L., Lewis, R. A., Wu, G. & Hayton, T. W. (2021). *Inorg. Chem.* 60, 4996–5004.
- Melen, R. L., Eisler, D. J., Hewitt, R. A. & Rawson, J. M. (2013). Dalton Trans. 42, 3888–3895.
- Seidel, P., Schwarzer, A. & Mazik, M. (2021). Acta Cryst. E77, 1029– 1032.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Sprachmann, J., Grabicki, N., Möckel, A., Maltitz, J., Monroy, J. R., Smales, G. J. & Dumele, O. (2023). *Chem. Commun.* 59, 13639– 13642.
- Zhang, X.-Y., Liu, B.-N., Wang, P.-B. & Liu, D.-K. (2014). Acta Cryst. E70, o1118–o1119.

## full crystallographic data

*IUCrData* (2024). 9, x241176 [https://doi.org/10.1107/S2414314624011763]

### 6-Bromo-9,9-diethyl-N,N-diphenylfluoren-2-amine

Themmila Khamrang, A. Kannan, C. Ponraj, Madhukar Hemamalini, G. Jerald Maria Antony and Dhandayutham Saravanan

F(000) = 968

 $\theta = 3.6-26.5^{\circ}$  $\mu = 1.77 \text{ mm}^{-1}$ 

Plate, colourless

 $0.37 \times 0.32 \times 0.28 \text{ mm}$ 

T = 293 K

 $D_{\rm x} = 1.324 {\rm ~Mg} {\rm ~m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 9567 reflections

6-Bromo-9,9-diethyl-N,N-diphenylfluoren-2-amine

Crystal data

C<sub>29</sub>H<sub>26</sub>BrN  $M_r = 468.42$ Monoclinic,  $P2_1/c$  a = 12.7044 (14) Å b = 10.5123 (17) Å c = 18.2491 (19) Å  $\beta = 105.372$  (12)° V = 2350.0 (5) Å<sup>3</sup> Z = 4

#### Data collection

| Agilent Xcalibur, Atlas, Gemini          | 4762 independent reflections                                    |
|------------------------------------------|-----------------------------------------------------------------|
| diffractometer                           | 2977 reflections with $I > 2\sigma(I)$                          |
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.029$                                           |
| $\omega$ scans                           | $\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 3.5^\circ$ |
| Absorption correction: multi-scan        | $h = -9 \rightarrow 15$                                         |
| (CrysAlis RED; Agilent, 2012)            | $k = -13 \rightarrow 6$                                         |
| $T_{\min} = 0.507, \ T_{\max} = 0.578$   | $l = -20 \longrightarrow 22$                                    |
| 8476 measured reflections                |                                                                 |
|                                          |                                                                 |

#### Refinement

| Refinement on $F^2$              | Hydrogen site location: inferred from                      |
|----------------------------------|------------------------------------------------------------|
| Least-squares matrix: full       | neighbouring sites                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.048$  | H-atom parameters constrained                              |
| $wR(F^2) = 0.117$                | $w = 1/[\sigma^2(F_o^2) + (0.0391P)^2 + 1.125P]$           |
| S = 1.02                         | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 4762 reflections                 | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 282 parameters                   | $\Delta \rho_{\rm max} = 0.54 \text{ e} \text{ Å}^{-3}$    |
| 0 restraints                     | $\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$ |
| Primary atom site location: dual |                                                            |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were refined using a riding model, with  $U_{iso}(H) = 1.2 U_{eq}(C)$ .

|      | x           | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|-------------|--------------|-----------------------------|--|
| Br1  | 0.95429 (3) | 0.61601 (5) | 0.10095 (2)  | 0.0858 (2)                  |  |
| N1   | 0.6358 (2)  | 0.3480 (3)  | 0.52774 (13) | 0.0483 (7)                  |  |
| C6   | 0.6913 (2)  | 0.4055 (3)  | 0.59604 (15) | 0.0397 (7)                  |  |
| C12  | 0.5429 (2)  | 0.2704 (3)  | 0.52127 (15) | 0.0403 (7)                  |  |
| C5   | 0.6402 (2)  | 0.4278 (3)  | 0.65293 (16) | 0.0457 (8)                  |  |
| H16  | 0.567720    | 0.403893    | 0.646045     | 0.055*                      |  |
| C25  | 0.6902 (2)  | 0.4777 (3)  | 0.43321 (15) | 0.0425 (7)                  |  |
| H2   | 0.668430    | 0.550728    | 0.453992     | 0.051*                      |  |
| C1   | 0.7982 (2)  | 0.4448 (3)  | 0.60737 (16) | 0.0462 (8)                  |  |
| H20  | 0.833360    | 0.432118    | 0.569297     | 0.055*                      |  |
| C24  | 0.7358 (2)  | 0.4858 (3)  | 0.37282 (15) | 0.0389 (7)                  |  |
| C16  | 0.7665 (2)  | 0.3769 (3)  | 0.34112 (15) | 0.0417 (7)                  |  |
| C4   | 0.6958 (3)  | 0.4849 (3)  | 0.71935 (17) | 0.0510 (8)                  |  |
| H17  | 0.660812    | 0.498929    | 0.757410     | 0.061*                      |  |
| C22  | 0.8134 (2)  | 0.5466 (3)  | 0.27537 (15) | 0.0415 (7)                  |  |
| C17  | 0.8142 (2)  | 0.4145 (3)  | 0.27948 (16) | 0.0429 (7)                  |  |
| C23  | 0.7604 (2)  | 0.6046 (3)  | 0.33320 (15) | 0.0420 (7)                  |  |
| C21  | 0.8555 (2)  | 0.6077 (3)  | 0.22258 (16) | 0.0489 (8)                  |  |
| H6   | 0.856900    | 0.696032    | 0.220138     | 0.059*                      |  |
| C7   | 0.5403 (2)  | 0.1756 (3)  | 0.57312 (17) | 0.0502 (8)                  |  |
| H22  | 0.600767    | 0.161627    | 0.614011     | 0.060*                      |  |
| C13  | 0.6774 (2)  | 0.3589 (3)  | 0.46244 (16) | 0.0439 (7)                  |  |
| C26  | 0.6551 (3)  | 0.6756 (3)  | 0.29330 (19) | 0.0572 (9)                  |  |
| H30A | 0.620478    | 0.704973    | 0.331615     | 0.069*                      |  |
| H30B | 0.674493    | 0.750156    | 0.268381     | 0.069*                      |  |
| C11  | 0.4529 (3)  | 0.2877 (3)  | 0.46116 (17) | 0.0525 (8)                  |  |
| H26  | 0.453256    | 0.350736    | 0.425475     | 0.063*                      |  |
| C3   | 0.8025 (3)  | 0.5218 (3)  | 0.73041 (19) | 0.0550 (9)                  |  |
| H18  | 0.840137    | 0.559872    | 0.775801     | 0.066*                      |  |
| C14  | 0.7071 (3)  | 0.2511 (3)  | 0.43068 (17) | 0.0538 (9)                  |  |
| H13  | 0.697315    | 0.171879    | 0.450604     | 0.065*                      |  |
| C2   | 0.8527 (3)  | 0.5018 (3)  | 0.67364 (18) | 0.0530 (8)                  |  |
| H19  | 0.924772    | 0.527292    | 0.680377     | 0.064*                      |  |
| C15  | 0.7516 (3)  | 0.2588 (3)  | 0.36916 (18) | 0.0534 (8)                  |  |
| H12  | 0.770937    | 0.185547    | 0.347291     | 0.064*                      |  |
| C28  | 0.8353 (3)  | 0.6960 (3)  | 0.38836 (18) | 0.0554 (9)                  |  |
| H28A | 0.853799    | 0.765901    | 0.359389     | 0.066*                      |  |
| H28B | 0.795045    | 0.731182    | 0.421969     | 0.066*                      |  |
| C18  | 0.8542 (3)  | 0.3425 (3)  | 0.22966 (17) | 0.0538 (9)                  |  |
| H9   | 0.853886    | 0.254087    | 0.232049     | 0.065*                      |  |
| C20  | 0.8952 (2)  | 0.5344 (4)  | 0.17374 (16) | 0.0534 (9)                  |  |
| C19  | 0.8947 (3)  | 0.4046 (4)  | 0.17605 (17) | 0.0594 (10)                 |  |
| H8   | 0.921608    | 0.357949    | 0.141644     | 0.071*                      |  |
| C10  | 0.3627 (3)  | 0.2128 (4)  | 0.4534 (2)   | 0.0614 (10)                 |  |
| H25  | 0.302388    | 0.225092    | 0.412174     | 0.074*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C8   | 0.4492 (3) | 0.1026 (3) | 0.5645 (2) | 0.0616 (9)  |  |
|------|------------|------------|------------|-------------|--|
| H23  | 0.448149   | 0.039306   | 0.599897   | 0.074*      |  |
| C9   | 0.3599 (3) | 0.1205 (4) | 0.5050(2)  | 0.0631 (10) |  |
| H24  | 0.297871   | 0.070585   | 0.499736   | 0.076*      |  |
| C27  | 0.5732 (3) | 0.5986 (4) | 0.2352 (2) | 0.0750 (12) |  |
| H31A | 0.603564   | 0.576906   | 0.193923   | 0.112*      |  |
| H31B | 0.507957   | 0.647711   | 0.216245   | 0.112*      |  |
| H31C | 0.556058   | 0.522199   | 0.258433   | 0.112*      |  |
| C29  | 0.9385 (3) | 0.6393 (4) | 0.4357 (2) | 0.0774 (12) |  |
| H29A | 0.974601   | 0.593977   | 0.403666   | 0.116*      |  |
| H29B | 0.922103   | 0.581655   | 0.471999   | 0.116*      |  |
| H29C | 0.985418   | 0.705712   | 0.462089   | 0.116*      |  |
|      |            |            |            |             |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Br1 | 0.0712 (3)  | 0.1406 (5)  | 0.0560 (2)  | -0.0011 (3)  | 0.03493 (19) | 0.0268 (2)   |
| N1  | 0.0527 (15) | 0.0639 (18) | 0.0314 (13) | -0.0212 (14) | 0.0167 (11)  | -0.0053 (12) |
| C6  | 0.0426 (16) | 0.0447 (18) | 0.0320 (14) | -0.0033 (15) | 0.0100 (12)  | 0.0057 (14)  |
| C12 | 0.0406 (15) | 0.0489 (19) | 0.0327 (15) | -0.0046 (15) | 0.0121 (12)  | -0.0013 (14) |
| C5  | 0.0433 (16) | 0.056 (2)   | 0.0402 (16) | -0.0045 (16) | 0.0147 (13)  | 0.0002 (15)  |
| C25 | 0.0476 (17) | 0.0478 (19) | 0.0346 (15) | -0.0043 (16) | 0.0155 (13)  | -0.0045 (14) |
| C1  | 0.0435 (16) | 0.058 (2)   | 0.0377 (16) | -0.0037 (16) | 0.0123 (13)  | 0.0026 (15)  |
| C24 | 0.0422 (16) | 0.0428 (18) | 0.0326 (14) | -0.0032 (15) | 0.0114 (12)  | 0.0000 (14)  |
| C16 | 0.0496 (17) | 0.0450 (19) | 0.0338 (15) | -0.0045 (16) | 0.0167 (13)  | -0.0039 (14) |
| C4  | 0.064 (2)   | 0.051 (2)   | 0.0419 (17) | 0.0019 (18)  | 0.0213 (15)  | -0.0049 (16) |
| C22 | 0.0375 (15) | 0.056 (2)   | 0.0310 (14) | -0.0012 (16) | 0.0099 (12)  | 0.0033 (14)  |
| C17 | 0.0428 (16) | 0.055 (2)   | 0.0339 (15) | -0.0055 (16) | 0.0153 (13)  | -0.0044 (15) |
| C23 | 0.0485 (17) | 0.0449 (18) | 0.0355 (15) | -0.0003 (16) | 0.0162 (13)  | 0.0021 (14)  |
| C21 | 0.0434 (16) | 0.067 (2)   | 0.0377 (16) | -0.0026 (17) | 0.0133 (13)  | 0.0083 (16)  |
| C7  | 0.0452 (18) | 0.056 (2)   | 0.0460 (18) | -0.0095 (17) | 0.0069 (14)  | 0.0107 (16)  |
| C13 | 0.0485 (17) | 0.053 (2)   | 0.0332 (15) | -0.0129 (16) | 0.0153 (13)  | -0.0025 (14) |
| C26 | 0.058 (2)   | 0.060(2)    | 0.058 (2)   | 0.0127 (19)  | 0.0254 (17)  | 0.0139 (18)  |
| C11 | 0.0548 (19) | 0.060 (2)   | 0.0405 (17) | -0.0001 (18) | 0.0084 (15)  | 0.0087 (16)  |
| C3  | 0.064 (2)   | 0.049 (2)   | 0.0468 (18) | -0.0053 (19) | 0.0054 (16)  | -0.0097 (16) |
| C14 | 0.074 (2)   | 0.0434 (19) | 0.0515 (19) | -0.0135 (18) | 0.0290 (17)  | 0.0006 (16)  |
| C2  | 0.0447 (17) | 0.059 (2)   | 0.052 (2)   | -0.0061 (17) | 0.0069 (15)  | 0.0015 (17)  |
| C15 | 0.072 (2)   | 0.0405 (19) | 0.0551 (19) | -0.0057 (18) | 0.0306 (17)  | -0.0086 (16) |
| C28 | 0.067 (2)   | 0.051 (2)   | 0.0523 (19) | -0.0091 (19) | 0.0234 (17)  | -0.0034 (17) |
| C18 | 0.0571 (19) | 0.062 (2)   | 0.0465 (18) | -0.0045 (18) | 0.0215 (15)  | -0.0113 (17) |
| C20 | 0.0428 (17) | 0.087 (3)   | 0.0330 (16) | -0.002 (2)   | 0.0141 (13)  | 0.0087 (18)  |
| C19 | 0.0536 (19) | 0.091 (3)   | 0.0381 (17) | -0.003 (2)   | 0.0211 (15)  | -0.0135 (19) |
| C10 | 0.0425 (18) | 0.078 (3)   | 0.056 (2)   | 0.000 (2)    | 0.0001 (15)  | -0.009 (2)   |
| C8  | 0.064 (2)   | 0.059 (2)   | 0.064 (2)   | -0.014 (2)   | 0.0204 (18)  | 0.0081 (19)  |
| C9  | 0.0455 (19) | 0.070 (3)   | 0.074 (2)   | -0.0159 (19) | 0.0153 (18)  | -0.012 (2)   |
| C27 | 0.050 (2)   | 0.115 (3)   | 0.058 (2)   | 0.007 (2)    | 0.0118 (17)  | 0.004 (2)    |
| C29 | 0.059 (2)   | 0.100 (3)   | 0.068 (2)   | -0.005 (2)   | 0.0079 (19)  | -0.018 (2)   |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Br1-C20     | 1.896 (3) | C13—C14       | 1.371 (4) |  |
|-------------|-----------|---------------|-----------|--|
| N1—C6       | 1.397 (4) | C26—C27       | 1.509 (5) |  |
| N1-C12      | 1.413 (4) | C26—H30A      | 0.9700    |  |
| N1-C13      | 1.431 (3) | C26—H30B      | 0.9700    |  |
| C6—C1       | 1.381 (4) | C11—C10       | 1.367 (4) |  |
| C6—C5       | 1.383 (4) | C11—H26       | 0.9300    |  |
| C12—C11     | 1.371 (4) | C3—C2         | 1.370 (4) |  |
| C12—C7      | 1.380 (4) | C3—H18        | 0.9300    |  |
| C5—C4       | 1.369 (4) | C14—C15       | 1.387 (4) |  |
| C5—H16      | 0.9300    | C14—H13       | 0.9300    |  |
| C25—C24     | 1.376 (4) | C2—H19        | 0.9300    |  |
| C25—C13     | 1.385 (4) | C15—H12       | 0.9300    |  |
| С25—Н2      | 0.9300    | C28—C29       | 1.491 (5) |  |
| C1—C2       | 1.363 (4) | C28—H28A      | 0.9700    |  |
| C1—H20      | 0.9300    | C28—H28B      | 0.9700    |  |
| C24—C16     | 1.385 (4) | C18—C19       | 1.384 (4) |  |
| C24—C23     | 1.517 (4) | С18—Н9        | 0.9300    |  |
| C16—C15     | 1.375 (4) | C20—C19       | 1.365 (5) |  |
| C16—C17     | 1.466 (4) | С19—Н8        | 0.9300    |  |
| C4—C3       | 1.373 (4) | С10—С9        | 1.359 (5) |  |
| C4—H17      | 0.9300    | C10—H25       | 0.9300    |  |
| C22—C21     | 1.378 (4) | C8—C9         | 1.360 (5) |  |
| C22—C17     | 1.391 (4) | C8—H23        | 0.9300    |  |
| C22—C23     | 1.522 (4) | C9—H24        | 0.9300    |  |
| C17—C18     | 1.380 (4) | C27—H31A      | 0.9600    |  |
| C23—C28     | 1.527 (4) | C27—H31B      | 0.9600    |  |
| C23—C26     | 1.536 (4) | C27—H31C      | 0.9600    |  |
| C21—C20     | 1.372 (4) | C29—H29A      | 0.9600    |  |
| С21—Н6      | 0.9300    | C29—H29B      | 0.9600    |  |
| С7—С8       | 1.363 (4) | C29—H29C      | 0.9600    |  |
| С7—Н22      | 0.9300    |               |           |  |
| C6—N1—C12   | 122.5 (2) | H30A—C26—H30B | 107.5     |  |
| C6—N1—C13   | 119.9 (2) | C10—C11—C12   | 120.3 (3) |  |
| C12—N1—C13  | 117.5 (2) | C10—C11—H26   | 119.8     |  |
| C1—C6—C5    | 118.4 (3) | C12—C11—H26   | 119.8     |  |
| C1-C6-N1    | 120.5 (2) | C2—C3—C4      | 119.0 (3) |  |
| C5-C6-N1    | 121.1 (3) | C2—C3—H18     | 120.5     |  |
| C11—C12—C7  | 118.5 (3) | C4—C3—H18     | 120.5     |  |
| C11—C12—N1  | 119.4 (3) | C13—C14—C15   | 120.7 (3) |  |
| C7—C12—N1   | 122.1 (3) | C13—C14—H13   | 119.6     |  |
| C4—C5—C6    | 120.3 (3) | C15—C14—H13   | 119.6     |  |
| C4—C5—H16   | 119.9     | C1—C2—C3      | 120.6 (3) |  |
| С6—С5—Н16   | 119.9     | C1—C2—H19     | 119.7     |  |
| C24—C25—C13 | 118.8 (3) | C3—C2—H19     | 119.7     |  |
| С24—С25—Н2  | 120.6     | C16—C15—C14   | 118.7 (3) |  |

| С13—С25—Н2     | 120.6     | C16—C15—H12     | 120.6      |
|----------------|-----------|-----------------|------------|
| C2—C1—C6       | 120.8 (3) | C14—C15—H12     | 120.6      |
| C2—C1—H20      | 119.6     | C29—C28—C23     | 115.4 (3)  |
| C6—C1—H20      | 119.6     | C29—C28—H28A    | 108.4      |
| C25—C24—C16    | 120.6 (3) | C23—C28—H28A    | 108.4      |
| C25—C24—C23    | 128.0 (3) | C29—C28—H28B    | 108.4      |
| C16—C24—C23    | 111.4 (2) | C23—C28—H28B    | 108.4      |
| C15—C16—C24    | 120.6 (3) | H28A—C28—H28B   | 107.5      |
| C15—C16—C17    | 130.9 (3) | C17—C18—C19     | 118.5 (3)  |
| C24—C16—C17    | 108.5 (3) | С17—С18—Н9      | 120.7      |
| C5—C4—C3       | 120.8 (3) | С19—С18—Н9      | 120.7      |
| C5—C4—H17      | 119.6     | C19—C20—C21     | 122.4 (3)  |
| C3—C4—H17      | 119.6     | C19—C20—Br1     | 118.7 (3)  |
| C21—C22—C17    | 120.3 (3) | C21—C20—Br1     | 118.9 (3)  |
| C21—C22—C23    | 128.5 (3) | C20—C19—C18     | 119.9 (3)  |
| C17—C22—C23    | 111.2 (2) | С20—С19—Н8      | 120.0      |
| C18—C17—C22    | 120.8 (3) | С18—С19—Н8      | 120.0      |
| C18—C17—C16    | 131.0 (3) | C9—C10—C11      | 121.0 (3)  |
| C22—C17—C16    | 108.2 (3) | С9—С10—Н25      | 119.5      |
| C24—C23—C22    | 100.7 (2) | C11—C10—H25     | 119.5      |
| C24—C23—C28    | 112.0 (2) | C9—C8—C7        | 121.2 (3)  |
| C22—C23—C28    | 113.3 (2) | С9—С8—Н23       | 119.4      |
| C24—C23—C26    | 111.2 (2) | C7—C8—H23       | 119.4      |
| C22—C23—C26    | 110.8 (2) | С10—С9—С8       | 118.8 (3)  |
| C28—C23—C26    | 108.6 (3) | С10—С9—Н24      | 120.6      |
| C20—C21—C22    | 118.0 (3) | C8—C9—H24       | 120.6      |
| С20—С21—Н6     | 121.0     | С26—С27—Н31А    | 109.5      |
| С22—С21—Н6     | 121.0     | C26—C27—H31B    | 109.5      |
| C8—C7—C12      | 120.1 (3) | H31A—C27—H31B   | 109.5      |
| C8—C7—H22      | 119.9     | С26—С27—Н31С    | 109.5      |
| C12—C7—H22     | 119.9     | H31A—C27—H31C   | 109.5      |
| C14—C13—C25    | 120.6 (3) | H31B—C27—H31C   | 109.5      |
| C14—C13—N1     | 119.3 (3) | С28—С29—Н29А    | 109.5      |
| C25—C13—N1     | 120.0 (3) | С28—С29—Н29В    | 109.5      |
| C27—C26—C23    | 115.1 (3) | H29A—C29—H29B   | 109.5      |
| С27—С26—Н30А   | 108.5     | С28—С29—Н29С    | 109.5      |
| C23—C26—H30A   | 108.5     | H29A—C29—H29C   | 109.5      |
| C27—C26—H30B   | 108.5     | H29B—C29—H29C   | 109.5      |
| C23—C26—H30B   | 108.5     |                 |            |
|                |           |                 |            |
| C12—N1—C6—C1   | 158.9 (3) | C17—C22—C23—C26 | -115.5 (3) |
| C13—N1—C6—C1   | -16.4 (4) | C17—C22—C21—C20 | 1.5 (4)    |
| C12—N1—C6—C5   | -22.9 (4) | C23—C22—C21—C20 | -177.1 (3) |
| C13—N1—C6—C5   | 161.8 (3) | C11—C12—C7—C8   | -0.7 (5)   |
| C6—N1—C12—C11  | 133.9 (3) | N1—C12—C7—C8    | -179.7 (3) |
| C13—N1—C12—C11 | -50.7 (4) | C24—C25—C13—C14 | -1.6 (4)   |
| C6—N1—C12—C7   | -47.1 (4) | C24—C25—C13—N1  | 176.6 (3)  |
| C13—N1—C12—C7  | 128.2 (3) | C6—N1—C13—C14   | 118.5 (3)  |

| -1.4 (5)   | C12—N1—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -57.0 (4)                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| -179.6 (3) | C6—N1—C13—C25                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -59.7 (4)                                            |
| 1.3 (5)    | C12—N1—C13—C25                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124.8 (3)                                            |
| 179.5 (3)  | C24—C23—C26—C27                                                                                                                                                                                                                                                                                                                                                                                                                                                | -57.7 (3)                                            |
| 1.0 (4)    | C22—C23—C26—C27                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53.5 (4)                                             |
| -178.2 (3) | C28—C23—C26—C27                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178.6 (3)                                            |
| 0.4 (4)    | C7—C12—C11—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3 (5)                                              |
| 179.7 (3)  | N1-C12-C11-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179.3 (3)                                            |
| -178.8 (3) | C5—C4—C3—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.6 (5)                                              |
| 0.5 (3)    | C25-C13-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7 (5)                                              |
| 0.5 (5)    | N1-C13-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -177.5 (3)                                           |
| -1.8 (5)   | C6—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.2 (5)                                             |
| 177.1 (3)  | C4—C3—C2—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.7 (5)                                             |
| 179.0 (3)  | C24—C16—C15—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.2 (5)                                             |
| -2.1 (3)   | C17—C16—C15—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177.7 (3)                                            |
| 2.8 (6)    | C13—C14—C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7 (5)                                              |
| -178.1 (3) | C24—C23—C28—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52.8 (4)                                             |
| -178.1 (3) | C22—C23—C28—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                | -60.3 (4)                                            |
| 1.0 (3)    | C26—C23—C28—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                | 176.1 (3)                                            |
| 177.6 (3)  | C22—C17—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8 (5)                                              |
| -1.7 (3)   | C16—C17—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.8 (3)                                            |
| 56.9 (4)   | C22—C21—C20—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.3 (5)                                             |
| -122.4 (3) | C22-C21-C20-Br1                                                                                                                                                                                                                                                                                                                                                                                                                                                | -179.6 (2)                                           |
| -64.9 (4)  | C21—C20—C19—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.7 (5)                                             |
| 115.8 (3)  | Br1-C20-C19-C18                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178.6 (2)                                            |
| -178.9 (3) | C17—C18—C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5 (5)                                              |
| 2.3 (3)    | C12—C11—C10—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4 (5)                                              |
| -59.1 (4)  | C12—C7—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4 (5)                                              |
| 122.1 (3)  | C11—C10—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.8 (5)                                             |
| 63.3 (4)   | C7—C8—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4 (6)                                              |
|            | $\begin{array}{c} -1.4 \ (5) \\ -179.6 \ (3) \\ 1.3 \ (5) \\ 179.5 \ (3) \\ 1.0 \ (4) \\ -178.2 \ (3) \\ 0.4 \ (4) \\ 179.7 \ (3) \\ -178.8 \ (3) \\ 0.5 \ (3) \\ 0.5 \ (5) \\ -1.8 \ (5) \\ 177.1 \ (3) \\ 179.0 \ (3) \\ -2.1 \ (3) \\ 2.8 \ (6) \\ -178.1 \ (3) \\ 1.0 \ (3) \\ 177.6 \ (3) \\ -1.7 \ (3) \\ 56.9 \ (4) \\ -122.4 \ (3) \\ -64.9 \ (4) \\ 115.8 \ (3) \\ -178.9 \ (3) \\ 2.3 \ (3) \\ -59.1 \ (4) \\ 122.1 \ (3) \\ 63.3 \ (4) \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

### Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C17–C22 ring.

| D—H···A                    | <i>D</i> —Н | H··· <i>A</i> | $D \cdots A$ | D—H···A |
|----------------------------|-------------|---------------|--------------|---------|
| C2—H19····Cg5 <sup>i</sup> | 0.93        | 2.87          | 3.692 (4)    | 148     |

Symmetry code: (i) -x+2, -y+1, -z+1.