metal-organic compounds
Bis(azido-κN1)bis(2,2′-dipyridylamine-κ2N1,N1′)iron(II) monohydrate
aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartment de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cChemistry, Osnabrück University, Barabarstr. 7, 49069 Osnabrück, Germany, and dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: hreuter@uos.de, m.aldouh@hu.edu.ye
In the hydrated title complex, [Fe(dpa)2(N3)2]·H2O (dpa is 2,2′-dipyridylamine, C10H9N3), the FeII ion is coordinated in a distorted octahedral manner by two neutral, chelating dpa ligands and two anionic, monodentate azide (N3−) ions in a cis-configuration. Distortion results from different Fe—N bond lengths [2.1397 (13)–2.2254 (12) Å] and (N—Fe—N)cis [80.12 (4)–96.72 (5)°] and (N—Fe—N)trans [166.73 (4)–176.62 (5)°] bond angles. Hydrogen bonds exist between two symmetry-related water molecules as hydrogen donors to the γ-N atoms of azido ligands of two adjacent iron complexes and as acceptors from the amide group of the dpa ligands of two additional iron complexes. The hydrogen-bonding pattern results in eight-membered ⋯H—O—H⋯N⋯ rings and a band-like arrangement of the molecules involved. Additional, weaker hydrogen bonds between the α-N atom of the second azido ligand as acceptors and the amide groups of the second dpa ligands as donors cross-link neighboring bands to layers extending parallel to (001).
Keywords: crystal structure; azide; 2,2′-dipyridylamine (dpa); iron(II); hydrogen-bonding.
CCDC reference: 2403263
Structure description
Complexes of first-row transition metals with d4-, d5-, d6- or d7-configuration can exhibit spin-crossover (SCO) behavior between low-spin and high-spin states in response to external stimuli such as temperature, pressure or light irradiation (Benmansour et al., 2010). They are of interest in functional devices such as sensors, molecular electronics, spintronics, as well as in memory and information processing applications (Halcrow, 2013). In particular, many electronic devices exploiting the SCO phenomena contain Fe-based SCO materials, which have shown extraordinary performance.
In order to design such SCO materials, our strategy is based on the use of cyano-carbanion ligands. These organic anions are versatile and effective for developing molecular architectures with different topologies and dimensionalities, as a result of their ability to coordinate and bridge metal ions in many different ways (see, for example: Addala et al., 2015; Cuza et al., 2021; Dmitrienko et al., 2020). Continuing our study of SCO 3d-metal complexes formed by polydentate and polynitrile units, we describe here the synthesis and of the title Fe(II) complex, (I), containing the azido (N3−) ligand and neutral 2,2′-dipyridylamine, dpa, as co-ligand.
The comprises one iron(II) complex and one water molecule (Fig. 1). The overall composition of the complex corresponds to [FeII(LBNN)2(N3)2] with two neutral chelating (LB) molecules LBNN = dpa, and two monodentate azido ligands, N3−, in a cis arrangement.
of (I)The FeII atom exhibits a slightly distorted octahedral {FeN6} coordination (Fig. 2) with an anti orientation of the two azido ligands. Distortion results from different Fe—N bond lengths [d(Fe—Nazido) = 2.1397 (13)/2.1645 (13) Å < d(Fe—Ndpa) = 2.1710 (11)–2.2254 (12) Å] and different bond angles [〈(N—Fe—N)cis = 80.12 (4)–96.72 (5)°, 〈(N—Fe—N)trans = 166.73 (4)–176.62 (5)°]. Both azido ligands are slightly bent with N—N bond lengths corresponding to formal N=N double bonds with the longer one to the metal-coordinating N atom (Table 1). Moreover, they are different to some extend because of different coordination modes: in the first azido ligand (N1–N3) the iron-coordinating N1 atom is also involved in a hydrogen bond, while in the second azido ligand (N4–N6) the terminal nitrogen atom N6 is involved in two hydrogen bonds (Fig. 3).
|
The two organic ligands (labeled with suffixes A and B; Fig. 4) exhibit very similar conformations characterized by large dihedral angles [24.49 (5)°/17.95 (5)°, A/B] between the least-squares planes of the two pyridine moieties. N—C and C—C bond lengths and angles are as usual but bond angles at the bridging NH groups are widened [128.64 (10)°/130.43 (12)°, A/B]. Both amine groups act as hydrogen donors in hydrogen-bonding, N2A to the α-N atom of the first azide ion (N1–N3) and N2B to the O atom of the water molecule of crystallization. Numerical details of hydrogen-bonding interactions of these hydrogen bonds are summarized in Table 2.
The water molecule acts as hydrogen-bond donor to the γ-nitrogen atom (N6) of two different azido ligands related to each other via a center of symmetry (which also applies to the water molecule) so that an eight-membered ⋯H—O—H⋯N⋯ ring results (Table 2). Moreover, both water molecules in this ring act as acceptors of additional hydrogen bonds (with H22 from the amide group of the second dpa ligand) of two adjacent iron complexes, which in turn are involved in the formation of further eight-membered rings. In summary, the resulting, supramolecular system of hydrogen-donor and acceptor bonds between water molecules and iron complexes generates bands expanding parallel to [110]. Weaker hydrogen bonds (Table 2) between the α-nitrogen atoms (N1) of the second azido ligand in each iron complex and the hydrogen atoms (H21 of the amide group of the first dpa ligand) cross-link these bands into layers parallel to (001) (Fig. 5).
Crystal structures of iron(II) complexes of composition FeII(LBNN)2(X)2 and LBNN = dpa have been previously described for X = isothiocyanate, NCS (Gaspar et al., 2005), X = dicyanamide, NCNCN (Gaspar et al., 2005), and X = H2O with the decaborate anion [B10H10]2− as counter-ion (Korolenko et al., 2020). Other neutral, mononuclear iron(II) complexes of composition FeII(LBNN)2(N3)2 have been prepared and structurally described in case of LBNN = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole (Setifi et al., 2021), LBNN = quinolin-8-amine (Setifi et al., 2016), and LBNN = 1,10-phenanthroline (Miao et al., 2006).
Synthesis and crystallization
Compound (I) was synthesized under solvothermal conditions from a mixture of iron(II) bis(tetrafluoridoborate) hydrate (34 mg, 0.1 mmol), 2,2′-dipyridylamine (34 mg, 0.2 mmol) and sodium azide (13 mg, 0.2 mmol) in a mixture of water and ethanol (4:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 393 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h−1 to give the title compound (yield 42%).
Refinement
Crystal data, data collection and structure . The positions of the water H atoms were located from a difference-Fourier map and were refined with a fixed O—H distances of 0.85 Å.
details are summarized in Table 3
|
Structural data
CCDC reference: 2403263
https://doi.org/10.1107/S2414314624011167/wm4222sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624011167/wm4222Isup2.hkl
[Fe(N3)2(C10H9N3)2]·H2O | Z = 2 |
Mr = 500.33 | F(000) = 516 |
Triclinic, P1 | Dx = 1.495 Mg m−3 |
a = 7.7496 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.3778 (6) Å | Cell parameters from 2459 reflections |
c = 16.6178 (10) Å | θ = 2.7–28.2° |
α = 79.516 (3)° | µ = 0.72 mm−1 |
β = 83.962 (3)° | T = 300 K |
γ = 69.520 (3)° | Block, red |
V = 1111.34 (12) Å3 | 0.38 × 0.21 × 0.12 mm |
Bruker APEXII CCD diffractometer | 7610 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.057 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 36.4°, θmin = 2.4° |
h = −12→12 | |
93449 measured reflections | k = −15→15 |
10836 independent reflections | l = −27→27 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0356P)2 + 0.332P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
10836 reflections | Δρmax = 0.38 e Å−3 |
315 parameters | Δρmin = −0.65 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The positions of all H atoms were clearly identified in difference-Fourier syntheses. Those of the organic ligands were refined with calculated positions (–CH– = 0.93 Å, –NH– = 0.89 Å) and isotropic displacement parameters depending on the equivalent isotropic temperature factor of the parent atoms. The position of the H atom of the water molecule were refined with fixed O—H distances of 0.85 Å. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.75182 (2) | 0.51720 (2) | 0.71642 (2) | 0.02855 (5) | |
N1 | 0.93226 (16) | 0.60191 (16) | 0.63027 (8) | 0.0407 (3) | |
N1A | 0.65214 (14) | 0.42814 (12) | 0.62585 (7) | 0.0299 (2) | |
N6 | 1.0198 (2) | 0.1417 (2) | 0.87772 (11) | 0.0623 (4) | |
C1A | 0.77883 (19) | 0.31328 (16) | 0.59070 (9) | 0.0361 (3) | |
H1A | 0.902781 | 0.300924 | 0.592767 | 0.043* | |
C2A | 0.7342 (2) | 0.21435 (18) | 0.55229 (10) | 0.0432 (3) | |
H2A | 0.825505 | 0.135541 | 0.529849 | 0.052* | |
C3A | 0.5487 (2) | 0.23478 (18) | 0.54770 (10) | 0.0436 (3) | |
H3A | 0.514078 | 0.167702 | 0.523344 | 0.052* | |
C4A | 0.4174 (2) | 0.35459 (17) | 0.57936 (9) | 0.0378 (3) | |
H4A | 0.292675 | 0.371479 | 0.575537 | 0.045* | |
C5A | 0.47400 (17) | 0.45148 (14) | 0.61767 (8) | 0.0288 (2) | |
N2A | 0.33800 (14) | 0.57235 (13) | 0.64863 (8) | 0.0332 (2) | |
H21 | 0.224127 | 0.575159 | 0.642404 | 0.040 (4)* | |
C6A | 0.34840 (16) | 0.71080 (14) | 0.66191 (8) | 0.0286 (2) | |
C7A | 0.18479 (19) | 0.83846 (16) | 0.65752 (10) | 0.0388 (3) | |
H7A | 0.074958 | 0.829053 | 0.645695 | 0.047* | |
C8A | 0.1891 (2) | 0.97676 (17) | 0.67087 (11) | 0.0458 (3) | |
H8A | 0.081235 | 1.061619 | 0.669914 | 0.055* | |
C9A | 0.3551 (2) | 0.98975 (16) | 0.68581 (10) | 0.0426 (3) | |
H9A | 0.361499 | 1.083335 | 0.693806 | 0.051* | |
C10A | 0.5092 (2) | 0.86086 (15) | 0.68847 (9) | 0.0363 (3) | |
H10A | 0.621159 | 0.870158 | 0.697129 | 0.044* | |
N3A | 0.50850 (14) | 0.72022 (12) | 0.67923 (7) | 0.0298 (2) | |
N1B | 0.57667 (16) | 0.43066 (13) | 0.81383 (7) | 0.0331 (2) | |
C1B | 0.5491 (2) | 0.29847 (16) | 0.80710 (10) | 0.0400 (3) | |
H1B | 0.628281 | 0.235554 | 0.771837 | 0.048* | |
C2B | 0.4115 (2) | 0.25227 (19) | 0.84919 (11) | 0.0474 (4) | |
H2B | 0.396359 | 0.161449 | 0.841875 | 0.057* | |
C3B | 0.2952 (2) | 0.3441 (2) | 0.90305 (11) | 0.0500 (4) | |
H3B | 0.198122 | 0.317344 | 0.931310 | 0.060* | |
C4B | 0.3250 (2) | 0.4747 (2) | 0.91413 (10) | 0.0442 (3) | |
H4B | 0.251129 | 0.535740 | 0.951412 | 0.053* | |
C5B | 0.46853 (18) | 0.51505 (16) | 0.86852 (8) | 0.0331 (2) | |
N2B | 0.49131 (17) | 0.64924 (14) | 0.88067 (8) | 0.0389 (3) | |
H22 | 0.403667 | 0.703840 | 0.913001 | 0.044 (5)* | |
N2 | 0.87538 (16) | 0.70541 (16) | 0.57544 (8) | 0.0385 (3) | |
C6B | 0.64315 (19) | 0.69641 (15) | 0.86547 (8) | 0.0334 (2) | |
C7B | 0.6399 (2) | 0.82180 (18) | 0.90159 (10) | 0.0451 (3) | |
H7B | 0.537900 | 0.870936 | 0.933549 | 0.054* | |
C8B | 0.7890 (3) | 0.8704 (2) | 0.88898 (12) | 0.0530 (4) | |
H8B | 0.788688 | 0.954293 | 0.911503 | 0.064* | |
C9B | 0.9408 (3) | 0.7933 (2) | 0.84230 (11) | 0.0519 (4) | |
H9B | 1.044924 | 0.822798 | 0.834127 | 0.062* | |
C10B | 0.9336 (2) | 0.6727 (2) | 0.80852 (10) | 0.0423 (3) | |
H10B | 1.036071 | 0.620313 | 0.777860 | 0.051* | |
N3B | 0.78511 (16) | 0.62598 (14) | 0.81743 (7) | 0.0347 (2) | |
N4 | 0.98043 (19) | 0.30965 (15) | 0.75339 (9) | 0.0456 (3) | |
N3 | 0.8244 (2) | 0.8069 (2) | 0.52298 (11) | 0.0654 (5) | |
N5 | 0.99782 (16) | 0.22607 (14) | 0.81594 (8) | 0.0388 (3) | |
O1 | 0.2195 (2) | 0.85040 (17) | 0.97599 (9) | 0.0622 (4) | |
H1 | 0.152 (3) | 0.838 (3) | 1.0184 (9) | 0.093* | |
H2 | 0.166 (3) | 0.9352 (15) | 0.9458 (13) | 0.093* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.02457 (8) | 0.02777 (8) | 0.03363 (9) | −0.00780 (6) | −0.00253 (6) | −0.00701 (6) |
N1 | 0.0289 (5) | 0.0486 (7) | 0.0461 (7) | −0.0169 (5) | −0.0018 (5) | −0.0033 (6) |
N1A | 0.0260 (4) | 0.0288 (5) | 0.0345 (5) | −0.0065 (4) | −0.0030 (4) | −0.0084 (4) |
N6 | 0.0579 (9) | 0.0577 (9) | 0.0642 (10) | −0.0215 (8) | −0.0044 (8) | 0.0134 (8) |
C1A | 0.0317 (6) | 0.0360 (6) | 0.0375 (7) | −0.0050 (5) | −0.0014 (5) | −0.0112 (5) |
C2A | 0.0472 (8) | 0.0376 (7) | 0.0430 (8) | −0.0072 (6) | −0.0003 (6) | −0.0170 (6) |
C3A | 0.0552 (9) | 0.0391 (7) | 0.0445 (8) | −0.0212 (7) | −0.0039 (7) | −0.0149 (6) |
C4A | 0.0377 (7) | 0.0385 (7) | 0.0434 (7) | −0.0181 (6) | −0.0055 (5) | −0.0090 (6) |
C5A | 0.0287 (5) | 0.0266 (5) | 0.0317 (6) | −0.0101 (4) | −0.0031 (4) | −0.0035 (4) |
N2A | 0.0222 (4) | 0.0318 (5) | 0.0471 (6) | −0.0086 (4) | −0.0024 (4) | −0.0101 (5) |
C6A | 0.0248 (5) | 0.0269 (5) | 0.0318 (6) | −0.0061 (4) | −0.0009 (4) | −0.0044 (4) |
C7A | 0.0269 (6) | 0.0348 (6) | 0.0493 (8) | −0.0023 (5) | −0.0051 (5) | −0.0076 (6) |
C8A | 0.0407 (7) | 0.0302 (6) | 0.0559 (9) | 0.0019 (6) | −0.0048 (7) | −0.0071 (6) |
C9A | 0.0520 (8) | 0.0246 (6) | 0.0486 (8) | −0.0097 (6) | −0.0039 (7) | −0.0049 (5) |
C10A | 0.0389 (7) | 0.0287 (6) | 0.0429 (7) | −0.0133 (5) | −0.0043 (5) | −0.0044 (5) |
N3A | 0.0260 (4) | 0.0253 (4) | 0.0378 (5) | −0.0081 (4) | −0.0023 (4) | −0.0052 (4) |
N1B | 0.0337 (5) | 0.0295 (5) | 0.0372 (6) | −0.0125 (4) | −0.0005 (4) | −0.0051 (4) |
C1B | 0.0454 (8) | 0.0317 (6) | 0.0448 (8) | −0.0155 (6) | −0.0039 (6) | −0.0043 (6) |
C2B | 0.0535 (9) | 0.0408 (8) | 0.0542 (9) | −0.0266 (7) | −0.0085 (7) | 0.0015 (7) |
C3B | 0.0449 (8) | 0.0574 (10) | 0.0523 (9) | −0.0291 (8) | 0.0005 (7) | 0.0024 (8) |
C4B | 0.0384 (7) | 0.0522 (9) | 0.0431 (8) | −0.0189 (7) | 0.0048 (6) | −0.0067 (7) |
C5B | 0.0303 (6) | 0.0346 (6) | 0.0338 (6) | −0.0109 (5) | −0.0030 (5) | −0.0032 (5) |
N2B | 0.0360 (6) | 0.0383 (6) | 0.0448 (7) | −0.0131 (5) | 0.0071 (5) | −0.0163 (5) |
N2 | 0.0297 (5) | 0.0522 (7) | 0.0386 (6) | −0.0203 (5) | 0.0003 (4) | −0.0075 (5) |
C6B | 0.0366 (6) | 0.0315 (6) | 0.0330 (6) | −0.0111 (5) | −0.0038 (5) | −0.0068 (5) |
C7B | 0.0543 (9) | 0.0404 (7) | 0.0453 (8) | −0.0172 (7) | −0.0008 (7) | −0.0165 (6) |
C8B | 0.0690 (11) | 0.0494 (9) | 0.0538 (10) | −0.0309 (9) | −0.0064 (8) | −0.0173 (8) |
C9B | 0.0553 (10) | 0.0647 (11) | 0.0516 (9) | −0.0363 (9) | −0.0063 (7) | −0.0143 (8) |
C10B | 0.0368 (7) | 0.0543 (9) | 0.0427 (8) | −0.0205 (6) | −0.0047 (6) | −0.0130 (7) |
N3B | 0.0333 (5) | 0.0376 (6) | 0.0365 (6) | −0.0137 (4) | −0.0039 (4) | −0.0096 (5) |
N4 | 0.0400 (6) | 0.0388 (6) | 0.0454 (7) | 0.0029 (5) | −0.0048 (5) | −0.0058 (5) |
N3 | 0.0534 (9) | 0.0789 (12) | 0.0559 (9) | −0.0239 (8) | −0.0070 (7) | 0.0152 (8) |
N5 | 0.0311 (5) | 0.0344 (6) | 0.0496 (7) | −0.0085 (4) | −0.0044 (5) | −0.0073 (5) |
O1 | 0.0559 (8) | 0.0610 (8) | 0.0552 (8) | 0.0009 (6) | 0.0051 (6) | −0.0191 (7) |
Fe1—N1 | 2.1397 (13) | C9A—C10A | 1.368 (2) |
Fe1—N4 | 2.1645 (13) | C9A—H9A | 0.9300 |
Fe1—N1A | 2.1710 (11) | C10A—N3A | 1.3572 (16) |
Fe1—N3B | 2.1963 (11) | C10A—H10A | 0.9300 |
Fe1—N3A | 2.2061 (10) | N1B—C5B | 1.3386 (17) |
Fe1—N1B | 2.2254 (12) | N1B—C1B | 1.3549 (17) |
N1—N2 | 1.1958 (18) | C1B—C2B | 1.367 (2) |
N2—N3 | 1.153 (2) | C1B—H1B | 0.9300 |
N1A—C5A | 1.3377 (16) | C2B—C3B | 1.387 (3) |
N1A—C1A | 1.3541 (16) | C2B—H2B | 0.9300 |
N4—N5 | 1.1713 (19) | C3B—C4B | 1.369 (2) |
N5—N6 | 1.164 (2) | C3B—H3B | 0.9300 |
C1A—C2A | 1.369 (2) | C4B—C5B | 1.403 (2) |
C1A—H1A | 0.9300 | C4B—H4B | 0.9300 |
C2A—C3A | 1.391 (2) | C5B—N2B | 1.3824 (18) |
C2A—H2A | 0.9300 | N2B—C6B | 1.3802 (18) |
C3A—C4A | 1.370 (2) | N2B—H22 | 0.8900 |
C3A—H3A | 0.9300 | C6B—N3B | 1.3350 (18) |
C4A—C5A | 1.4043 (18) | C6B—C7B | 1.4059 (19) |
C4A—H4A | 0.9300 | C7B—C8B | 1.367 (2) |
C5A—N2A | 1.3865 (16) | C7B—H7B | 0.9300 |
N2A—C6A | 1.3864 (16) | C8B—C9B | 1.387 (3) |
N2A—H21 | 0.8900 | C8B—H8B | 0.9300 |
C6A—N3A | 1.3383 (15) | C9B—C10B | 1.371 (2) |
C6A—C7A | 1.4042 (17) | C9B—H9B | 0.9300 |
C7A—C8A | 1.367 (2) | C10B—N3B | 1.3534 (18) |
C7A—H7A | 0.9300 | C10B—H10B | 0.9300 |
C8A—C9A | 1.385 (2) | O1—H1 | 0.850 (1) |
C8A—H8A | 0.9300 | O1—H2 | 0.850 (1) |
N1—Fe1—N4 | 89.86 (5) | N3A—C10A—H10A | 118.0 |
N1—Fe1—N1A | 93.92 (5) | C9A—C10A—H10A | 118.0 |
N4—Fe1—N1A | 96.72 (5) | C6A—N3A—C10A | 117.26 (11) |
N1—Fe1—N3B | 95.82 (5) | C6A—N3A—Fe1 | 123.49 (8) |
N4—Fe1—N3B | 92.31 (5) | C10A—N3A—Fe1 | 118.17 (9) |
N1A—Fe1—N3B | 166.73 (4) | C5B—N1B—C1B | 117.27 (12) |
N1—Fe1—N3A | 92.72 (5) | C5B—N1B—Fe1 | 123.75 (9) |
N4—Fe1—N3A | 176.62 (5) | C1B—N1B—Fe1 | 117.56 (10) |
N1A—Fe1—N3A | 80.94 (4) | N1B—C1B—C2B | 123.75 (15) |
N3B—Fe1—N3A | 89.60 (4) | N1B—C1B—H1B | 118.1 |
N1—Fe1—N1B | 175.48 (5) | C2B—C1B—H1B | 118.1 |
N4—Fe1—N1B | 88.33 (5) | C1B—C2B—C3B | 118.39 (15) |
N1A—Fe1—N1B | 90.41 (4) | C1B—C2B—H2B | 120.8 |
N3B—Fe1—N1B | 80.12 (4) | C3B—C2B—H2B | 120.8 |
N3A—Fe1—N1B | 89.25 (4) | C4B—C3B—C2B | 119.22 (15) |
C5A—N1A—C1A | 117.71 (11) | C4B—C3B—H3B | 120.4 |
C5A—N1A—Fe1 | 123.97 (8) | C2B—C3B—H3B | 120.4 |
C1A—N1A—Fe1 | 116.25 (8) | C3B—C4B—C5B | 119.13 (15) |
N1A—C1A—C2A | 123.49 (13) | C3B—C4B—H4B | 120.4 |
N1A—C1A—H1A | 118.3 | C5B—C4B—H4B | 120.4 |
C2A—C1A—H1A | 118.3 | N1B—C5B—N2B | 120.80 (12) |
C1A—C2A—C3A | 118.27 (13) | N1B—C5B—C4B | 122.09 (13) |
C1A—C2A—H2A | 120.9 | N2B—C5B—C4B | 117.09 (13) |
C3A—C2A—H2A | 120.9 | C6B—N2B—C5B | 130.43 (12) |
C4A—C3A—C2A | 119.43 (13) | C6B—N2B—H22 | 113.9 |
C4A—C3A—H3A | 120.3 | C5B—N2B—H22 | 114.1 |
C2A—C3A—H3A | 120.3 | N1—N2—N3 | 177.99 (16) |
C3A—C4A—C5A | 118.95 (13) | N3B—C6B—N2B | 120.69 (12) |
C3A—C4A—H4A | 120.5 | N3B—C6B—C7B | 122.07 (13) |
C5A—C4A—H4A | 120.5 | N2B—C6B—C7B | 117.23 (13) |
N1A—C5A—N2A | 120.37 (11) | C8B—C7B—C6B | 118.95 (15) |
N1A—C5A—C4A | 121.97 (12) | C8B—C7B—H7B | 120.5 |
N2A—C5A—C4A | 117.64 (11) | C6B—C7B—H7B | 120.5 |
C6A—N2A—C5A | 128.64 (10) | C7B—C8B—C9B | 119.40 (15) |
C6A—N2A—H21 | 114.1 | C7B—C8B—H8B | 120.3 |
C5A—N2A—H21 | 113.5 | C9B—C8B—H8B | 120.3 |
N3A—C6A—N2A | 120.69 (10) | C10B—C9B—C8B | 118.37 (15) |
N3A—C6A—C7A | 121.94 (12) | C10B—C9B—H9B | 120.8 |
N2A—C6A—C7A | 117.36 (11) | C8B—C9B—H9B | 120.8 |
C8A—C7A—C6A | 119.12 (13) | N3B—C10B—C9B | 123.44 (15) |
C8A—C7A—H7A | 120.4 | N3B—C10B—H10B | 118.3 |
C6A—C7A—H7A | 120.4 | C9B—C10B—H10B | 118.3 |
C7A—C8A—C9A | 119.60 (13) | C6B—N3B—C10B | 117.62 (12) |
C7A—C8A—H8A | 120.2 | C6B—N3B—Fe1 | 122.47 (9) |
C9A—C8A—H8A | 120.2 | C10B—N3B—Fe1 | 114.90 (10) |
C10A—C9A—C8A | 118.04 (13) | N2—N1—Fe1 | 122.09 (9) |
C10A—C9A—H9A | 121.0 | N4—N5—N6 | 178.30 (17) |
C8A—C9A—H9A | 121.0 | N5—N4—Fe1 | 128.32 (11) |
N3A—C10A—C9A | 123.91 (13) | H1—O1—H2 | 110 (3) |
C5A—N1A—C1A—C2A | −4.5 (2) | C5B—N1B—C1B—C2B | 3.9 (2) |
Fe1—N1A—C1A—C2A | 159.85 (13) | Fe1—N1B—C1B—C2B | −163.01 (13) |
N1A—C1A—C2A—C3A | 1.3 (2) | N1B—C1B—C2B—C3B | −1.2 (3) |
C1A—C2A—C3A—C4A | 1.8 (2) | C1B—C2B—C3B—C4B | −1.9 (3) |
C2A—C3A—C4A—C5A | −1.7 (2) | C2B—C3B—C4B—C5B | 2.2 (3) |
C1A—N1A—C5A—N2A | −176.65 (12) | C1B—N1B—C5B—N2B | 178.21 (13) |
Fe1—N1A—C5A—N2A | 20.36 (17) | Fe1—N1B—C5B—N2B | −15.71 (18) |
C1A—N1A—C5A—C4A | 4.54 (19) | C1B—N1B—C5B—C4B | −3.6 (2) |
Fe1—N1A—C5A—C4A | −158.45 (11) | Fe1—N1B—C5B—C4B | 162.50 (11) |
C3A—C4A—C5A—N1A | −1.6 (2) | C3B—C4B—C5B—N1B | 0.6 (2) |
C3A—C4A—C5A—N2A | 179.57 (14) | C3B—C4B—C5B—N2B | 178.86 (15) |
N1A—C5A—N2A—C6A | 26.3 (2) | N1B—C5B—N2B—C6B | −23.0 (2) |
C4A—C5A—N2A—C6A | −154.82 (13) | C4B—C5B—N2B—C6B | 158.66 (15) |
C5A—N2A—C6A—N3A | −29.1 (2) | C5B—N2B—C6B—N3B | 15.5 (2) |
C5A—N2A—C6A—C7A | 151.72 (14) | C5B—N2B—C6B—C7B | −165.32 (15) |
N3A—C6A—C7A—C8A | 0.4 (2) | N3B—C6B—C7B—C8B | −1.9 (2) |
N2A—C6A—C7A—C8A | 179.51 (14) | N2B—C6B—C7B—C8B | 179.00 (15) |
C6A—C7A—C8A—C9A | 2.1 (2) | C6B—C7B—C8B—C9B | −1.2 (3) |
C7A—C8A—C9A—C10A | −1.5 (2) | C7B—C8B—C9B—C10B | 1.7 (3) |
C8A—C9A—C10A—N3A | −1.6 (2) | C8B—C9B—C10B—N3B | 0.9 (3) |
N2A—C6A—N3A—C10A | 177.64 (12) | N2B—C6B—N3B—C10B | −176.64 (13) |
C7A—C6A—N3A—C10A | −3.25 (19) | C7B—C6B—N3B—C10B | 4.3 (2) |
N2A—C6A—N3A—Fe1 | −14.53 (17) | N2B—C6B—N3B—Fe1 | 29.71 (18) |
C7A—C6A—N3A—Fe1 | 164.58 (11) | C7B—C6B—N3B—Fe1 | −149.40 (12) |
C9A—C10A—N3A—C6A | 3.9 (2) | C9B—C10B—N3B—C6B | −3.8 (2) |
C9A—C10A—N3A—Fe1 | −164.56 (12) | C9B—C10B—N3B—Fe1 | 151.83 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2A—H21···N1i | 0.89 | 2.21 | 3.1012 (15) | 175 |
N2B—H22···O1 | 0.89 | 1.96 | 2.8479 (17) | 172 |
O1—H1···N6ii | 0.85 (1) | 2.06 (1) | 2.894 (2) | 167 (3) |
O1—H2···N6iii | 0.85 (1) | 2.06 (1) | 2.911 (2) | 176 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+2; (iii) x−1, y+1, z. |
Acknowledgements
Le plateau CRISTAL de l'université d'Angers is thanked for its support for the single-crystal X-ray crystallographic data collection and analysis.
Funding information
Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and the PRFU project (grant No. B00L01UN190120230003).
References
Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501. Web of Science CSD CrossRef Google Scholar
Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gaspar, A. B., Agustí, G., Martínez, V., Muñoz, M. C., Levchenko, G. & Real, J. A. (2005). Inorg. Chim. Acta, 358, 4089–4094. CSD CrossRef CAS Google Scholar
Halcrow, M. A. (2013). Spin-Crossover Materials. Oxford, UK: John Wiley and Sons Ltd. Google Scholar
Korolenko, S. E., Avdeeva, V. V., Malinina, E. A., Kubasov, A. S., Belousova, O. N. & Kuznetsov, N. T. (2020). Russ. J. Coord. Chem. 46, 297–301. CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Miao, Z.-X., Shao, M., Liu, H.-J. & Li, M.-X. (2006). Acta Cryst. E62, m2170–m2172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488–1491. CSD CrossRef IUCr Journals Google Scholar
Setifi, Z., Setifi, F., Glidewell, C., Gil, D. M., Kletskov, A. V., Echeverria, V. & Mirzaei, M. (2021). J. Mol. Struct. 1235, 130155. CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.