metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(azido-κN1)bis­­(2,2′-di­pyridyl­amine-κ2N1,N1′)iron(II) monohydrate

crossmark logo

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartment de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cChemistry, Osnabrück University, Barabarstr. 7, 49069 Osnabrück, Germany, and dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: hreuter@uos.de, m.aldouh@hu.edu.ye

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 October 2024; accepted 16 November 2024; online 22 November 2024)

In the hydrated title complex, [Fe(dpa)2(N3)2]·H2O (dpa is 2,2′-di­pyridyl­amine, C10H9N3), the FeII ion is coordinated in a distorted octa­hedral manner by two neutral, chelating dpa ligands and two anionic, monodentate azide (N3) ions in a cis-configuration. Distortion results from different Fe—N bond lengths [2.1397 (13)–2.2254 (12) Å] and (N—Fe—N)cis [80.12 (4)–96.72 (5)°] and (N—Fe—N)trans [166.73 (4)–176.62 (5)°] bond angles. Hydrogen bonds exist between two symmetry-related water mol­ecules as hydrogen donors to the γ-N atoms of azido ligands of two adjacent iron complexes and as acceptors from the amide group of the dpa ligands of two additional iron complexes. The hydrogen-bonding pattern results in eight-membered ⋯H—O—H⋯N⋯ rings and a band-like arrangement of the mol­ecules involved. Additional, weaker hydrogen bonds between the α-N atom of the second azido ligand as acceptors and the amide groups of the second dpa ligands as donors cross-link neighboring bands to layers extending parallel to (001).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Complexes of first-row transition metals with d4-, d5-, d6- or d7-configuration can exhibit spin-crossover (SCO) behavior between low-spin and high-spin states in response to external stimuli such as temperature, pressure or light irradiation (Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]). They are of inter­est in functional devices such as sensors, mol­ecular electronics, spintronics, as well as in memory and information processing applications (Halcrow, 2013[Halcrow, M. A. (2013). Spin-Crossover Materials. Oxford, UK: John Wiley and Sons Ltd.]). In particular, many electronic devices exploiting the SCO phenomena contain Fe-based SCO materials, which have shown extraordinary performance.

In order to design such SCO materials, our strategy is based on the use of cyano-carbanion ligands. These organic anions are versatile and effective for developing mol­ecular architectures with different topologies and dimensionalities, as a result of their ability to coordinate and bridge metal ions in many different ways (see, for example: Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]; Cuza et al., 2021[Cuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.]; Dmitrienko et al., 2020[Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084-7092.]). Continuing our study of SCO 3d-metal complexes formed by polydentate and polynitrile units, we describe here the synthesis and crystal structure of the title Fe(II) complex, (I)[link], containing the azido (N3) ligand and neutral 2,2′-di­pyridyl­amine, dpa, as co-ligand.

The asymmetric unit of (I)[link] comprises one iron(II) complex and one water mol­ecule (Fig. 1[link]). The overall composition of the complex corresponds to [FeII(LBNN)2(N3)2] with two neutral chelating Lewis base (LB) mol­ecules LBNN = dpa, and two monodentate azido ligands, N3, in a cis arrangement.

[Figure 1]
Figure 1
Ball-and-stick model of the asymmetric unit in the crystal structure of the compound FeII(LBNN)2(N3)2·H2O with LBNN = dpa showing the atom numbering. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn with displacement ellipsoids at the 40% probability level.

The FeII atom exhibits a slightly distorted octa­hedral {FeN6} coordination (Fig. 2[link]) with an anti orientation of the two azido ligands. Distortion results from different Fe—N bond lengths [d(Fe—Nazido) = 2.1397 (13)/2.1645 (13) Å < d(Fe—Ndpa) = 2.1710 (11)–2.2254 (12) Å] and different bond angles [〈(N—Fe—N)cis = 80.12 (4)–96.72 (5)°, 〈(N—Fe—N)trans = 166.73 (4)–176.62 (5)°]. Both azido ligands are slightly bent with N—N bond lengths corresponding to formal N=N double bonds with the longer one to the metal-coordinating N atom (Table 1[link]). Moreover, they are different to some extend because of different coordination modes: in the first azido ligand (N1–N3) the iron-coordinating N1 atom is also involved in a hydrogen bond, while in the second azido ligand (N4–N6) the terminal nitro­gen atom N6 is involved in two hydrogen bonds (Fig. 3[link]).

Table 1
Selected geometric parameters (Å, °)

N1—N2 1.1958 (18) N4—N5 1.1713 (19)
N2—N3 1.153 (2) N5—N6 1.164 (2)
       
N1—N2—N3 177.99 (16) N4—N5—N6 178.30 (17)
N2—N1—Fe1 122.09 (9) N5—N4—Fe1 128.32 (11)
[Figure 2]
Figure 2
The {FeN6} octa­hedron in polyhedral representation, showing the anti orientation of both azido ligands. All atoms are drawn with displacement ellipsoids at the 40% probability level. The position of the carbon atoms attached to the nitro­gen atoms of the ligands are indicated as shortened sticks.
[Figure 3]
Figure 3
Ball-and-stick models showing the two azido ligands in the iron(II) complex of the title compound in detail, with selected bond lengths [Å], hydrogen bonds [dashed, shortened sticks, d(DA) in Å, –OH⋯N = red, –NH⋯N = blue) and dative bonds (shortened sticks) to the central iron atom. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn with displacement ellipsoids at the 40% probability level.

The two organic ligands (labeled with suffixes A and B; Fig. 4[link]) exhibit very similar conformations characterized by large dihedral angles [24.49 (5)°/17.95 (5)°, A/B] between the least-squares planes of the two pyridine moieties. N—C and C—C bond lengths and angles are as usual but bond angles at the bridging NH groups are widened [128.64 (10)°/130.43 (12)°, A/B]. Both amine groups act as hydrogen donors in hydrogen-bonding, N2A to the α-N atom of the first azide ion (N1–N3) and N2B to the O atom of the water molecule of crystallization. Numerical details of hydrogen-bonding inter­actions of these hydrogen bonds are summarized in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H21⋯N1i 0.89 2.21 3.1012 (15) 175
N2B—H22⋯O1 0.89 1.96 2.8479 (17) 172
O1—H1⋯N6ii 0.85 (1) 2.06 (1) 2.894 (2) 167 (3)
O1—H2⋯N6iii 0.85 (1) 2.06 (1) 2.911 (2) 176 (3)
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+1, -z+2]; (iii) [x-1, y+1, z].
[Figure 4]
Figure 4
Ball-and-stick models showing the two dpa ligand mol­ecules in the iron(II) complex of the title compound in detail, with selected bond lengths [Å], hydrogen bonds (dashed, shortened sticks, –OH⋯N = red, –NH⋯N = blue) and dative bonds (shortened sticks) to the central iron atom. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn with displacement ellipsoids at the 40% probability level.

The water mol­ecule acts as hydrogen-bond donor to the γ-nitro­gen atom (N6) of two different azido ligands related to each other via a center of symmetry (which also applies to the water mol­ecule) so that an eight-membered ⋯H—O—H⋯N⋯ ring results (Table 2[link]). Moreover, both water mol­ecules in this ring act as acceptors of additional hydrogen bonds (with H22 from the amide group of the second dpa ligand) of two adjacent iron complexes, which in turn are involved in the formation of further eight-membered rings. In summary, the resulting, supra­molecular system of hydrogen-donor and acceptor bonds between water mol­ecules and iron complexes generates bands expanding parallel to [110]. Weaker hydrogen bonds (Table 2[link]) between the α-nitro­gen atoms (N1) of the second azido ligand in each iron complex and the hydrogen atoms (H21 of the amide group of the first dpa ligand) cross-link these bands into layers parallel to (001) (Fig. 5[link]).

[Figure 5]
Figure 5
Stick-model showing the crystal packing and hydrogen bonding system in detail in a view along [110]. Atom color code: N = blue, H = white, C = gray, O = red, Fe = bronze. Strong –OH⋯O– and –NH⋯O– hydrogen bonds between the water mol­ecules and the iron complexes responsible for the band-like arrangement of these mol­ecules are visualized as dashed sticks in red, weaker –NH⋯N– hydrogen bonds between the iron complexes of neigboring bands are shown as dashed sticks in blue.

Crystal structures of iron(II) complexes of composition FeII(LBNN)2(X)2 and LBNN = dpa have been previously described for X = iso­thio­cyanate, NCS (Gaspar et al., 2005[Gaspar, A. B., Agustí, G., Martínez, V., Muñoz, M. C., Levchenko, G. & Real, J. A. (2005). Inorg. Chim. Acta, 358, 4089-4094.]), X = dicyanamide, NCNCN (Gaspar et al., 2005[Gaspar, A. B., Agustí, G., Martínez, V., Muñoz, M. C., Levchenko, G. & Real, J. A. (2005). Inorg. Chim. Acta, 358, 4089-4094.]), and X = H2O with the deca­borate anion [B10H10]2− as counter-ion (Korolenko et al., 2020[Korolenko, S. E., Avdeeva, V. V., Malinina, E. A., Kubasov, A. S., Belousova, O. N. & Kuznetsov, N. T. (2020). Russ. J. Coord. Chem. 46, 297-301.]). Other neutral, mononuclear iron(II) complexes of composition FeII(LBNN)2(N3)2 have been prepared and structurally described in case of LBNN = 4-amino-3,5-bis­(2-pyrid­yl)-1,2,4-triazole (Setifi et al., 2021[Setifi, Z., Setifi, F., Glidewell, C., Gil, D. M., Kletskov, A. V., Echeverria, V. & Mirzaei, M. (2021). J. Mol. Struct. 1235, 130155.]), LBNN = quinolin-8-amine (Setifi et al., 2016[Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488-1491.]), and LBNN = 1,10-phenanthroline (Miao et al., 2006[Miao, Z.-X., Shao, M., Liu, H.-J. & Li, M.-X. (2006). Acta Cryst. E62, m2170-m2172.]).

Synthesis and crystallization

Compound (I)[link] was synthesized under solvothermal conditions from a mixture of iron(II) bis­(tetra­fluorido­borate) hydrate (34 mg, 0.1 mmol), 2,2′-di­pyridyl­amine (34 mg, 0.2 mmol) and sodium azide (13 mg, 0.2 mmol) in a mixture of water and ethanol (4:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 393 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h−1 to give the title compound (yield 42%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The positions of the water H atoms were located from a difference-Fourier map and were refined with a fixed O—H distances of 0.85 Å.

Table 3
Experimental details

Crystal data
Chemical formula [Fe(N3)2(C10H9N3)2]·H2O
Mr 500.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 300
a, b, c (Å) 7.7496 (5), 9.3778 (6), 16.6178 (10)
α, β, γ (°) 79.516 (3), 83.962 (3), 69.520 (3)
V3) 1111.34 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.38 × 0.21 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 93449, 10836, 7610
Rint 0.057
(sin θ/λ)max−1) 0.836
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.09
No. of reflections 10836
No. of parameters 315
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.65
Computer programs: APEX2 and SAINT (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Bis(azido-κN1)bis(2,2'-dipyridylamine-κ2N1,N1')iron(II) monohydrate top
Crystal data top
[Fe(N3)2(C10H9N3)2]·H2OZ = 2
Mr = 500.33F(000) = 516
Triclinic, P1Dx = 1.495 Mg m3
a = 7.7496 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3778 (6) ÅCell parameters from 2459 reflections
c = 16.6178 (10) Åθ = 2.7–28.2°
α = 79.516 (3)°µ = 0.72 mm1
β = 83.962 (3)°T = 300 K
γ = 69.520 (3)°Block, red
V = 1111.34 (12) Å30.38 × 0.21 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
7610 reflections with I > 2σ(I)
φ and ω scansRint = 0.057
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 36.4°, θmin = 2.4°
h = 1212
93449 measured reflectionsk = 1515
10836 independent reflectionsl = 2727
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.332P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
10836 reflectionsΔρmax = 0.38 e Å3
315 parametersΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of all H atoms were clearly identified in difference-Fourier syntheses. Those of the organic ligands were refined with calculated positions (–CH– = 0.93 Å, –NH– = 0.89 Å) and isotropic displacement parameters depending on the equivalent isotropic temperature factor of the parent atoms. The position of the H atom of the water molecule were refined with fixed O—H distances of 0.85 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.75182 (2)0.51720 (2)0.71642 (2)0.02855 (5)
N10.93226 (16)0.60191 (16)0.63027 (8)0.0407 (3)
N1A0.65214 (14)0.42814 (12)0.62585 (7)0.0299 (2)
N61.0198 (2)0.1417 (2)0.87772 (11)0.0623 (4)
C1A0.77883 (19)0.31328 (16)0.59070 (9)0.0361 (3)
H1A0.9027810.3009240.5927670.043*
C2A0.7342 (2)0.21435 (18)0.55229 (10)0.0432 (3)
H2A0.8255050.1355410.5298490.052*
C3A0.5487 (2)0.23478 (18)0.54770 (10)0.0436 (3)
H3A0.5140780.1677020.5233440.052*
C4A0.4174 (2)0.35459 (17)0.57936 (9)0.0378 (3)
H4A0.2926750.3714790.5755370.045*
C5A0.47400 (17)0.45148 (14)0.61767 (8)0.0288 (2)
N2A0.33800 (14)0.57235 (13)0.64863 (8)0.0332 (2)
H210.2241270.5751590.6424040.040 (4)*
C6A0.34840 (16)0.71080 (14)0.66191 (8)0.0286 (2)
C7A0.18479 (19)0.83846 (16)0.65752 (10)0.0388 (3)
H7A0.0749580.8290530.6456950.047*
C8A0.1891 (2)0.97676 (17)0.67087 (11)0.0458 (3)
H8A0.0812351.0616190.6699140.055*
C9A0.3551 (2)0.98975 (16)0.68581 (10)0.0426 (3)
H9A0.3614991.0833350.6938060.051*
C10A0.5092 (2)0.86086 (15)0.68847 (9)0.0363 (3)
H10A0.6211590.8701580.6971290.044*
N3A0.50850 (14)0.72022 (12)0.67923 (7)0.0298 (2)
N1B0.57667 (16)0.43066 (13)0.81383 (7)0.0331 (2)
C1B0.5491 (2)0.29847 (16)0.80710 (10)0.0400 (3)
H1B0.6282810.2355540.7718370.048*
C2B0.4115 (2)0.25227 (19)0.84919 (11)0.0474 (4)
H2B0.3963590.1614490.8418750.057*
C3B0.2952 (2)0.3441 (2)0.90305 (11)0.0500 (4)
H3B0.1981220.3173440.9313100.060*
C4B0.3250 (2)0.4747 (2)0.91413 (10)0.0442 (3)
H4B0.2511290.5357400.9514120.053*
C5B0.46853 (18)0.51505 (16)0.86852 (8)0.0331 (2)
N2B0.49131 (17)0.64924 (14)0.88067 (8)0.0389 (3)
H220.4036670.7038400.9130010.044 (5)*
N20.87538 (16)0.70541 (16)0.57544 (8)0.0385 (3)
C6B0.64315 (19)0.69641 (15)0.86547 (8)0.0334 (2)
C7B0.6399 (2)0.82180 (18)0.90159 (10)0.0451 (3)
H7B0.5379000.8709360.9335490.054*
C8B0.7890 (3)0.8704 (2)0.88898 (12)0.0530 (4)
H8B0.7886880.9542930.9115030.064*
C9B0.9408 (3)0.7933 (2)0.84230 (11)0.0519 (4)
H9B1.0449240.8227980.8341270.062*
C10B0.9336 (2)0.6727 (2)0.80852 (10)0.0423 (3)
H10B1.0360710.6203130.7778600.051*
N3B0.78511 (16)0.62598 (14)0.81743 (7)0.0347 (2)
N40.98043 (19)0.30965 (15)0.75339 (9)0.0456 (3)
N30.8244 (2)0.8069 (2)0.52298 (11)0.0654 (5)
N50.99782 (16)0.22607 (14)0.81594 (8)0.0388 (3)
O10.2195 (2)0.85040 (17)0.97599 (9)0.0622 (4)
H10.152 (3)0.838 (3)1.0184 (9)0.093*
H20.166 (3)0.9352 (15)0.9458 (13)0.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02457 (8)0.02777 (8)0.03363 (9)0.00780 (6)0.00253 (6)0.00701 (6)
N10.0289 (5)0.0486 (7)0.0461 (7)0.0169 (5)0.0018 (5)0.0033 (6)
N1A0.0260 (4)0.0288 (5)0.0345 (5)0.0065 (4)0.0030 (4)0.0084 (4)
N60.0579 (9)0.0577 (9)0.0642 (10)0.0215 (8)0.0044 (8)0.0134 (8)
C1A0.0317 (6)0.0360 (6)0.0375 (7)0.0050 (5)0.0014 (5)0.0112 (5)
C2A0.0472 (8)0.0376 (7)0.0430 (8)0.0072 (6)0.0003 (6)0.0170 (6)
C3A0.0552 (9)0.0391 (7)0.0445 (8)0.0212 (7)0.0039 (7)0.0149 (6)
C4A0.0377 (7)0.0385 (7)0.0434 (7)0.0181 (6)0.0055 (5)0.0090 (6)
C5A0.0287 (5)0.0266 (5)0.0317 (6)0.0101 (4)0.0031 (4)0.0035 (4)
N2A0.0222 (4)0.0318 (5)0.0471 (6)0.0086 (4)0.0024 (4)0.0101 (5)
C6A0.0248 (5)0.0269 (5)0.0318 (6)0.0061 (4)0.0009 (4)0.0044 (4)
C7A0.0269 (6)0.0348 (6)0.0493 (8)0.0023 (5)0.0051 (5)0.0076 (6)
C8A0.0407 (7)0.0302 (6)0.0559 (9)0.0019 (6)0.0048 (7)0.0071 (6)
C9A0.0520 (8)0.0246 (6)0.0486 (8)0.0097 (6)0.0039 (7)0.0049 (5)
C10A0.0389 (7)0.0287 (6)0.0429 (7)0.0133 (5)0.0043 (5)0.0044 (5)
N3A0.0260 (4)0.0253 (4)0.0378 (5)0.0081 (4)0.0023 (4)0.0052 (4)
N1B0.0337 (5)0.0295 (5)0.0372 (6)0.0125 (4)0.0005 (4)0.0051 (4)
C1B0.0454 (8)0.0317 (6)0.0448 (8)0.0155 (6)0.0039 (6)0.0043 (6)
C2B0.0535 (9)0.0408 (8)0.0542 (9)0.0266 (7)0.0085 (7)0.0015 (7)
C3B0.0449 (8)0.0574 (10)0.0523 (9)0.0291 (8)0.0005 (7)0.0024 (8)
C4B0.0384 (7)0.0522 (9)0.0431 (8)0.0189 (7)0.0048 (6)0.0067 (7)
C5B0.0303 (6)0.0346 (6)0.0338 (6)0.0109 (5)0.0030 (5)0.0032 (5)
N2B0.0360 (6)0.0383 (6)0.0448 (7)0.0131 (5)0.0071 (5)0.0163 (5)
N20.0297 (5)0.0522 (7)0.0386 (6)0.0203 (5)0.0003 (4)0.0075 (5)
C6B0.0366 (6)0.0315 (6)0.0330 (6)0.0111 (5)0.0038 (5)0.0068 (5)
C7B0.0543 (9)0.0404 (7)0.0453 (8)0.0172 (7)0.0008 (7)0.0165 (6)
C8B0.0690 (11)0.0494 (9)0.0538 (10)0.0309 (9)0.0064 (8)0.0173 (8)
C9B0.0553 (10)0.0647 (11)0.0516 (9)0.0363 (9)0.0063 (7)0.0143 (8)
C10B0.0368 (7)0.0543 (9)0.0427 (8)0.0205 (6)0.0047 (6)0.0130 (7)
N3B0.0333 (5)0.0376 (6)0.0365 (6)0.0137 (4)0.0039 (4)0.0096 (5)
N40.0400 (6)0.0388 (6)0.0454 (7)0.0029 (5)0.0048 (5)0.0058 (5)
N30.0534 (9)0.0789 (12)0.0559 (9)0.0239 (8)0.0070 (7)0.0152 (8)
N50.0311 (5)0.0344 (6)0.0496 (7)0.0085 (4)0.0044 (5)0.0073 (5)
O10.0559 (8)0.0610 (8)0.0552 (8)0.0009 (6)0.0051 (6)0.0191 (7)
Geometric parameters (Å, º) top
Fe1—N12.1397 (13)C9A—C10A1.368 (2)
Fe1—N42.1645 (13)C9A—H9A0.9300
Fe1—N1A2.1710 (11)C10A—N3A1.3572 (16)
Fe1—N3B2.1963 (11)C10A—H10A0.9300
Fe1—N3A2.2061 (10)N1B—C5B1.3386 (17)
Fe1—N1B2.2254 (12)N1B—C1B1.3549 (17)
N1—N21.1958 (18)C1B—C2B1.367 (2)
N2—N31.153 (2)C1B—H1B0.9300
N1A—C5A1.3377 (16)C2B—C3B1.387 (3)
N1A—C1A1.3541 (16)C2B—H2B0.9300
N4—N51.1713 (19)C3B—C4B1.369 (2)
N5—N61.164 (2)C3B—H3B0.9300
C1A—C2A1.369 (2)C4B—C5B1.403 (2)
C1A—H1A0.9300C4B—H4B0.9300
C2A—C3A1.391 (2)C5B—N2B1.3824 (18)
C2A—H2A0.9300N2B—C6B1.3802 (18)
C3A—C4A1.370 (2)N2B—H220.8900
C3A—H3A0.9300C6B—N3B1.3350 (18)
C4A—C5A1.4043 (18)C6B—C7B1.4059 (19)
C4A—H4A0.9300C7B—C8B1.367 (2)
C5A—N2A1.3865 (16)C7B—H7B0.9300
N2A—C6A1.3864 (16)C8B—C9B1.387 (3)
N2A—H210.8900C8B—H8B0.9300
C6A—N3A1.3383 (15)C9B—C10B1.371 (2)
C6A—C7A1.4042 (17)C9B—H9B0.9300
C7A—C8A1.367 (2)C10B—N3B1.3534 (18)
C7A—H7A0.9300C10B—H10B0.9300
C8A—C9A1.385 (2)O1—H10.850 (1)
C8A—H8A0.9300O1—H20.850 (1)
N1—Fe1—N489.86 (5)N3A—C10A—H10A118.0
N1—Fe1—N1A93.92 (5)C9A—C10A—H10A118.0
N4—Fe1—N1A96.72 (5)C6A—N3A—C10A117.26 (11)
N1—Fe1—N3B95.82 (5)C6A—N3A—Fe1123.49 (8)
N4—Fe1—N3B92.31 (5)C10A—N3A—Fe1118.17 (9)
N1A—Fe1—N3B166.73 (4)C5B—N1B—C1B117.27 (12)
N1—Fe1—N3A92.72 (5)C5B—N1B—Fe1123.75 (9)
N4—Fe1—N3A176.62 (5)C1B—N1B—Fe1117.56 (10)
N1A—Fe1—N3A80.94 (4)N1B—C1B—C2B123.75 (15)
N3B—Fe1—N3A89.60 (4)N1B—C1B—H1B118.1
N1—Fe1—N1B175.48 (5)C2B—C1B—H1B118.1
N4—Fe1—N1B88.33 (5)C1B—C2B—C3B118.39 (15)
N1A—Fe1—N1B90.41 (4)C1B—C2B—H2B120.8
N3B—Fe1—N1B80.12 (4)C3B—C2B—H2B120.8
N3A—Fe1—N1B89.25 (4)C4B—C3B—C2B119.22 (15)
C5A—N1A—C1A117.71 (11)C4B—C3B—H3B120.4
C5A—N1A—Fe1123.97 (8)C2B—C3B—H3B120.4
C1A—N1A—Fe1116.25 (8)C3B—C4B—C5B119.13 (15)
N1A—C1A—C2A123.49 (13)C3B—C4B—H4B120.4
N1A—C1A—H1A118.3C5B—C4B—H4B120.4
C2A—C1A—H1A118.3N1B—C5B—N2B120.80 (12)
C1A—C2A—C3A118.27 (13)N1B—C5B—C4B122.09 (13)
C1A—C2A—H2A120.9N2B—C5B—C4B117.09 (13)
C3A—C2A—H2A120.9C6B—N2B—C5B130.43 (12)
C4A—C3A—C2A119.43 (13)C6B—N2B—H22113.9
C4A—C3A—H3A120.3C5B—N2B—H22114.1
C2A—C3A—H3A120.3N1—N2—N3177.99 (16)
C3A—C4A—C5A118.95 (13)N3B—C6B—N2B120.69 (12)
C3A—C4A—H4A120.5N3B—C6B—C7B122.07 (13)
C5A—C4A—H4A120.5N2B—C6B—C7B117.23 (13)
N1A—C5A—N2A120.37 (11)C8B—C7B—C6B118.95 (15)
N1A—C5A—C4A121.97 (12)C8B—C7B—H7B120.5
N2A—C5A—C4A117.64 (11)C6B—C7B—H7B120.5
C6A—N2A—C5A128.64 (10)C7B—C8B—C9B119.40 (15)
C6A—N2A—H21114.1C7B—C8B—H8B120.3
C5A—N2A—H21113.5C9B—C8B—H8B120.3
N3A—C6A—N2A120.69 (10)C10B—C9B—C8B118.37 (15)
N3A—C6A—C7A121.94 (12)C10B—C9B—H9B120.8
N2A—C6A—C7A117.36 (11)C8B—C9B—H9B120.8
C8A—C7A—C6A119.12 (13)N3B—C10B—C9B123.44 (15)
C8A—C7A—H7A120.4N3B—C10B—H10B118.3
C6A—C7A—H7A120.4C9B—C10B—H10B118.3
C7A—C8A—C9A119.60 (13)C6B—N3B—C10B117.62 (12)
C7A—C8A—H8A120.2C6B—N3B—Fe1122.47 (9)
C9A—C8A—H8A120.2C10B—N3B—Fe1114.90 (10)
C10A—C9A—C8A118.04 (13)N2—N1—Fe1122.09 (9)
C10A—C9A—H9A121.0N4—N5—N6178.30 (17)
C8A—C9A—H9A121.0N5—N4—Fe1128.32 (11)
N3A—C10A—C9A123.91 (13)H1—O1—H2110 (3)
C5A—N1A—C1A—C2A4.5 (2)C5B—N1B—C1B—C2B3.9 (2)
Fe1—N1A—C1A—C2A159.85 (13)Fe1—N1B—C1B—C2B163.01 (13)
N1A—C1A—C2A—C3A1.3 (2)N1B—C1B—C2B—C3B1.2 (3)
C1A—C2A—C3A—C4A1.8 (2)C1B—C2B—C3B—C4B1.9 (3)
C2A—C3A—C4A—C5A1.7 (2)C2B—C3B—C4B—C5B2.2 (3)
C1A—N1A—C5A—N2A176.65 (12)C1B—N1B—C5B—N2B178.21 (13)
Fe1—N1A—C5A—N2A20.36 (17)Fe1—N1B—C5B—N2B15.71 (18)
C1A—N1A—C5A—C4A4.54 (19)C1B—N1B—C5B—C4B3.6 (2)
Fe1—N1A—C5A—C4A158.45 (11)Fe1—N1B—C5B—C4B162.50 (11)
C3A—C4A—C5A—N1A1.6 (2)C3B—C4B—C5B—N1B0.6 (2)
C3A—C4A—C5A—N2A179.57 (14)C3B—C4B—C5B—N2B178.86 (15)
N1A—C5A—N2A—C6A26.3 (2)N1B—C5B—N2B—C6B23.0 (2)
C4A—C5A—N2A—C6A154.82 (13)C4B—C5B—N2B—C6B158.66 (15)
C5A—N2A—C6A—N3A29.1 (2)C5B—N2B—C6B—N3B15.5 (2)
C5A—N2A—C6A—C7A151.72 (14)C5B—N2B—C6B—C7B165.32 (15)
N3A—C6A—C7A—C8A0.4 (2)N3B—C6B—C7B—C8B1.9 (2)
N2A—C6A—C7A—C8A179.51 (14)N2B—C6B—C7B—C8B179.00 (15)
C6A—C7A—C8A—C9A2.1 (2)C6B—C7B—C8B—C9B1.2 (3)
C7A—C8A—C9A—C10A1.5 (2)C7B—C8B—C9B—C10B1.7 (3)
C8A—C9A—C10A—N3A1.6 (2)C8B—C9B—C10B—N3B0.9 (3)
N2A—C6A—N3A—C10A177.64 (12)N2B—C6B—N3B—C10B176.64 (13)
C7A—C6A—N3A—C10A3.25 (19)C7B—C6B—N3B—C10B4.3 (2)
N2A—C6A—N3A—Fe114.53 (17)N2B—C6B—N3B—Fe129.71 (18)
C7A—C6A—N3A—Fe1164.58 (11)C7B—C6B—N3B—Fe1149.40 (12)
C9A—C10A—N3A—C6A3.9 (2)C9B—C10B—N3B—C6B3.8 (2)
C9A—C10A—N3A—Fe1164.56 (12)C9B—C10B—N3B—Fe1151.83 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H21···N1i0.892.213.1012 (15)175
N2B—H22···O10.891.962.8479 (17)172
O1—H1···N6ii0.85 (1)2.06 (1)2.894 (2)167 (3)
O1—H2···N6iii0.85 (1)2.06 (1)2.911 (2)176 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2; (iii) x1, y+1, z.
 

Acknowledgements

Le plateau CRISTAL de l'université d'Angers is thanked for its support for the single-crystal X-ray crystallographic data collection and analysis.

Funding information

Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and the PRFU project (grant No. B00L01UN190120230003).

References

First citationAddala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.  Web of Science CSD CrossRef Google Scholar
First citationDmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGaspar, A. B., Agustí, G., Martínez, V., Muñoz, M. C., Levchenko, G. & Real, J. A. (2005). Inorg. Chim. Acta, 358, 4089–4094.  CSD CrossRef CAS Google Scholar
First citationHalcrow, M. A. (2013). Spin-Crossover Materials. Oxford, UK: John Wiley and Sons Ltd.  Google Scholar
First citationKorolenko, S. E., Avdeeva, V. V., Malinina, E. A., Kubasov, A. S., Belousova, O. N. & Kuznetsov, N. T. (2020). Russ. J. Coord. Chem. 46, 297–301.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMiao, Z.-X., Shao, M., Liu, H.-J. & Li, M.-X. (2006). Acta Cryst. E62, m2170–m2172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488–1491.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., Glidewell, C., Gil, D. M., Kletskov, A. V., Echeverria, V. & Mirzaei, M. (2021). J. Mol. Struct. 1235, 130155.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146