

IUCrData

ISSN 2414-3146

Received 16 October 2024 Accepted 16 November 2024

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; azide; 2,2'dipyridylamine (dpa); iron(II); hydrogenbonding.

CCDC reference: 2403263

Structural data: full structural data are available from iucrdata.iucr.org

Bis(azido- κN^1)bis(2,2'-dipyridylamine- $\kappa^2 N^1$, N^1 ')-iron(II) monohydrate

Fatima Setifi,^a Zouaoui Setifi,^{a,b} Hans Reuter,^c* Mohammad Hadi Al-Douh^d* and Abderezak Addala^a

^aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, ^bDépartment de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, ^cChemistry, Osnabrück University, Barabarstr. 7, 49069 Osnabrück, Germany, and ^dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen. *Correspondence e-mail: hreuter@uos.de, m.aldouh@hu.edu.ye

In the hydrated title complex, $[Fe(dpa)_2(N_3)_2] \cdot H_2O$ (dpa is 2,2'-dipyridylamine, $C_{10}H_9N_3$), the Fe^{II} ion is coordinated in a distorted octahedral manner by two neutral, chelating dpa ligands and two anionic, monodentate azide (N_3^-) ions in a *cis*-configuration. Distortion results from different Fe-N bond lengths [2.1397 (13)-2.2254 (12) Å] and $(N-Fe-N)_{cis}$ [80.12 (4)-96.72 (5)°] and $(N-Fe-N)_{trans}$ [166.73 (4)-176.62 (5)°] bond angles. Hydrogen bonds exist between two symmetry-related water molecules as hydrogen donors to the γ -N atoms of azido ligands of two adjacent iron complexes and as acceptors from the amide group of the dpa ligands of two additional iron complexes. The hydrogenbonding pattern results in eight-membered $\cdots H-O-H\cdots N\cdots$ rings and a band-like arrangement of the molecules involved. Additional, weaker hydrogen bonds between the α -N atom of the second azido ligand as acceptors and the amide groups of the second dpa ligands as donors cross-link neighboring bands to layers extending parallel to (001).

Structure description

Complexes of first-row transition metals with d^4 -, d^5 -, d^6 - or d^7 -configuration can exhibit spin-crossover (SCO) behavior between low-spin and high-spin states in response to external stimuli such as temperature, pressure or light irradiation (Benmansour *et al.*, 2010). They are of interest in functional devices such as sensors, molecular electronics, spintronics, as well as in memory and information processing applications (Halcrow, 2013). In particular, many electronic devices exploiting the SCO phenomena contain Febased SCO materials, which have shown extraordinary performance.

Figure 1

Ball-and-stick model of the asymmetric unit in the crystal structure of the compound $\text{Fe}^{II}(\text{LB}_{NN})_2(\text{N}_3)_2\cdot\text{H}_2\text{O}$ with $\text{LB}_{NN} = \text{dpa}$ showing the atom numbering. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn with displacement ellipsoids at the 40% probability level.

In order to design such SCO materials, our strategy is based on the use of cyano-carbanion ligands. These organic anions are versatile and effective for developing molecular architectures with different topologies and dimensionalities, as a result of their ability to coordinate and bridge metal ions in many different ways (see, for example: Addala *et al.*, 2015; Cuza *et al.*, 2021; Dmitrienko *et al.*, 2020). Continuing our study of SCO 3*d*-metal complexes formed by polydentate and polynitrile units, we describe here the synthesis and crystal structure of the title Fe(II) complex, (I), containing the azido (N_3^-) ligand and neutral 2,2'-dipyridylamine, dpa, as coligand.

The asymmetric unit of (I) comprises one iron(II) complex and one water molecule (Fig. 1). The overall composition of

Figure 2

The {FeN₆} octahedron in polyhedral representation, showing the *anti* orientation of both azido ligands. All atoms are drawn with displacement ellipsoids at the 40% probability level. The position of the carbon atoms attached to the nitrogen atoms of the ligands are indicated as shortened sticks.

Table 1			
Selected	geometric parameters	(Å,	°).

	1	,	
N1-N2	1.1958 (18)	N4-N5	1.1713 (19)
N2-N3	1.153 (2)	N5-N6	1.164 (2)
N1-N2-N3	177.99 (16)	N4-N5-N6	178.30 (17)
N2-N1-Fe1	122.09 (9)	N5-N4-Fe1	128.32 (11)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2A - H21 \cdots N1^{i}$	0.89	2.21	3.1012 (15)	175
$N2B - H22 \cdots O1$	0.89	1.96	2.8479 (17)	172
$O1-H1\cdots N6^{ii}$	0.85(1)	2.06(1)	2.894 (2)	167 (3)
$O1 - H2 \cdot \cdot \cdot N6^{iii}$	0.85 (1)	2.06 (1)	2.911 (2)	176 (3)

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 2; (iii) x - 1, y + 1, z.

the complex corresponds to $[Fe^{II}(LB_{NN})_2(N_3)_2]$ with two neutral chelating Lewis base (LB) molecules $LB_{NN} = dpa$, and two monodentate azido ligands, N_3^- , in a *cis* arrangement.

The Fe^{II} atom exhibits a slightly distorted octahedral {FeN₆} coordination (Fig. 2) with an *anti* orientation of the two azido ligands. Distortion results from different Fe–N bond lengths $[d(Fe-N_{azido}) = 2.1397 (13)/2.1645 (13) \text{ Å} < d(Fe-N_{dpa}) = 2.1710 (11)-2.2254 (12) \text{ Å}]$ and different bond angles $[\langle (N-Fe-N)_{cis} = 80.12 (4)-96.72 (5)^{\circ}, \langle (N-Fe-N)_{trans} = 166.73 (4)-176.62 (5)^{\circ}]$. Both azido ligands are slightly bent with N–N bond lengths corresponding to formal N=N double bonds with the longer one to the metal-coordinating N atom (Table 1). Moreover, they are different to some extend because of different coordinating N1 atom is also involved in a hydrogen bond, while in the second azido ligand (N4–N6) the terminal nitrogen atom N6 is involved in two hydrogen bonds (Fig. 3).

Ball-and-stick models showing the two azido ligands in the iron(II) complex of the title compound in detail, with selected bond lengths [Å], hydrogen bonds [dashed, shortened sticks, $d(D \cdots A)$ in Å, $-OH \cdots N =$ red, $-NH \cdots N =$ blue) and dative bonds (shortened sticks) to the central iron atom. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn with displacement ellipsoids at the 40% probability level.

Figure 4

Ball-and-stick models showing the two dpa ligand molecules in the iron(II) complex of the title compound in detail, with selected bond lengths [Å], hydrogen bonds (dashed, shortened sticks, $-OH \cdots N = red, -NH \cdots N =$ blue) and dative bonds (shortened sticks) to the central iron atom. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn with displacement ellipsoids at the 40% probability level.

The two organic ligands (labeled with suffixes A and B; Fig. 4) exhibit very similar conformations characterized by large dihedral angles [24.49 (5)°/17.95 (5)°, A/B] between the least-squares planes of the two pyridine moieties. N—C and C—C bond lengths and angles are as usual but bond angles at the bridging NH groups are widened [128.64 (10)°/ 130.43 (12)°, A/B]. Both amine groups act as hydrogen donors in hydrogen-bonding, N2A to the α -N atom of the first azide ion (N1–N3) and N2B to the O atom of the water molecule of crystallization. Numerical details of hydrogen-bonding interactions of these hydrogen bonds are summarized in Table 2.

The water molecule acts as hydrogen-bond donor to the γ -nitrogen atom (N6) of two different azido ligands related to each other *via* a center of symmetry (which also applies to the water molecule) so that an eight-membered \cdots H-O-H \cdots N \cdots ring results (Table 2). Moreover, both water molecules in this ring act as acceptors of additional hydrogen bonds (with H22 from the amide group of the second dpa ligand) of two adjacent iron complexes, which in turn are involved in the formation of further eight-membered rings. In summary, the resulting, supramolecular system of hydrogen-donor and acceptor bonds between water molecules and iron complexes generates bands expanding parallel to [110]. Weaker hydrogen bonds (Table 2) between the α -nitrogen atoms (N1) of the second azido ligand in each iron

Figure 5

Stick-model showing the crystal packing and hydrogen bonding system in detail in a view along [110]. Atom color code: N = blue, H = white, C = gray, O = red, Fe = bronze. Strong $-OH \cdots O-$ and $-NH \cdots O-$ hydrogen bonds between the water molecules and the iron complexes responsible for the band-like arrangement of these molecules are visualized as dashed sticks in red, weaker $-NH \cdots N-$ hydrogen bonds between the iron complexes of neigboring bands are shown as dashed sticks in blue.

complex and the hydrogen atoms (H21 of the amide group of the first dpa ligand) cross-link these bands into layers parallel to (001) (Fig. 5).

Crystal structures of iron(II) complexes of composition $\text{Fe}^{\text{II}}(\text{LB}_{NN})_2(X)_2$ and LB_{NN} = dpa have been previously described for X = isothiocyanate, NCS (Gaspar *et al.*, 2005), X = dicyanamide, NCNCN (Gaspar *et al.*, 2005), and $X = \text{H}_2\text{O}$ with the decaborate anion $[\text{B}_{10}\text{H}_{10}]^{2-}$ as counter-ion (Korolenko *et al.*, 2020). Other neutral, mononuclear iron(II) complexes of composition $\text{Fe}^{\text{II}}(\text{LB}_{NN})_2(\text{N}_3)_2$ have been prepared and structurally described in case of $\text{LB}_{NN} = 4$ -amino-3,5-bis(2-pyridyl)-1,2,4-triazole (Setifi *et al.*, 2021), LB_{NN} = quinolin-8-amine (Setifi *et al.*, 2016), and LB_{NN} = 1,10-phenanthroline (Miao *et al.*, 2006).

Synthesis and crystallization

Compound (I) was synthesized under solvothermal conditions from a mixture of iron(II) bis(tetrafluoridoborate) hydrate (34 mg, 0.1 mmol), 2,2'-dipyridylamine (34 mg, 0.2 mmol) and sodium azide (13 mg, 0.2 mmol) in a mixture of water and ethanol (4:1 ν/ν , 20 ml). This mixture was sealed in a Teflonlined autoclave and held at 393 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h⁻¹ to give the title compound (yield 42%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The positions of the water H atoms were located from a difference-Fourier map and were refined with a fixed O-H distances of 0.85 Å.

Acknowledgements

Le plateau CRISTAL de l'université d'Angers is thanked for its support for the single-crystal X-ray crystallographic data collection and analysis.

Funding information

Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and the PRFU project (grant No. B00L01UN190120230003).

References

- Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.
- Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). *Coord. Chem. Rev.* **254**, 1468–1478.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.
- Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). *Dalton Trans.* 49, 7084–7092.
- Gaspar, A. B., Agustí, G., Martínez, V., Muñoz, M. C., Levchenko, G. & Real, J. A. (2005). *Inorg. Chim. Acta*, **358**, 4089–4094.
- Halcrow, M. A. (2013). Spin-Crossover Materials. Oxford, UK: John Wiley and Sons Ltd.
- Korolenko, S. E., Avdeeva, V. V., Malinina, E. A., Kubasov, A. S., Belousova, O. N. & Kuznetsov, N. T. (2020). *Russ. J. Coord. Chem.* 46, 297–301.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Miao, Z.-X., Shao, M., Liu, H.-J. & Li, M.-X. (2006). Acta Cryst. E62, m2170–m2172.

Table	3
-------	---

Experimental details.

Crystal data	
Chemical formula	$[Fe(N_3)_2(C_{10}H_9N_3)_2] \cdot H_2O$
M _r	500.33
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	300
a, b, c (Å)	7.7496 (5), 9.3778 (6), 16.6178 (10)
α, β, γ (°)	79.516 (3), 83.962 (3), 69.520 (3)
$V(Å^3)$	1111.34 (12)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.72
Crystal size (mm)	$0.38 \times 0.21 \times 0.12$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	93449, 10836, 7610
Rint	0.057
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.836
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.109, 1.09
No. of reflections	10836
No. of parameters	315
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.38, -0.65

Computer programs: *APEX2* and *SAINT* (Bruker, 2019), *SHELXT* (Sheldrick 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg, 2006) and *publCIF* (Westrip, 2010).

Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488–1491.

Setifi, Z., Setifi, F., Glidewell, C., Gil, D. M., Kletskov, A. V., Echeverria, V. & Mirzaei, M. (2021). J. Mol. Struct. 1235, 130155.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2024). **9**, x241116 [https://doi.org/10.1107/S2414314624011167]

Bis(azido- κN^1)bis(2,2'-dipyridylamine- $\kappa^2 N^1$, N^1 ')iron(II) monohydrate

Fatima Setifi, Zouaoui Setifi, Hans Reuter, Mohammad Hadi Al-Douh and Abderezak Addala

Bis(azido- κN^1)bis(2,2'-dipyridylamine- $\kappa^2 N^1$, N^1)iron(II) monohydrate

Crystal data	
$[Fe(N_3)_2(C_{10}H_9N_3)_2] \cdot H_2O$ $M_r = 500.33$ Triclinic, $P\overline{1}$ a = 7.7496 (5) Å b = 9.3778 (6) Å c = 16.6178 (10) Å a = 79.516 (3)° $\beta = 83.962$ (3)° $\gamma = 69.520$ (3)° V = 1111.34 (12) Å ³	Z = 2 F(000) = 516 $D_x = 1.495 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2459 reflections $\theta = 2.7-28.2^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 300 K Block, red $0.38 \times 0.21 \times 0.12 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) 93449 measured reflections	10836 independent reflections 7610 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 36.4^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -12 \rightarrow 12$ $k = -15 \rightarrow 15$ $l = -27 \rightarrow 27$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.109$ S = 1.09 10836 reflections 315 parameters 2 restraints	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0356P)^2 + 0.332P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.38$ e Å ⁻³ $\Delta\rho_{min} = -0.65$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of all H atoms were clearly identified in difference-Fourier syntheses. Those of the organic ligands were refined with calculated positions (-CH-=0.93 Å, -NH-=0.89 Å) and isotropic displacement parameters depending on the equivalent isotropic temperature factor of the parent atoms. The position of the H atom of the water molecule were refined with fixed O—H distances of 0.85 Å.

	×	11	-	II */II	
	<i>X</i>	<u>y</u>	Z	$U_{\rm iso} \cdot / U_{\rm eq}$	
Fel	0.75182 (2)	0.51720 (2)	0.71642 (2)	0.02855 (5)	
N1	0.93226 (16)	0.60191 (16)	0.63027 (8)	0.0407 (3)	
N1A	0.65214 (14)	0.42814 (12)	0.62585 (7)	0.0299 (2)	
N6	1.0198 (2)	0.1417 (2)	0.87772 (11)	0.0623 (4)	
C1A	0.77883 (19)	0.31328 (16)	0.59070 (9)	0.0361 (3)	
H1A	0.902781	0.300924	0.592767	0.043*	
C2A	0.7342 (2)	0.21435 (18)	0.55229 (10)	0.0432 (3)	
H2A	0.825505	0.135541	0.529849	0.052*	
C3A	0.5487 (2)	0.23478 (18)	0.54770 (10)	0.0436 (3)	
H3A	0.514078	0.167702	0.523344	0.052*	
C4A	0.4174 (2)	0.35459 (17)	0.57936 (9)	0.0378 (3)	
H4A	0.292675	0.371479	0.575537	0.045*	
C5A	0.47400 (17)	0.45148 (14)	0.61767 (8)	0.0288 (2)	
N2A	0.33800 (14)	0.57235 (13)	0.64863 (8)	0.0332 (2)	
H21	0.224127	0.575159	0.642404	0.040 (4)*	
C6A	0.34840 (16)	0.71080 (14)	0.66191 (8)	0.0286 (2)	
C7A	0.18479 (19)	0.83846 (16)	0.65752 (10)	0.0388 (3)	
H7A	0.074958	0.829053	0.645695	0.047*	
C8A	0.1891 (2)	0.97676 (17)	0.67087 (11)	0.0458 (3)	
H8A	0.081235	1.061619	0.669914	0.055*	
C9A	0.3551 (2)	0.98975 (16)	0.68581 (10)	0.0426 (3)	
H9A	0.361499	1.083335	0.693806	0.051*	
C10A	0.5092 (2)	0.86086 (15)	0.68847 (9)	0.0363 (3)	
H10A	0.621159	0.870158	0.697129	0.044*	
N3A	0.50850 (14)	0.72022 (12)	0.67923 (7)	0.0298 (2)	
N1B	0.57667 (16)	0.43066 (13)	0.81383 (7)	0.0331 (2)	
C1B	0.5491 (2)	0.29847 (16)	0.80710 (10)	0.0400 (3)	
H1B	0.628281	0.235554	0.771837	0.048*	
C2B	0.4115 (2)	0.25227 (19)	0.84919 (11)	0.0474 (4)	
H2B	0.396359	0.161449	0.841875	0.057*	
C3B	0.2952 (2)	0.3441 (2)	0.90305 (11)	0.0500 (4)	
H3B	0.198122	0.317344	0.931310	0.060*	
C4B	0.3250 (2)	0.4747 (2)	0.91413 (10)	0.0442 (3)	
H4B	0.251129	0.535740	0.951412	0.053*	
C5B	0.46853 (18)	0.51505 (16)	0.86852 (8)	0.0331 (2)	
N2B	0.49131 (17)	0.64924 (14)	0.88067 (8)	0.0389 (3)	
H22	0.403667	0.703840	0.913001	0.044 (5)*	
N2	0.87538 (16)	0.70541 (16)	0.57544 (8)	0.0385 (3)	
C6B	0.64315 (19)	0.69641 (15)	0.86547 (8)	0.0334 (2)	
C7B	0.6399 (2)	0.82180 (18)	0.90159 (10)	0.0451 (3)	
H7B	0.537900	0.870936	0.933549	0.054*	
C8B	0.7890 (3)	0.8704 (2)	0.88898 (12)	0.0530 (4)	
H8B	0.788688	0.954293	0.911503	0.064*	
C9B	0.9408 (3)	0.7933 (2)	0.84230 (11)	0.0519 (4)	
H9B	1.044924	0.822798	0.834127	0.062*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C10B	0.9336 (2)	0.6727 (2)	0.80852 (10)	0.0423 (3)	
H10B	1.036071	0.620313	0.777860	0.051*	
N3B	0.78511 (16)	0.62598 (14)	0.81743 (7)	0.0347 (2)	
N4	0.98043 (19)	0.30965 (15)	0.75339 (9)	0.0456 (3)	
N3	0.8244 (2)	0.8069 (2)	0.52298 (11)	0.0654 (5)	
N5	0.99782 (16)	0.22607 (14)	0.81594 (8)	0.0388 (3)	
01	0.2195 (2)	0.85040 (17)	0.97599 (9)	0.0622 (4)	
H1	0.152 (3)	0.838 (3)	1.0184 (9)	0.093*	
H2	0.166 (3)	0.9352 (15)	0.9458 (13)	0.093*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.02457 (8)	0.02777 (8)	0.03363 (9)	-0.00780 (6)	-0.00253 (6)	-0.00701 (6)
N1	0.0289 (5)	0.0486 (7)	0.0461 (7)	-0.0169 (5)	-0.0018 (5)	-0.0033 (6)
N1A	0.0260 (4)	0.0288 (5)	0.0345 (5)	-0.0065 (4)	-0.0030 (4)	-0.0084 (4)
N6	0.0579 (9)	0.0577 (9)	0.0642 (10)	-0.0215 (8)	-0.0044 (8)	0.0134 (8)
C1A	0.0317 (6)	0.0360 (6)	0.0375 (7)	-0.0050 (5)	-0.0014 (5)	-0.0112 (5)
C2A	0.0472 (8)	0.0376 (7)	0.0430 (8)	-0.0072 (6)	-0.0003 (6)	-0.0170 (6)
C3A	0.0552 (9)	0.0391 (7)	0.0445 (8)	-0.0212 (7)	-0.0039 (7)	-0.0149 (6)
C4A	0.0377 (7)	0.0385 (7)	0.0434 (7)	-0.0181 (6)	-0.0055 (5)	-0.0090 (6)
C5A	0.0287 (5)	0.0266 (5)	0.0317 (6)	-0.0101 (4)	-0.0031 (4)	-0.0035 (4)
N2A	0.0222 (4)	0.0318 (5)	0.0471 (6)	-0.0086 (4)	-0.0024 (4)	-0.0101 (5)
C6A	0.0248 (5)	0.0269 (5)	0.0318 (6)	-0.0061 (4)	-0.0009 (4)	-0.0044 (4)
C7A	0.0269 (6)	0.0348 (6)	0.0493 (8)	-0.0023 (5)	-0.0051 (5)	-0.0076 (6)
C8A	0.0407 (7)	0.0302 (6)	0.0559 (9)	0.0019 (6)	-0.0048 (7)	-0.0071 (6)
C9A	0.0520 (8)	0.0246 (6)	0.0486 (8)	-0.0097 (6)	-0.0039 (7)	-0.0049 (5)
C10A	0.0389 (7)	0.0287 (6)	0.0429 (7)	-0.0133 (5)	-0.0043 (5)	-0.0044 (5)
N3A	0.0260 (4)	0.0253 (4)	0.0378 (5)	-0.0081 (4)	-0.0023 (4)	-0.0052 (4)
N1B	0.0337 (5)	0.0295 (5)	0.0372 (6)	-0.0125 (4)	-0.0005 (4)	-0.0051 (4)
C1B	0.0454 (8)	0.0317 (6)	0.0448 (8)	-0.0155 (6)	-0.0039 (6)	-0.0043 (6)
C2B	0.0535 (9)	0.0408 (8)	0.0542 (9)	-0.0266 (7)	-0.0085 (7)	0.0015 (7)
C3B	0.0449 (8)	0.0574 (10)	0.0523 (9)	-0.0291 (8)	0.0005 (7)	0.0024 (8)
C4B	0.0384 (7)	0.0522 (9)	0.0431 (8)	-0.0189 (7)	0.0048 (6)	-0.0067 (7)
C5B	0.0303 (6)	0.0346 (6)	0.0338 (6)	-0.0109 (5)	-0.0030 (5)	-0.0032 (5)
N2B	0.0360 (6)	0.0383 (6)	0.0448 (7)	-0.0131 (5)	0.0071 (5)	-0.0163 (5)
N2	0.0297 (5)	0.0522 (7)	0.0386 (6)	-0.0203 (5)	0.0003 (4)	-0.0075 (5)
C6B	0.0366 (6)	0.0315 (6)	0.0330 (6)	-0.0111 (5)	-0.0038 (5)	-0.0068 (5)
C7B	0.0543 (9)	0.0404 (7)	0.0453 (8)	-0.0172 (7)	-0.0008 (7)	-0.0165 (6)
C8B	0.0690 (11)	0.0494 (9)	0.0538 (10)	-0.0309 (9)	-0.0064 (8)	-0.0173 (8)
C9B	0.0553 (10)	0.0647 (11)	0.0516 (9)	-0.0363 (9)	-0.0063 (7)	-0.0143 (8)
C10B	0.0368 (7)	0.0543 (9)	0.0427 (8)	-0.0205 (6)	-0.0047 (6)	-0.0130 (7)
N3B	0.0333 (5)	0.0376 (6)	0.0365 (6)	-0.0137 (4)	-0.0039 (4)	-0.0096 (5)
N4	0.0400 (6)	0.0388 (6)	0.0454 (7)	0.0029 (5)	-0.0048 (5)	-0.0058 (5)
N3	0.0534 (9)	0.0789 (12)	0.0559 (9)	-0.0239 (8)	-0.0070 (7)	0.0152 (8)
N5	0.0311 (5)	0.0344 (6)	0.0496 (7)	-0.0085 (4)	-0.0044 (5)	-0.0073 (5)
01	0.0559 (8)	0.0610 (8)	0.0552 (8)	0.0009 (6)	0.0051 (6)	-0.0191 (7)

Geometric parameters (Å, °)

Fe1—N1	2.1397 (13)	C9A—C10A	1.368 (2)	
Fe1—N4	2.1645 (13)	С9А—Н9А	0.9300	
Fe1—N1A	2.1710 (11)	C10A—N3A	1.3572 (16)	
Fe1—N3B	2.1963 (11)	C10A—H10A	0.9300	
Fe1—N3A	2.2061 (10)	N1B—C5B	1.3386 (17)	
Fe1—N1B	2.2254 (12)	N1B—C1B	1.3549 (17)	
N1—N2	1.1958 (18)	C1B—C2B	1.367 (2)	
N2—N3	1.153 (2)	C1B—H1B	0.9300	
N1A—C5A	1.3377 (16)	C2B—C3B	1.387 (3)	
N1A—C1A	1.3541 (16)	C2B—H2B	0.9300	
N4—N5	1.1713 (19)	C3B—C4B	1.369 (2)	
N5—N6	1.164 (2)	C3B—H3B	0.9300	
C1A—C2A	1.369 (2)	C4B—C5B	1.403 (2)	
C1A—H1A	0.9300	C4B—H4B	0.9300	
C2A—C3A	1.391 (2)	C5B—N2B	1.3824 (18)	
C2A—H2A	0.9300	N2B—C6B	1.3802 (18)	
C3A—C4A	1.370 (2)	N2B—H22	0.8900	
СЗА—НЗА	0.9300	C6B—N3B	1.3350 (18)	
C4A—C5A	1.4043 (18)	C6B—C7B	1.4059 (19)	
C4A—H4A	0.9300	C7B—C8B	1.367 (2)	
C5A—N2A	1.3865 (16)	C7B—H7B	0.9300	
N2A—C6A	1.3864 (16)	C8B—C9B	1.387 (3)	
N2A—H21	0.8900	C8B—H8B	0.9300	
C6A—N3A	1.3383 (15)	C9B—C10B	1.371 (2)	
C6A—C7A	1.4042 (17)	C9B—H9B	0.9300	
C7A—C8A	1.367 (2)	C10B—N3B	1.3534 (18)	
C7A—H7A	0.9300	C10B—H10B	0.9300	
C8A—C9A	1.385 (2)	O1—H1	0.850(1)	
C8A—H8A	0.9300	O1—H2	0.850 (1)	
N1—Fe1—N4	89.86 (5)	N3A—C10A—H10A	118.0	
N1—Fe1—N1A	93.92 (5)	C9A—C10A—H10A	118.0	
N4—Fe1—N1A	96.72 (5)	C6A—N3A—C10A	117.26 (11)	
N1—Fe1—N3B	95.82 (5)	C6A—N3A—Fe1	123.49 (8)	
N4—Fe1—N3B	92.31 (5)	C10A—N3A—Fe1	118.17 (9)	
N1A—Fe1—N3B	166.73 (4)	C5B—N1B—C1B	117.27 (12)	
N1—Fe1—N3A	92.72 (5)	C5B—N1B—Fe1	123.75 (9)	
N4—Fe1—N3A	176.62 (5)	C1B—N1B—Fe1	117.56 (10)	
N1A—Fe1—N3A	80.94 (4)	N1B-C1B-C2B	123.75 (15)	
N3B—Fe1—N3A	89.60 (4)	N1B—C1B—H1B	118.1	
N1—Fe1—N1B	175.48 (5)	C2B—C1B—H1B	118.1	
N4—Fe1—N1B	88.33 (5)	C1B—C2B—C3B	118.39 (15)	
N1A—Fe1—N1B	90.41 (4)	C1B—C2B—H2B	120.8	
N3B—Fe1—N1B	80.12 (4)	C3B—C2B—H2B	120.8	
N3A—Fe1—N1B	89.25 (4)	C4B—C3B—C2B	119.22 (15)	
C5A—N1A—C1A	117.71 (11)	C4B—C3B—H3B	120.4	

C5A—N1A—Fe1	123.97 (8)	C2B—C3B—H3B	120.4
C1A—N1A—Fe1	116.25 (8)	C3B—C4B—C5B	119.13 (15)
N1A—C1A—C2A	123.49 (13)	C3B—C4B—H4B	120.4
N1A—C1A—H1A	118.3	C5B—C4B—H4B	120.4
C2A—C1A—H1A	118.3	N1B—C5B—N2B	120.80 (12)
C1A—C2A—C3A	118.27 (13)	N1B—C5B—C4B	122.09 (13)
C1A—C2A—H2A	120.9	N2B-C5B-C4B	117.09 (13)
C3A - C2A - H2A	120.9	C6B-N2B-C5B	130.43(12)
C4A - C3A - C2A	119 43 (13)	C6B-N2B-H22	113.9
C4A - C3A - H3A	120.3	C5B—N2B—H22	114.1
$C^2A - C^3A - H^3A$	120.3	N1_N2_N3	177.99 (16)
$C_{2A} = C_{4A} = C_{5A}$	118 95 (13)	N3B - C6B - N2B	120 69 (12)
$C_{3A} = C_{4A} = U_{4A}$	120.5	N3B C6B C7B	120.07(12)
$C_{3A} - C_{4A} - H_{4A}$	120.5	N2P C6P C7P	122.07(13) 117.23(13)
$C_{JA} = C_{A} = \Pi_{A}$	120.3 120.37(11)	$\begin{array}{cccc} \mathbf{N}\mathbf{Z}\mathbf{D} & \mathbf{C}\mathbf{O}\mathbf{D} & \mathbf{C}\mathbf{O}\mathbf{D} \\ \mathbf{C}\mathbf{S}\mathbf{D} & \mathbf{C}\mathbf{T}\mathbf{D} & \mathbf{C}\mathbf{G}\mathbf{D} \end{array}$	117.25(15)
NIA = C5A = C4A	120.37(11) 121.07(12)	$C_{0}D_{0}$	118.95 (15)
NIA-CSA-C4A	121.97(12)	$C_{B} = C_{B} = H_{B}$	120.5
N_{2A} C_{5A} C_{4A}	117.64 (11)	C_{0B} C_{B} H_{B}	120.5
C6A—N2A—C5A	128.64 (10)	С/В—С8В—С9В	119.40 (15)
C6A—N2A—H21	114.1	С/В—С8В—Н8В	120.3
C5A—N2A—H21	113.5	C9B—C8B—H8B	120.3
N3A—C6A—N2A	120.69 (10)	C10B—C9B—C8B	118.37 (15)
N3A—C6A—C7A	121.94 (12)	C10B—C9B—H9B	120.8
N2A—C6A—C7A	117.36 (11)	C8B—C9B—H9B	120.8
C8A—C7A—C6A	119.12 (13)	N3B—C10B—C9B	123.44 (15)
C8A—C7A—H7A	120.4	N3B—C10B—H10B	118.3
C6A—C7A—H7A	120.4	C9B—C10B—H10B	118.3
C7A—C8A—C9A	119.60 (13)	C6B—N3B—C10B	117.62 (12)
C7A—C8A—H8A	120.2	C6B—N3B—Fe1	122.47 (9)
C9A—C8A—H8A	120.2	C10B-N3B-Fe1	114.90 (10)
C10A—C9A—C8A	118.04 (13)	N2—N1—Fe1	122.09 (9)
С10А—С9А—Н9А	121.0	N4—N5—N6	178.30 (17)
С8А—С9А—Н9А	121.0	N5—N4—Fe1	128.32 (11)
N3A—C10A—C9A	123.91 (13)	H1—O1—H2	110 (3)
C5A—N1A—C1A—C2A	-4.5 (2)	C5B—N1B—C1B—C2B	3.9 (2)
Fe1—N1A—C1A—C2A	159.85 (13)	Fe1—N1B—C1B—C2B	-163.01 (13)
N1A—C1A—C2A—C3A	1.3 (2)	N1B—C1B—C2B—C3B	-1.2 (3)
C1A—C2A—C3A—C4A	1.8 (2)	C1B—C2B—C3B—C4B	-1.9(3)
C2A—C3A—C4A—C5A	-1.7(2)	C2B—C3B—C4B—C5B	2.2 (3)
C1A—N1A—C5A—N2A	-176.65(12)	C1B—N1B—C5B—N2B	178.21 (13)
Fe1—N1A—C5A—N2A	20.36 (17)	Fe1—N1B—C5B—N2B	-15.71(18)
C1A— $N1A$ — $C5A$ — $C4A$	4 54 (19)	C1B $N1B$ $C5B$ $C4B$	-36(2)
Fe1 = N1A = C5A = C4A	-15845(11)	F_{e1} N1B C_{5B} C_{4B}	16250(11)
C_{3A} C_{4A} C_{5A} N_{1A}	-16(2)	C3B-C4B-C5B-N1B	0.6(2)
$C_{3} = C_{4} = C_{5} = N_{2}$	179 57 (14)	C3B - C4B - C5B - N2B	178 86 (15)
$\frac{1}{10000000000000000000000000000000000$	263(2)	N1R C5R N2P C6P	-230(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.3(2) -154.92(12)	CAD C5D N2D C4D	23.0(2)
$C_{A} = C_{A} = C_{A} = C_{A}$	-134.62(13)	$C_{4D} = C_{3D} = C_{4D} = C$	156.00 (15)
UJA—NZA—UbA—NJA	-29.1 (2)	C3B—N2B—C6B—N3B	13.3 (2)

C5A—N2A—C6A—C7A	151.72 (14)	C5B—N2B—C6B—C7B	-165.32 (15)
N3A-C6A-C7A-C8A	0.4 (2)	N3B—C6B—C7B—C8B	-1.9 (2)
N2A—C6A—C7A—C8A	179.51 (14)	N2B—C6B—C7B—C8B	179.00 (15)
C6A—C7A—C8A—C9A	2.1 (2)	C6B—C7B—C8B—C9B	-1.2 (3)
C7A—C8A—C9A—C10A	-1.5 (2)	C7B—C8B—C9B—C10B	1.7 (3)
C8A—C9A—C10A—N3A	-1.6 (2)	C8B—C9B—C10B—N3B	0.9 (3)
N2A—C6A—N3A—C10A	177.64 (12)	N2B-C6B-N3B-C10B	-176.64 (13)
C7A—C6A—N3A—C10A	-3.25 (19)	C7B—C6B—N3B—C10B	4.3 (2)
N2A—C6A—N3A—Fe1	-14.53 (17)	N2B—C6B—N3B—Fe1	29.71 (18)
C7A—C6A—N3A—Fe1	164.58 (11)	C7B—C6B—N3B—Fe1	-149.40 (12)
C9A—C10A—N3A—C6A	3.9 (2)	C9B—C10B—N3B—C6B	-3.8 (2)
C9A—C10A—N3A—Fe1	-164.56 (12)	C9B—C10B—N3B—Fe1	151.83 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N2A—H21···N1 ⁱ	0.89	2.21	3.1012 (15)	175
N2 <i>B</i> —H22…O1	0.89	1.96	2.8479 (17)	172
O1—H1···N6 ⁱⁱ	0.85 (1)	2.06 (1)	2.894 (2)	167 (3)
O1—H2···N6 ⁱⁱⁱ	0.85 (1)	2.06 (1)	2.911 (2)	176 (3)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) *x*-1, *y*+1, *z*.