organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4′-(2-Meth­­oxy­phen­yl)-2,2′:6′,2′′-terpyridine

crossmark logo

aMultimedia University of Kenya, PO Box 15653-00503, Nairobi, Kenya, and bSchool of Chemistry and Physics, University of KwaZulu Natal, Private Bag X54001, Westville, Durban, 4000, South Africa
*Correspondence e-mail: 224098093@stu.ukzn.ac.za

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 21 November 2024; accepted 25 November 2024; online 28 November 2024)

In the title compound, C22H17N3O, the N atoms of the pyridine rings exhibit a typical transtrans arrangement: the dihedral angles between the central pyridine ring and the peripheral rings are 22.24 (4) and 2.38 (4)°. In the crystal, pairwise C—H⋯N hydrogen bonds form inversion dimers described by an R22(6) graph set descriptor, which further inter­act through C—H⋯π and ππ inter­actions, creating a two-dimensional supra­molecular network propagating in the bc plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Terpyridines are N,N,N-type pincer ligands that provide tight chelation with various metal cations in a nearly planar ciscis geometry of their pyridine N atoms (Wei et al., 2019[Wei, C., He, Y., Shi, X. & Song, Z. (2019). Coord. Chem. Rev. 385, 1-19.]). This conformation allows for a good conjugation between the aromatic rings and the metal cation making terpyridine a ‘non-innocent’ ligand, capable of stabilizing low-valency metal ions (García–Domínguez et al., 2017[García-Domínguez, A., Müller, S. & Nevado, C. (2017). Angew. Chem. Int. Ed. 56, 9949-9952.]). The ligand exhibits two possible coordination modes: mono-terpyridine pincer complexes and bis-terpyridine complexes depending on the number of coordinating terpyridine ligands (Taniya et al., 2021[Taniya, O. S., Kopchuk, D. S., Khasanov, A. F., Kovalev, I. S., Santra, S., Zyryanov, G. V., Majee, A., Charushin, V. N. & Chupakhin, O. N. (2021). Coord. Chem. Rev. 442, 213980.]). The transition-metal complexes of 4′-aryl-substituted-2,2′:6′,2"-terpyridines possess rich supra­molecular chemistry (Wei et al., 2019[Wei, C., He, Y., Shi, X. & Song, Z. (2019). Coord. Chem. Rev. 385, 1-19.]) as well as biological, DNA binding, and electrochemical properties, which render them as useful candidates for applications in the fields of medicine and mol­ecular biology (Lazić et al., 2016[Lazić, D., Arsenijević, A., Puchta, R., Bugarčić, Ž. D., ŽD, & Rilak, A. (2016). Dalton Trans. 45, 4633-4646.]). The substituent groups on the ligands may be used to tailor the properties of the resulting coordination complexes (Shi et al., 2006[Shi, P., Jiang, Q., Zhao, Y., Zhang, Y., Lin, J., Lin, L., Ding, J. & Guo, Z. (2006). J. Biol. Inorg. Chem. 11, 745-752.]).

The title compound, C22H17N3O (I), is a terpyridine derivative with a 2-meth­oxy­phenyl substituent at the third carbon atom of the central pyridine ring. The crystal structure of the compound contains one mol­ecule in the asymmetric unit in space group P21/c. As is typical for a non-coordinated terpyridine, the structure exhibits a trans–trans arrangement of the pyridine N atoms [N1—C3—C4—N2 = 158.59 (10)°; N3—C17—C16—N2 = −179.09 (10)°], as illustrated in Fig. 1[link]. The peripheral pyridine rings subtend dihedral angles of 22.24 (4)° (N1 ring) and 2.38 (4)° (N3 ring) with the central pyridine ring. The meth­oxy­phenyl ring is significantly twisted away from the central pyridine ring, with a dihedral angle of 48.93 (4)°. All other geometrical parameters for (I) are comparable with those of 4′-(2,4-di­meth­oxy­phen­yl)-2,2′:6′,2′′-terpyridine (Cambridge Structural Database refcode: JEYHED; Demircioğlu et al., 2018[Demircioğlu, Z., Yeşil, A. E., Altun, M., Bal-Demirci, T. & Özdemir, N. (2018). J. Mol. Struct. 1162, 96-108.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level.

In the extended structure of (I), weak C—H⋯N hydrogen bonds connect the mol­ecules (Fig. 2[link], Table 1[link]). These inter­actions form hydrogen-bonded cyclic dimers, described by an R22(6) graph set descriptor. The hydrogen-bonded dimers inter­act through C—H⋯π inter­actions, where C8—H8 inter­acts with the centroid of one of the peripheral pyridine rings and C13—H13 inter­acts with the centroid of the meth­oxy-substituted ring. These inter­actions link neighbouring dimers along the b-axis direction forming a zigzag pattern, as shown in Fig. 3[link]. The planarity of the mol­ecules facilitates ππ inter­actions between the central pyridine ring and the other pyridine ring not involved in the C—H⋯π inter­molecular inter­action, with the shortest centroid–centroid separation being 3.5864 (6) Å. The C—H⋯π and ππ inter­actions combine to form a two-dimensional supra­molecular arrangement extending over the crystallographic bc plane.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the N1/C1–3/C14/C15 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯N3i 0.95 2.66 3.4138 (16) 137
C8—H8⋯Cg1ii 0.95 2.68 3.5698 (12) 155
C13—H13⋯Cg4iii 0.95 2.77 3.5182 (12) 136
Symmetry codes: (i) [-x+2, -y+1, -z+2]; (ii) [x+1, y, z]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Illustration of inter­molecular C—H⋯N inter­actions in the extended structure of (I) depicted as blue dotted lines and C—H⋯π and ππ inter­actions represented by red dashed lines.
[Figure 3]
Figure 3
Representation of zigzag propagation patterns of the hydrogen bonded dimers along the crystallographic b-axis direction.

Synthesis and crystallization

The title compound was synthesized using a method modified from Winter et al. (2006[Winter, A., van den Berg, A. M., Hoogenboom, R., Kickelbick, G. & Schubert, U. S. (2006). Synthesis, 2006, 2873-2878.]): 2-meth­oxy­benzaldehyde (10 mmol) was dissolved in ethanol (30 ml), cooled to 0 °C, and treated with a 2-acetyl­pyridine/NaOH solution. After stirring for 2 h at 0 °C, 25% aqueous ammonia (30 ml) was added, and the reaction was stirred at room temperature for 18 h. The precipitate was filtered, washed with water and 1:1 water–ethanol, dried under vacuum, and recrystallized from methanol solution to yield X-ray-quality crystals.

Refinement

Crystallographic data and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H17N3O
Mr 339.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.7366 (3), 29.5787 (10), 7.3852 (3)
β (°) 91.962 (2)
V3) 1689.03 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.43 × 0.28 × 0.26
 
Data collection
Diffractometer Bruker SMART APEX2 area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.955, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 36956, 4227, 3728
Rint 0.024
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.03
No. of reflections 4227
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

4'-(2-Methoxyphenyl)-2,2':6',2''-terpyridine top
Crystal data top
C22H17N3OF(000) = 712
Mr = 339.38Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7366 (3) ÅCell parameters from 9871 reflections
b = 29.5787 (10) Åθ = 2.6–28.4°
c = 7.3852 (3) ŵ = 0.08 mm1
β = 91.962 (2)°T = 100 K
V = 1689.03 (11) Å3Block, yellow
Z = 40.43 × 0.28 × 0.26 mm
Data collection top
Bruker SMART APEX2 area detector
diffractometer
4227 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs3728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 7.9 pixels mm-1θmax = 28.4°, θmin = 2.6°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 3939
Tmin = 0.955, Tmax = 0.988l = 99
36956 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.611P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4227 reflectionsΔρmax = 0.37 e Å3
236 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47285 (11)0.30543 (3)1.08916 (12)0.02170 (19)
N10.14529 (13)0.35669 (3)0.52813 (13)0.0196 (2)
N20.41380 (12)0.44519 (3)0.71159 (13)0.01598 (19)
N30.78678 (13)0.50369 (3)0.89892 (14)0.0217 (2)
C10.12572 (16)0.38731 (5)0.41546 (18)0.0264 (3)
H10.2311980.3827800.3482390.032*
C20.00699 (16)0.35250 (4)0.43771 (17)0.0235 (2)
H20.0352600.3239510.3857410.028*
C30.18315 (14)0.39749 (4)0.59943 (15)0.0167 (2)
C40.35441 (14)0.40258 (3)0.69551 (14)0.0158 (2)
C50.44371 (14)0.36519 (3)0.76556 (15)0.0166 (2)
H50.3974040.3356180.7509210.020*
C60.60216 (14)0.37190 (3)0.85748 (14)0.0156 (2)
C70.70993 (14)0.33454 (3)0.93456 (14)0.0158 (2)
C80.88534 (14)0.33331 (4)0.89734 (15)0.0181 (2)
H80.9320590.3561800.8231120.022*
C90.99367 (15)0.29944 (4)0.96611 (16)0.0196 (2)
H91.1128940.2991760.9393170.024*
C100.92535 (15)0.26616 (4)1.07407 (16)0.0199 (2)
H100.9977180.2424591.1190750.024*
C110.41225 (17)0.27917 (5)1.23632 (19)0.0307 (3)
H11A0.4079830.2472151.2014210.046*
H11B0.2961870.2893521.2665150.046*
H11C0.4909930.2829291.3420350.046*
C120.64395 (14)0.30124 (3)1.04914 (15)0.0169 (2)
C130.75168 (15)0.26701 (4)1.11749 (15)0.0188 (2)
H130.7065830.2442921.1935930.023*
C140.08713 (16)0.42885 (4)0.49347 (18)0.0252 (3)
H140.1668390.4532250.4832210.030*
C150.07000 (15)0.43416 (4)0.58670 (16)0.0206 (2)
H150.1002000.4623040.6410670.025*
C160.56678 (14)0.45144 (3)0.79773 (14)0.0153 (2)
C170.63187 (14)0.49871 (3)0.81402 (14)0.0155 (2)
C180.53607 (15)0.53500 (4)0.74648 (16)0.0196 (2)
H180.4279710.5302730.6844520.024*
C190.60155 (15)0.57845 (4)0.77145 (17)0.0209 (2)
H190.5385440.6039340.7270270.025*
C200.75910 (15)0.58400 (4)0.86153 (16)0.0199 (2)
H200.8058310.6133250.8822330.024*
C210.84764 (16)0.54583 (4)0.92113 (18)0.0238 (3)
H210.9573220.5497030.9809250.029*
C220.66411 (14)0.41587 (4)0.87251 (15)0.0164 (2)
H220.7720100.4217130.9332820.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0192 (4)0.0219 (4)0.0242 (4)0.0007 (3)0.0036 (3)0.0082 (3)
N10.0222 (5)0.0204 (5)0.0163 (5)0.0044 (3)0.0005 (4)0.0007 (3)
N20.0178 (4)0.0157 (4)0.0146 (4)0.0014 (3)0.0013 (3)0.0004 (3)
N30.0207 (5)0.0164 (4)0.0276 (5)0.0017 (3)0.0043 (4)0.0011 (4)
C10.0196 (6)0.0363 (7)0.0230 (6)0.0054 (5)0.0042 (4)0.0016 (5)
C20.0249 (6)0.0264 (6)0.0193 (6)0.0081 (4)0.0002 (4)0.0026 (4)
C30.0179 (5)0.0180 (5)0.0140 (5)0.0023 (4)0.0008 (4)0.0019 (4)
C40.0182 (5)0.0156 (5)0.0139 (5)0.0010 (4)0.0015 (4)0.0004 (4)
C50.0196 (5)0.0138 (5)0.0163 (5)0.0016 (4)0.0010 (4)0.0003 (4)
C60.0183 (5)0.0144 (5)0.0144 (5)0.0012 (4)0.0023 (4)0.0008 (4)
C70.0195 (5)0.0131 (4)0.0147 (5)0.0001 (4)0.0011 (4)0.0008 (4)
C80.0207 (5)0.0169 (5)0.0168 (5)0.0014 (4)0.0008 (4)0.0001 (4)
C90.0185 (5)0.0217 (5)0.0186 (5)0.0017 (4)0.0011 (4)0.0029 (4)
C100.0240 (5)0.0178 (5)0.0176 (5)0.0041 (4)0.0035 (4)0.0014 (4)
C110.0263 (6)0.0348 (7)0.0315 (7)0.0028 (5)0.0078 (5)0.0155 (5)
C120.0186 (5)0.0162 (5)0.0158 (5)0.0009 (4)0.0003 (4)0.0011 (4)
C130.0249 (5)0.0157 (5)0.0156 (5)0.0002 (4)0.0015 (4)0.0021 (4)
C140.0200 (6)0.0298 (6)0.0255 (6)0.0028 (4)0.0014 (5)0.0035 (5)
C150.0205 (5)0.0207 (5)0.0205 (6)0.0007 (4)0.0007 (4)0.0009 (4)
C160.0176 (5)0.0139 (5)0.0144 (5)0.0008 (4)0.0020 (4)0.0007 (4)
C170.0173 (5)0.0148 (5)0.0144 (5)0.0007 (4)0.0018 (4)0.0006 (4)
C180.0185 (5)0.0169 (5)0.0232 (6)0.0007 (4)0.0020 (4)0.0029 (4)
C190.0231 (6)0.0153 (5)0.0246 (6)0.0013 (4)0.0020 (4)0.0035 (4)
C200.0255 (6)0.0147 (5)0.0199 (6)0.0046 (4)0.0043 (4)0.0008 (4)
C210.0226 (6)0.0207 (6)0.0277 (6)0.0043 (4)0.0054 (5)0.0004 (4)
C220.0165 (5)0.0161 (5)0.0167 (5)0.0009 (4)0.0002 (4)0.0010 (4)
Geometric parameters (Å, º) top
O1—C111.4279 (14)C9—H90.9500
O1—C121.3718 (14)C9—C101.3832 (17)
N1—C21.3400 (15)C10—H100.9500
N1—C31.3449 (14)C10—C131.3922 (16)
N2—C41.3454 (13)C11—H11A0.9800
N2—C161.3372 (14)C11—H11B0.9800
N3—C171.3415 (14)C11—H11C0.9800
N3—C211.3403 (14)C12—C131.3949 (15)
C1—H10.9500C13—H130.9500
C1—C21.3858 (18)C14—H140.9500
C1—C141.3855 (18)C14—C151.3854 (16)
C2—H20.9500C15—H150.9500
C3—C41.4891 (15)C16—C171.4896 (14)
C3—C151.3949 (15)C16—C221.3965 (14)
C4—C51.3942 (15)C17—C181.3874 (15)
C5—H50.9500C18—H180.9500
C5—C61.3950 (15)C18—C191.3915 (15)
C6—C71.4858 (14)C19—H190.9500
C6—C221.3893 (14)C19—C201.3783 (16)
C7—C81.3943 (15)C20—H200.9500
C7—C121.4060 (15)C20—C211.3848 (16)
C8—H80.9500C21—H210.9500
C8—C91.3909 (15)C22—H220.9500
C12—O1—C11117.34 (9)H11A—C11—H11B109.5
C2—N1—C3117.01 (10)H11A—C11—H11C109.5
C16—N2—C4117.74 (9)H11B—C11—H11C109.5
C21—N3—C17117.64 (10)O1—C12—C7116.06 (9)
C2—C1—H1120.8O1—C12—C13123.82 (10)
C14—C1—H1120.8C13—C12—C7120.11 (10)
C14—C1—C2118.50 (11)C10—C13—C12119.95 (10)
N1—C2—C1123.94 (11)C10—C13—H13120.0
N1—C2—H2118.0C12—C13—H13120.0
C1—C2—H2118.0C1—C14—H14120.7
N1—C3—C4117.10 (9)C15—C14—C1118.69 (11)
N1—C3—C15122.92 (10)C15—C14—H14120.7
C15—C3—C4119.97 (10)C3—C15—H15120.5
N2—C4—C3115.62 (9)C14—C15—C3118.91 (11)
N2—C4—C5123.16 (10)C14—C15—H15120.5
C5—C4—C3121.21 (9)N2—C16—C17117.35 (9)
C4—C5—H5120.5N2—C16—C22122.72 (9)
C4—C5—C6118.93 (9)C22—C16—C17119.93 (10)
C6—C5—H5120.5N3—C17—C16115.79 (9)
C5—C6—C7123.57 (9)N3—C17—C18122.73 (10)
C22—C6—C5117.84 (9)C18—C17—C16121.48 (10)
C22—C6—C7118.56 (9)C17—C18—H18120.7
C8—C7—C6118.76 (9)C17—C18—C19118.64 (10)
C8—C7—C12118.43 (10)C19—C18—H18120.7
C12—C7—C6122.76 (10)C18—C19—H19120.5
C7—C8—H8119.2C20—C19—C18119.08 (10)
C9—C8—C7121.69 (10)C20—C19—H19120.5
C9—C8—H8119.2C19—C20—H20120.8
C8—C9—H9120.5C19—C20—C21118.42 (10)
C10—C9—C8119.06 (11)C21—C20—H20120.8
C10—C9—H9120.5N3—C21—C20123.46 (11)
C9—C10—H10119.6N3—C21—H21118.3
C9—C10—C13120.71 (10)C20—C21—H21118.3
C13—C10—H10119.6C6—C22—C16119.59 (10)
O1—C11—H11A109.5C6—C22—H22120.2
O1—C11—H11B109.5C16—C22—H22120.2
O1—C11—H11C109.5
O1—C12—C13—C10178.02 (10)C7—C8—C9—C100.04 (17)
N1—C3—C4—N2158.59 (10)C7—C12—C13—C100.84 (16)
N1—C3—C4—C522.36 (15)C8—C7—C12—O1176.60 (9)
N1—C3—C15—C141.38 (17)C8—C7—C12—C132.34 (16)
N2—C4—C5—C60.20 (17)C8—C9—C10—C131.61 (17)
N2—C16—C17—N3179.09 (10)C9—C10—C13—C121.18 (17)
N2—C16—C17—C181.50 (16)C11—O1—C12—C7165.58 (11)
N2—C16—C22—C60.33 (16)C11—O1—C12—C1313.32 (16)
N3—C17—C18—C191.50 (18)C12—C7—C8—C91.92 (16)
C1—C14—C15—C30.31 (18)C14—C1—C2—N11.13 (19)
C2—N1—C3—C4178.33 (10)C15—C3—C4—N221.48 (15)
C2—N1—C3—C151.75 (16)C15—C3—C4—C5157.57 (11)
C2—C1—C14—C151.48 (18)C16—N2—C4—C3179.67 (9)
C3—N1—C2—C10.47 (17)C16—N2—C4—C50.65 (16)
C3—C4—C5—C6178.77 (10)C16—C17—C18—C19177.86 (10)
C4—N2—C16—C17179.69 (9)C17—N3—C21—C200.10 (19)
C4—N2—C16—C220.92 (16)C17—C16—C22—C6179.71 (10)
C4—C3—C15—C14178.70 (10)C17—C18—C19—C200.23 (17)
C4—C5—C6—C7178.80 (10)C18—C19—C20—C211.09 (17)
C4—C5—C6—C220.78 (16)C19—C20—C21—N31.31 (19)
C5—C6—C7—C8131.01 (11)C21—N3—C17—C16178.07 (10)
C5—C6—C7—C1251.41 (16)C21—N3—C17—C181.33 (17)
C5—C6—C22—C160.53 (16)C22—C6—C7—C846.99 (14)
C6—C7—C8—C9179.61 (10)C22—C6—C7—C12130.59 (11)
C6—C7—C12—O10.99 (15)C22—C16—C17—N31.50 (15)
C6—C7—C12—C13179.93 (10)C22—C16—C17—C18177.91 (10)
C7—C6—C22—C16178.65 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the N1/C1–3/C14/C15 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C21—H21···N3i0.952.663.4138 (16)137
C8—H8···Cg1ii0.952.683.5698 (12)155
C13—H13···Cg4iii0.952.773.5182 (12)136
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z; (iii) x, y1/2, z1/2.
 

Acknowledgements

The authors thank the University of KwaZulu Natal for provision of research facilities.

References

First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemircioğlu, Z., Yeşil, A. E., Altun, M., Bal-Demirci, T. & Özdemir, N. (2018). J. Mol. Struct. 1162, 96–108.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcía–Domínguez, A., Müller, S. & Nevado, C. (2017). Angew. Chem. Int. Ed. 56, 9949–9952.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLazić, D., Arsenijević, A., Puchta, R., Bugarčić, Ž. D., ŽD, & Rilak, A. (2016). Dalton Trans. 45, 4633–4646.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, P., Jiang, Q., Zhao, Y., Zhang, Y., Lin, J., Lin, L., Ding, J. & Guo, Z. (2006). J. Biol. Inorg. Chem. 11, 745–752.  CrossRef PubMed CAS Google Scholar
First citationTaniya, O. S., Kopchuk, D. S., Khasanov, A. F., Kovalev, I. S., Santra, S., Zyryanov, G. V., Majee, A., Charushin, V. N. & Chupakhin, O. N. (2021). Coord. Chem. Rev. 442, 213980.  CrossRef Google Scholar
First citationWei, C., He, Y., Shi, X. & Song, Z. (2019). Coord. Chem. Rev. 385, 1–19.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWinter, A., van den Berg, A. M., Hoogenboom, R., Kickelbick, G. & Schubert, U. S. (2006). Synthesis, 2006, 2873–2878.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146