

ISSN 2414-3146

Received 21 November 2024 Accepted 25 November 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; terpyridine.

CCDC reference: 2405021

Structural data: full structural data are available from iucrdata.iucr.org

4'-(2-Methoxyphenyl)-2,2':6',2"-terpyridine

Eric M. Njogu,^a David O. Juma,^b* Sizwe J. Zamisa,^b Bernard Omondi^b and Vincent O. Nyamori^b

^aMultimedia University of Kenya, PO Box 15653-00503, Nairobi, Kenya, and ^bSchool of Chemistry and Physics, University of KwaZulu Natal, Private Bag X54001, Westville, Durban, 4000, South Africa. *Correspondence e-mail: 224098093@stu.ukzn.ac.za

In the title compound, $C_{22}H_{17}N_3O$, the N atoms of the pyridine rings exhibit a typical *trans-trans* arrangement: the dihedral angles between the central pyridine ring and the peripheral rings are 22.24 (4) and 2.38 (4)°. In the crystal, pairwise C-H···N hydrogen bonds form inversion dimers described by an $R_2^2(6)$ graph set descriptor, which further interact through C-H··· π and π - π interactions, creating a two-dimensional supramolecular network propagating in the *bc* plane.

Structure description

Terpyridines are N,N,N-type pincer ligands that provide tight chelation with various metal cations in a nearly planar *cis–cis* geometry of their pyridine N atoms (Wei *et al.*, 2019). This conformation allows for a good conjugation between the aromatic rings and the metal cation making terpyridine a 'non-innocent' ligand, capable of stabilizing low-valency metal ions (García–Domínguez *et al.*, 2017). The ligand exhibits two possible coordination modes: mono-terpyridine pincer complexes and bis-terpyridine complexes depending on the number of coordinating terpyridine ligands (Taniya *et al.*, 2021). The transition-metal complexes of 4'-aryl-substituted-2,2':6',2"-terpyridines possess rich supramolecular chemistry (Wei *et al.*, 2019) as well as biological, DNA binding, and electrochemical properties, which render them as useful candidates for applications in the fields of medicine and molecular biology (Lazić *et al.*, 2016). The substituent groups on the ligands may be used to tailor the properties of the resulting coordination complexes (Shi *et al.*, 2006).

The title compound, $C_{22}H_{17}N_3O(I)$, is a terpyridine derivative with a 2-methoxyphenyl substituent at the third carbon atom of the central pyridine ring. The crystal structure of the compound contains one molecule in the asymmetric unit in space group $P2_1/c$. As is typical for a non-coordinated terpyridine, the structure exhibits a *trans-trans* arrangement of the pyridine N atoms $[N1-C3-C4-N2 = 158.59(10)^\circ]$;

Figure 1

The molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level.

N3-C17-C16-N2 = $-179.09 (10)^{\circ}$], as illustrated in Fig. 1. The peripheral pyridine rings subtend dihedral angles of 22.24 (4)° (N1 ring) and 2.38 (4)° (N3 ring) with the central pyridine ring. The methoxyphenyl ring is significantly twisted away from the central pyridine ring, with a dihedral angle of 48.93 (4)°. All other geometrical parameters for (I) are comparable with those of 4'-(2,4-dimethoxyphenyl)-2,2':6',2''-terpyridine (Cambridge Structural Database refcode: JEYHED; Demircioğlu *et al.*, 2018).

In the extended structure of (I), weak $C-H\cdots N$ hydrogen bonds connect the molecules (Fig. 2, Table 1). These interactions form hydrogen-bonded cyclic dimers, described by an $R_2^2(6)$ graph set descriptor. The hydrogen-bonded dimers interact through $C-H\cdots \pi$ interactions, where C8-H8

Figure 2

Illustration of intermolecular C-H···N interactions in the extended structure of (I) depicted as blue dotted lines and C-H··· π and π - π interactions represented by red dashed lines.

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

 $\mathit{Cg1}$ and $\mathit{Cg4}$ are the centroids of the N1/C1–3/C14/C15 and C7–C12 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C21 - H21 \cdots N3^i$	0.95	2.66	3.4138 (16)	137
$C8-H8\cdots Cg1^{ii}$	0.95	2.68	3.5698 (12)	155
$C13-H13\cdots Cg4^{iii}$	0.95	2.77	3.5182 (12)	136

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) x + 1, y, z; (iii) x, $-y - \frac{1}{2}$, $z - \frac{1}{2}$.

Table 2 Experimental details.

Crystal data	
Chemical formula	$C_{22}H_{17}N_{3}O$
$M_{ m r}$	339.38
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	7.7366 (3), 29.5787 (10), 7.3852 (3)
β (°)	91.962 (2)
$V(Å^3)$	1689.03 (11)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.08
Crystal size (mm)	$0.43 \times 0.28 \times 0.26$
Data collection	
Diffractometer	Bruker SMART APEX2 area detector
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
Tmin. Tmon	0.955, 0.988
No. of measured, independent and	36956, 4227, 3728
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.024
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.670
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.119, 1.03
No. of reflections	4227
No. of parameters	236
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.37, -0.24

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXS (Sheldrick, 2008), SHELXL2019/3 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

interacts with the centroid of one of the peripheral pyridine rings and C13—H13 interacts with the centroid of the methoxy-substituted ring. These interactions link neighbouring dimers along the *b*-axis direction forming a zigzag pattern, as shown in Fig. 3. The planarity of the molecules facilitates π - π interactions between the central pyridine ring and the other pyridine ring not involved in the C-H··· π intermolecular interaction, with the shortest centroid-centroid separation being 3.5864 (6) Å. The C-H··· π and π - π interactions

Representation of zigzag propagation patterns of the hydrogen bonded dimers along the crystallographic *b*-axis direction.

combine to form a two-dimensional supramolecular arrangement extending over the crystallographic *bc* plane.

Synthesis and crystallization

The title compound was synthesized using a method modified from Winter *et al.* (2006): 2-methoxybenzaldehyde (10 mmol) was dissolved in ethanol (30 ml), cooled to 0 °C, and treated with a 2-acetylpyridine/NaOH solution. After stirring for 2 h at 0 °C, 25% aqueous ammonia (30 ml) was added, and the reaction was stirred at room temperature for 18 h. The precipitate was filtered, washed with water and 1:1 water– ethanol, dried under vacuum, and recrystallized from methanol solution to yield X-ray-quality crystals.

Refinement

Crystallographic data and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the University of KwaZulu Natal for provision of research facilities.

References

- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Demircioğlu, Z., Yeşil, A. E., Altun, M., Bal-Demirci, T. & Özdemir, N. (2018). J. Mol. Struct. 1162, 96–108.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- García–Domínguez, A., Müller, S. & Nevado, C. (2017). Angew. Chem. Int. Ed. 56, 9949–9952.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Lazić, D., Arsenijević, A., Puchta, R., Bugarčić, Ž. D., ŽD, & Rilak, A. (2016). *Dalton Trans.* **45**, 4633–4646.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shi, P., Jiang, Q., Zhao, Y., Zhang, Y., Lin, J., Lin, L., Ding, J. & Guo, Z. (2006). J. Biol. Inorg. Chem. 11, 745–752.
- Taniya, O. S., Kopchuk, D. S., Khasanov, A. F., Kovalev, I. S., Santra, S., Zyryanov, G. V., Majee, A., Charushin, V. N. & Chupakhin, O. N. (2021). Coord. Chem. Rev. 442, 213980.
- Wei, C., He, Y., Shi, X. & Song, Z. (2019). Coord. Chem. Rev. 385, 1–19.
- Winter, A., van den Berg, A. M., Hoogenboom, R., Kickelbick, G. & Schubert, U. S. (2006). *Synthesis*, **2006**, 2873–2878.

full crystallographic data

IUCrData (2024). 9, x241143 [https://doi.org/10.1107/S241431462401143X]

4'-(2-Methoxyphenyl)-2,2':6',2''-terpyridine

Eric M. Njogu, David O. Juma, Sizwe J. Zamisa, Bernard Omondi and Vincent O. Nyamori

4'-(2-Methoxyphenyl)-2,2':6',2''-terpyridine

Crystal data

 $C_{22}H_{17}N_{3}O$ $M_{r} = 339.38$ Monoclinic, $P2_{1}/c$ a = 7.7366 (3) Å b = 29.5787 (10) Å c = 7.3852 (3) Å $\beta = 91.962$ (2)° V = 1689.03 (11) Å³ Z = 4

Data collection

Bruker SMART APEX2 area detector diffractometer Radiation source: microfocus sealed X-ray tube, Incoatec I μ s Graphite monochromator Detector resolution: 7.9 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.119$ S = 1.034227 reflections 236 parameters 0 restraints F(000) = 712 $D_x = 1.335 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9871 reflections $\theta = 2.6-28.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.43 \times 0.28 \times 0.26 \text{ mm}$

 $T_{\min} = 0.955, T_{\max} = 0.988$ 36956 measured reflections 4227 independent reflections 3728 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 28.4^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -10 \rightarrow 10$ $k = -39 \rightarrow 39$ $l = -9 \rightarrow 9$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0697P)^2 + 0.611P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.37$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.47285 (11)	0.30543 (3)	1.08916 (12)	0.02170 (19)	
N1	0.14529 (13)	0.35669 (3)	0.52813 (13)	0.0196 (2)	
N2	0.41380 (12)	0.44519 (3)	0.71159 (13)	0.01598 (19)	
N3	0.78678 (13)	0.50369 (3)	0.89892 (14)	0.0217 (2)	
C1	-0.12572 (16)	0.38731 (5)	0.41546 (18)	0.0264 (3)	
H1	-0.231198	0.382780	0.348239	0.032*	
C2	-0.00699 (16)	0.35250 (4)	0.43771 (17)	0.0235 (2)	
H2	-0.035260	0.323951	0.385741	0.028*	
C3	0.18315 (14)	0.39749 (4)	0.59943 (15)	0.0167 (2)	
C4	0.35441 (14)	0.40258 (3)	0.69551 (14)	0.0158 (2)	
C5	0.44371 (14)	0.36519(3)	0.76556 (15)	0.0166 (2)	
Н5	0.397404	0.335618	0.750921	0.020*	
C6	0.60216 (14)	0.37190(3)	0.85748 (14)	0.0156 (2)	
C7	0.70993 (14)	0.33454 (3)	0.93456 (14)	0.0158 (2)	
C8	0.88534 (14)	0.33331 (4)	0.89734 (15)	0.0181 (2)	
H8	0.932059	0.356180	0.823112	0.022*	
C9	0.99367 (15)	0.29944 (4)	0.96611 (16)	0.0196 (2)	
Н9	1.112894	0.299176	0.939317	0.024*	
C10	0.92535 (15)	0.26616 (4)	1.07407 (16)	0.0199 (2)	
H10	0.997718	0.242459	1.119075	0.024*	
C11	0.41225 (17)	0.27917 (5)	1.23632 (19)	0.0307 (3)	
H11A	0.407983	0.247215	1.201421	0.046*	
H11B	0.296187	0.289352	1.266515	0.046*	
H11C	0.490993	0.282929	1.342035	0.046*	
C12	0.64395 (14)	0.30124 (3)	1.04914 (15)	0.0169 (2)	
C13	0.75168 (15)	0.26701 (4)	1.11749 (15)	0.0188 (2)	
H13	0.706583	0.244292	1.193593	0.023*	
C14	-0.08713 (16)	0.42885 (4)	0.49347 (18)	0.0252 (3)	
H14	-0.166839	0.453225	0.483221	0.030*	
C15	0.07000 (15)	0.43416 (4)	0.58670 (16)	0.0206 (2)	
H15	0.100200	0.462304	0.641067	0.025*	
C16	0.56678 (14)	0.45144 (3)	0.79773 (14)	0.0153 (2)	
C17	0.63187 (14)	0.49871 (3)	0.81402 (14)	0.0155 (2)	
C18	0.53607 (15)	0.53500 (4)	0.74648 (16)	0.0196 (2)	
H18	0.427971	0.530273	0.684452	0.024*	
C19	0.60155 (15)	0.57845 (4)	0.77145 (17)	0.0209 (2)	
H19	0.538544	0.603934	0.727027	0.025*	
C20	0.75910 (15)	0.58400 (4)	0.86153 (16)	0.0199 (2)	
H20	0.805831	0.613325	0.882233	0.024*	
C21	0.84764 (16)	0.54583 (4)	0.92113 (18)	0.0238 (3)	
H21	0.957322	0.549703	0.980925	0.029*	
C22	0.66411 (14)	0.41587 (4)	0.87251 (15)	0.0164 (2)	
H22	0.772010	0.421713	0.933282	0.020*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	U ²³
01	0.0192 (4)	0.0219 (4)	0.0242 (4)	0.0007 (3)	0.0036 (3)	0.0082 (3)
N1	0.0222 (5)	0.0204 (5)	0.0163 (5)	-0.0044 (3)	0.0005 (4)	-0.0007(3)
N2	0.0178 (4)	0.0157 (4)	0.0146 (4)	-0.0014 (3)	0.0013 (3)	0.0004 (3)
N3	0.0207 (5)	0.0164 (4)	0.0276 (5)	-0.0017 (3)	-0.0043 (4)	0.0011 (4)
C1	0.0196 (6)	0.0363 (7)	0.0230 (6)	-0.0054 (5)	-0.0042 (4)	0.0016 (5)
C2	0.0249 (6)	0.0264 (6)	0.0193 (6)	-0.0081 (4)	-0.0002 (4)	-0.0026 (4)
C3	0.0179 (5)	0.0180 (5)	0.0140 (5)	-0.0023 (4)	0.0008 (4)	0.0019 (4)
C4	0.0182 (5)	0.0156 (5)	0.0139 (5)	-0.0010 (4)	0.0015 (4)	-0.0004(4)
C5	0.0196 (5)	0.0138 (5)	0.0163 (5)	-0.0016 (4)	0.0010 (4)	-0.0003 (4)
C6	0.0183 (5)	0.0144 (5)	0.0144 (5)	0.0012 (4)	0.0023 (4)	0.0008 (4)
C7	0.0195 (5)	0.0131 (4)	0.0147 (5)	0.0001 (4)	-0.0011 (4)	-0.0008(4)
C8	0.0207 (5)	0.0169 (5)	0.0168 (5)	-0.0014 (4)	0.0008 (4)	-0.0001 (4)
C9	0.0185 (5)	0.0217 (5)	0.0186 (5)	0.0017 (4)	-0.0011 (4)	-0.0029 (4)
C10	0.0240 (5)	0.0178 (5)	0.0176 (5)	0.0041 (4)	-0.0035 (4)	-0.0014 (4)
C11	0.0263 (6)	0.0348 (7)	0.0315 (7)	0.0028 (5)	0.0078 (5)	0.0155 (5)
C12	0.0186 (5)	0.0162 (5)	0.0158 (5)	-0.0009 (4)	-0.0003 (4)	-0.0011 (4)
C13	0.0249 (5)	0.0157 (5)	0.0156 (5)	-0.0002(4)	-0.0015 (4)	0.0021 (4)
C14	0.0200 (6)	0.0298 (6)	0.0255 (6)	0.0028 (4)	-0.0014 (5)	0.0035 (5)
C15	0.0205 (5)	0.0207 (5)	0.0205 (6)	-0.0007 (4)	-0.0007 (4)	0.0009 (4)
C16	0.0176 (5)	0.0139 (5)	0.0144 (5)	-0.0008(4)	0.0020 (4)	0.0007 (4)
C17	0.0173 (5)	0.0148 (5)	0.0144 (5)	-0.0007 (4)	0.0018 (4)	0.0006 (4)
C18	0.0185 (5)	0.0169 (5)	0.0232 (6)	-0.0007 (4)	-0.0020 (4)	0.0029 (4)
C19	0.0231 (6)	0.0153 (5)	0.0246 (6)	0.0013 (4)	0.0020 (4)	0.0035 (4)
C20	0.0255 (6)	0.0147 (5)	0.0199 (6)	-0.0046 (4)	0.0043 (4)	-0.0008 (4)
C21	0.0226 (6)	0.0207 (6)	0.0277 (6)	-0.0043 (4)	-0.0054 (5)	0.0004 (4)
C22	0.0165 (5)	0.0161 (5)	0.0167 (5)	-0.0009 (4)	-0.0002 (4)	0.0010 (4)
022	0.0105(5)	0.0101 (5)	0.0107 (5)	0.0007(4)	0.0002 (4)	0.0010 (4)

Geometric parameters (Å, °)

01—C11	1.4279 (14)	С9—Н9	0.9500
O1—C12	1.3718 (14)	C9—C10	1.3832 (17)
N1—C2	1.3400 (15)	C10—H10	0.9500
N1—C3	1.3449 (14)	C10—C13	1.3922 (16)
N2—C4	1.3454 (13)	C11—H11A	0.9800
N2—C16	1.3372 (14)	C11—H11B	0.9800
N3—C17	1.3415 (14)	C11—H11C	0.9800
N3—C21	1.3403 (14)	C12—C13	1.3949 (15)
C1—H1	0.9500	C13—H13	0.9500
C1—C2	1.3858 (18)	C14—H14	0.9500
C1—C14	1.3855 (18)	C14—C15	1.3854 (16)
С2—Н2	0.9500	C15—H15	0.9500
C3—C4	1.4891 (15)	C16—C17	1.4896 (14)
C3—C15	1.3949 (15)	C16—C22	1.3965 (14)
C4—C5	1.3942 (15)	C17—C18	1.3874 (15)
С5—Н5	0.9500	C18—H18	0.9500

C5—C6	1.3950 (15)	C18—C19	1.3915 (15)
C6—C7	1.4858 (14)	С19—Н19	0.9500
C6—C22	1.3893 (14)	C19—C20	1.3783 (16)
C7—C8	1.3943 (15)	С20—Н20	0.9500
C7—C12	1.4060 (15)	C20—C21	1.3848 (16)
С8—Н8	0.9500	C21—H21	0.9500
C8—C9	1.3909 (15)	C22—H22	0.9500
C12—O1—C11	117.34 (9)	H11A—C11—H11B	109.5
C2—N1—C3	117.01 (10)	H11A—C11—H11C	109.5
C16—N2—C4	117.74 (9)	H11B—C11—H11C	109.5
C21—N3—C17	117.64 (10)	O1—C12—C7	116.06 (9)
C2—C1—H1	120.8	O1—C12—C13	123.82 (10)
C14—C1—H1	120.8	C13—C12—C7	120.11 (10)
C14—C1—C2	118.50 (11)	C10—C13—C12	119.95 (10)
N1—C2—C1	123.94 (11)	С10—С13—Н13	120.0
N1—C2—H2	118.0	С12—С13—Н13	120.0
C1—C2—H2	118.0	C1-C14-H14	120.7
N1—C3—C4	117.10 (9)	C15-C14-C1	118.69 (11)
N1—C3—C15	122.92 (10)	C15—C14—H14	120.7
C15—C3—C4	119.97 (10)	C3—C15—H15	120.5
N2-C4-C3	115.62 (9)	C14-C15-C3	118.91 (11)
$N_2 - C_4 - C_5$	123.16(10)	C14—C15—H15	120.5
$C_{5}-C_{4}-C_{3}$	121 21 (9)	N2-C16-C17	117 35 (9)
C4—C5—H5	120.5	N2-C16-C22	122.72.(9)
C4-C5-C6	118 93 (9)	$C_{22} = C_{16} = C_{17}$	122.72(9) 119.93(10)
С6—С5—Н5	120 5	N3-C17-C16	115 79 (9)
C5-C6-C7	123.57 (9)	N3-C17-C18	122.73(10)
C_{22} C_{6} C_{5}	117.84 (9)	C18 - C17 - C16	121.48 (10)
C22—C6—C7	118.56 (9)	C17—C18—H18	120.7
C8—C7—C6	118.76 (9)	C17—C18—C19	118.64 (10)
C8—C7—C12	118.43 (10)	C19—C18—H18	120.7
C12—C7—C6	122.76 (10)	С18—С19—Н19	120.5
C7—C8—H8	119.2	C20-C19-C18	119.08 (10)
C9—C8—C7	121.69 (10)	С20—С19—Н19	120.5
С9—С8—Н8	119.2	С19—С20—Н20	120.8
С8—С9—Н9	120.5	C19—C20—C21	118.42 (10)
C10—C9—C8	119.06 (11)	C21—C20—H20	120.8
С10—С9—Н9	120.5	N3—C21—C20	123.46 (11)
C9—C10—H10	119.6	N3—C21—H21	118.3
C9—C10—C13	120.71 (10)	C20—C21—H21	118.3
C13—C10—H10	119.6	C6—C22—C16	119.59 (10)
O1—C11—H11A	109.5	C6—C22—H22	120.2
O1—C11—H11B	109.5	C16—C22—H22	120.2
O1—C11—H11C	109.5		
O1—C12—C13—C10	-178.02 (10)	C7—C8—C9—C10	0.04 (17)
N1—C3—C4—N2	158.59 (10)	C7—C12—C13—C10	0.84 (16)

N1—C3—C4—C5	-22.36 (15)	C8—C7—C12—O1	176.60 (9)
N1—C3—C15—C14	-1.38 (17)	C8—C7—C12—C13	-2.34 (16)
N2-C4-C5-C6	0.20 (17)	C8—C9—C10—C13	-1.61 (17)
N2-C16-C17-N3	-179.09 (10)	C9—C10—C13—C12	1.18 (17)
N2-C16-C17-C18	1.50 (16)	C11—O1—C12—C7	-165.58 (11)
N2-C16-C22-C6	0.33 (16)	C11-01-C12-C13	13.32 (16)
N3—C17—C18—C19	-1.50 (18)	C12—C7—C8—C9	1.92 (16)
C1—C14—C15—C3	-0.31 (18)	C14—C1—C2—N1	-1.13 (19)
C2—N1—C3—C4	-178.33 (10)	C15—C3—C4—N2	-21.48 (15)
C2—N1—C3—C15	1.75 (16)	C15—C3—C4—C5	157.57 (11)
C2-C1-C14-C15	1.48 (18)	C16—N2—C4—C3	179.67 (9)
C3—N1—C2—C1	-0.47 (17)	C16—N2—C4—C5	0.65 (16)
C3—C4—C5—C6	-178.77 (10)	C16—C17—C18—C19	177.86 (10)
C4—N2—C16—C17	179.69 (9)	C17—N3—C21—C20	0.10 (19)
C4—N2—C16—C22	-0.92 (16)	C17—C16—C22—C6	179.71 (10)
C4—C3—C15—C14	178.70 (10)	C17—C18—C19—C20	0.23 (17)
C4—C5—C6—C7	-178.80 (10)	C18—C19—C20—C21	1.09 (17)
C4—C5—C6—C22	-0.78 (16)	C19—C20—C21—N3	-1.31 (19)
C5—C6—C7—C8	131.01 (11)	C21—N3—C17—C16	-178.07 (10)
C5-C6-C7-C12	-51.41 (16)	C21—N3—C17—C18	1.33 (17)
C5—C6—C22—C16	0.53 (16)	C22—C6—C7—C8	-46.99 (14)
C6—C7—C8—C9	179.61 (10)	C22—C6—C7—C12	130.59 (11)
C6—C7—C12—O1	-0.99 (15)	C22-C16-C17-N3	1.50 (15)
C6—C7—C12—C13	-179.93 (10)	C22—C16—C17—C18	-177.91 (10)
C7—C6—C22—C16	178.65 (10)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the N1/C1–3/C14/C15 and C7–C12 rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C21—H21…N3 ⁱ	0.95	2.66	3.4138 (16)	137
C8—H8··· $Cg1^{ii}$	0.95	2.68	3.5698 (12)	155
C13—H13··· <i>Cg</i> 4 ⁱⁱⁱ	0.95	2.77	3.5182 (12)	136

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) *x*+1, *y*, *z*; (iii) *x*, -*y*-1/2, *z*-1/2.