organic compounds
4′-(2-Methoxyphenyl)-2,2′:6′,2′′-terpyridine
aMultimedia University of Kenya, PO Box 15653-00503, Nairobi, Kenya, and bSchool of Chemistry and Physics, University of KwaZulu Natal, Private Bag X54001, Westville, Durban, 4000, South Africa
*Correspondence e-mail: 224098093@stu.ukzn.ac.za
In the title compound, C22H17N3O, the N atoms of the pyridine rings exhibit a typical trans–trans arrangement: the dihedral angles between the central pyridine ring and the peripheral rings are 22.24 (4) and 2.38 (4)°. In the crystal, pairwise C—H⋯N hydrogen bonds form inversion dimers described by an R22(6) graph set descriptor, which further interact through C—H⋯π and π–π interactions, creating a two-dimensional supramolecular network propagating in the bc plane.
Keywords: crystal structure; terpyridine.
CCDC reference: 2405021
Structure description
Terpyridines are N,N,N-type pincer ligands that provide tight with various metal cations in a nearly planar cis–cis geometry of their pyridine N atoms (Wei et al., 2019). This conformation allows for a good conjugation between the aromatic rings and the metal cation making terpyridine a ‘non-innocent’ ligand, capable of stabilizing low-valency metal ions (García–Domínguez et al., 2017). The ligand exhibits two possible coordination modes: mono-terpyridine pincer complexes and bis-terpyridine complexes depending on the number of coordinating terpyridine ligands (Taniya et al., 2021). The transition-metal complexes of 4′-aryl-substituted-2,2′:6′,2"-terpyridines possess rich supramolecular chemistry (Wei et al., 2019) as well as biological, DNA binding, and electrochemical properties, which render them as useful candidates for applications in the fields of medicine and molecular biology (Lazić et al., 2016). The substituent groups on the ligands may be used to tailor the properties of the resulting coordination complexes (Shi et al., 2006).
The title compound, C22H17N3O (I), is a terpyridine derivative with a 2-methoxyphenyl substituent at the third carbon atom of the central pyridine ring. The of the compound contains one molecule in the in P21/c. As is typical for a non-coordinated terpyridine, the structure exhibits a trans–trans arrangement of the pyridine N atoms [N1—C3—C4—N2 = 158.59 (10)°; N3—C17—C16—N2 = −179.09 (10)°], as illustrated in Fig. 1. The peripheral pyridine rings subtend dihedral angles of 22.24 (4)° (N1 ring) and 2.38 (4)° (N3 ring) with the central pyridine ring. The methoxyphenyl ring is significantly twisted away from the central pyridine ring, with a dihedral angle of 48.93 (4)°. All other geometrical parameters for (I) are comparable with those of 4′-(2,4-dimethoxyphenyl)-2,2′:6′,2′′-terpyridine (Cambridge Structural Database refcode: JEYHED; Demircioğlu et al., 2018).
In the extended structure of (I), weak C—H⋯N hydrogen bonds connect the molecules (Fig. 2, Table 1). These interactions form hydrogen-bonded cyclic dimers, described by an R22(6) graph set descriptor. The hydrogen-bonded dimers interact through C—H⋯π interactions, where C8—H8 interacts with the centroid of one of the peripheral pyridine rings and C13—H13 interacts with the centroid of the methoxy-substituted ring. These interactions link neighbouring dimers along the b-axis direction forming a zigzag pattern, as shown in Fig. 3. The planarity of the molecules facilitates π–π interactions between the central pyridine ring and the other pyridine ring not involved in the C—H⋯π intermolecular interaction, with the shortest centroid–centroid separation being 3.5864 (6) Å. The C—H⋯π and π–π interactions combine to form a two-dimensional supramolecular arrangement extending over the crystallographic bc plane.
Synthesis and crystallization
The title compound was synthesized using a method modified from Winter et al. (2006): 2-methoxybenzaldehyde (10 mmol) was dissolved in ethanol (30 ml), cooled to 0 °C, and treated with a 2-acetylpyridine/NaOH solution. After stirring for 2 h at 0 °C, 25% aqueous ammonia (30 ml) was added, and the reaction was stirred at room temperature for 18 h. The precipitate was filtered, washed with water and 1:1 water–ethanol, dried under vacuum, and recrystallized from methanol solution to yield X-ray-quality crystals.
Refinement
Crystallographic data and structure .
details are summarized in Table 2Structural data
CCDC reference: 2405021
https://doi.org/10.1107/S241431462401143X/hb4497sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462401143X/hb4497Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431462401143X/hb4497Isup3.cml
C22H17N3O | F(000) = 712 |
Mr = 339.38 | Dx = 1.335 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7366 (3) Å | Cell parameters from 9871 reflections |
b = 29.5787 (10) Å | θ = 2.6–28.4° |
c = 7.3852 (3) Å | µ = 0.08 mm−1 |
β = 91.962 (2)° | T = 100 K |
V = 1689.03 (11) Å3 | Block, yellow |
Z = 4 | 0.43 × 0.28 × 0.26 mm |
Bruker SMART APEX2 area detector diffractometer | 4227 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 3728 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 7.9 pixels mm-1 | θmax = 28.4°, θmin = 2.6° |
ω and φ scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −39→39 |
Tmin = 0.955, Tmax = 0.988 | l = −9→9 |
36956 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0697P)2 + 0.611P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
4227 reflections | Δρmax = 0.37 e Å−3 |
236 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.47285 (11) | 0.30543 (3) | 1.08916 (12) | 0.02170 (19) | |
N1 | 0.14529 (13) | 0.35669 (3) | 0.52813 (13) | 0.0196 (2) | |
N2 | 0.41380 (12) | 0.44519 (3) | 0.71159 (13) | 0.01598 (19) | |
N3 | 0.78678 (13) | 0.50369 (3) | 0.89892 (14) | 0.0217 (2) | |
C1 | −0.12572 (16) | 0.38731 (5) | 0.41546 (18) | 0.0264 (3) | |
H1 | −0.231198 | 0.382780 | 0.348239 | 0.032* | |
C2 | −0.00699 (16) | 0.35250 (4) | 0.43771 (17) | 0.0235 (2) | |
H2 | −0.035260 | 0.323951 | 0.385741 | 0.028* | |
C3 | 0.18315 (14) | 0.39749 (4) | 0.59943 (15) | 0.0167 (2) | |
C4 | 0.35441 (14) | 0.40258 (3) | 0.69551 (14) | 0.0158 (2) | |
C5 | 0.44371 (14) | 0.36519 (3) | 0.76556 (15) | 0.0166 (2) | |
H5 | 0.397404 | 0.335618 | 0.750921 | 0.020* | |
C6 | 0.60216 (14) | 0.37190 (3) | 0.85748 (14) | 0.0156 (2) | |
C7 | 0.70993 (14) | 0.33454 (3) | 0.93456 (14) | 0.0158 (2) | |
C8 | 0.88534 (14) | 0.33331 (4) | 0.89734 (15) | 0.0181 (2) | |
H8 | 0.932059 | 0.356180 | 0.823112 | 0.022* | |
C9 | 0.99367 (15) | 0.29944 (4) | 0.96611 (16) | 0.0196 (2) | |
H9 | 1.112894 | 0.299176 | 0.939317 | 0.024* | |
C10 | 0.92535 (15) | 0.26616 (4) | 1.07407 (16) | 0.0199 (2) | |
H10 | 0.997718 | 0.242459 | 1.119075 | 0.024* | |
C11 | 0.41225 (17) | 0.27917 (5) | 1.23632 (19) | 0.0307 (3) | |
H11A | 0.407983 | 0.247215 | 1.201421 | 0.046* | |
H11B | 0.296187 | 0.289352 | 1.266515 | 0.046* | |
H11C | 0.490993 | 0.282929 | 1.342035 | 0.046* | |
C12 | 0.64395 (14) | 0.30124 (3) | 1.04914 (15) | 0.0169 (2) | |
C13 | 0.75168 (15) | 0.26701 (4) | 1.11749 (15) | 0.0188 (2) | |
H13 | 0.706583 | 0.244292 | 1.193593 | 0.023* | |
C14 | −0.08713 (16) | 0.42885 (4) | 0.49347 (18) | 0.0252 (3) | |
H14 | −0.166839 | 0.453225 | 0.483221 | 0.030* | |
C15 | 0.07000 (15) | 0.43416 (4) | 0.58670 (16) | 0.0206 (2) | |
H15 | 0.100200 | 0.462304 | 0.641067 | 0.025* | |
C16 | 0.56678 (14) | 0.45144 (3) | 0.79773 (14) | 0.0153 (2) | |
C17 | 0.63187 (14) | 0.49871 (3) | 0.81402 (14) | 0.0155 (2) | |
C18 | 0.53607 (15) | 0.53500 (4) | 0.74648 (16) | 0.0196 (2) | |
H18 | 0.427971 | 0.530273 | 0.684452 | 0.024* | |
C19 | 0.60155 (15) | 0.57845 (4) | 0.77145 (17) | 0.0209 (2) | |
H19 | 0.538544 | 0.603934 | 0.727027 | 0.025* | |
C20 | 0.75910 (15) | 0.58400 (4) | 0.86153 (16) | 0.0199 (2) | |
H20 | 0.805831 | 0.613325 | 0.882233 | 0.024* | |
C21 | 0.84764 (16) | 0.54583 (4) | 0.92113 (18) | 0.0238 (3) | |
H21 | 0.957322 | 0.549703 | 0.980925 | 0.029* | |
C22 | 0.66411 (14) | 0.41587 (4) | 0.87251 (15) | 0.0164 (2) | |
H22 | 0.772010 | 0.421713 | 0.933282 | 0.020* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0192 (4) | 0.0219 (4) | 0.0242 (4) | 0.0007 (3) | 0.0036 (3) | 0.0082 (3) |
N1 | 0.0222 (5) | 0.0204 (5) | 0.0163 (5) | −0.0044 (3) | 0.0005 (4) | −0.0007 (3) |
N2 | 0.0178 (4) | 0.0157 (4) | 0.0146 (4) | −0.0014 (3) | 0.0013 (3) | 0.0004 (3) |
N3 | 0.0207 (5) | 0.0164 (4) | 0.0276 (5) | −0.0017 (3) | −0.0043 (4) | 0.0011 (4) |
C1 | 0.0196 (6) | 0.0363 (7) | 0.0230 (6) | −0.0054 (5) | −0.0042 (4) | 0.0016 (5) |
C2 | 0.0249 (6) | 0.0264 (6) | 0.0193 (6) | −0.0081 (4) | −0.0002 (4) | −0.0026 (4) |
C3 | 0.0179 (5) | 0.0180 (5) | 0.0140 (5) | −0.0023 (4) | 0.0008 (4) | 0.0019 (4) |
C4 | 0.0182 (5) | 0.0156 (5) | 0.0139 (5) | −0.0010 (4) | 0.0015 (4) | −0.0004 (4) |
C5 | 0.0196 (5) | 0.0138 (5) | 0.0163 (5) | −0.0016 (4) | 0.0010 (4) | −0.0003 (4) |
C6 | 0.0183 (5) | 0.0144 (5) | 0.0144 (5) | 0.0012 (4) | 0.0023 (4) | 0.0008 (4) |
C7 | 0.0195 (5) | 0.0131 (4) | 0.0147 (5) | 0.0001 (4) | −0.0011 (4) | −0.0008 (4) |
C8 | 0.0207 (5) | 0.0169 (5) | 0.0168 (5) | −0.0014 (4) | 0.0008 (4) | −0.0001 (4) |
C9 | 0.0185 (5) | 0.0217 (5) | 0.0186 (5) | 0.0017 (4) | −0.0011 (4) | −0.0029 (4) |
C10 | 0.0240 (5) | 0.0178 (5) | 0.0176 (5) | 0.0041 (4) | −0.0035 (4) | −0.0014 (4) |
C11 | 0.0263 (6) | 0.0348 (7) | 0.0315 (7) | 0.0028 (5) | 0.0078 (5) | 0.0155 (5) |
C12 | 0.0186 (5) | 0.0162 (5) | 0.0158 (5) | −0.0009 (4) | −0.0003 (4) | −0.0011 (4) |
C13 | 0.0249 (5) | 0.0157 (5) | 0.0156 (5) | −0.0002 (4) | −0.0015 (4) | 0.0021 (4) |
C14 | 0.0200 (6) | 0.0298 (6) | 0.0255 (6) | 0.0028 (4) | −0.0014 (5) | 0.0035 (5) |
C15 | 0.0205 (5) | 0.0207 (5) | 0.0205 (6) | −0.0007 (4) | −0.0007 (4) | 0.0009 (4) |
C16 | 0.0176 (5) | 0.0139 (5) | 0.0144 (5) | −0.0008 (4) | 0.0020 (4) | 0.0007 (4) |
C17 | 0.0173 (5) | 0.0148 (5) | 0.0144 (5) | −0.0007 (4) | 0.0018 (4) | 0.0006 (4) |
C18 | 0.0185 (5) | 0.0169 (5) | 0.0232 (6) | −0.0007 (4) | −0.0020 (4) | 0.0029 (4) |
C19 | 0.0231 (6) | 0.0153 (5) | 0.0246 (6) | 0.0013 (4) | 0.0020 (4) | 0.0035 (4) |
C20 | 0.0255 (6) | 0.0147 (5) | 0.0199 (6) | −0.0046 (4) | 0.0043 (4) | −0.0008 (4) |
C21 | 0.0226 (6) | 0.0207 (6) | 0.0277 (6) | −0.0043 (4) | −0.0054 (5) | 0.0004 (4) |
C22 | 0.0165 (5) | 0.0161 (5) | 0.0167 (5) | −0.0009 (4) | −0.0002 (4) | 0.0010 (4) |
O1—C11 | 1.4279 (14) | C9—H9 | 0.9500 |
O1—C12 | 1.3718 (14) | C9—C10 | 1.3832 (17) |
N1—C2 | 1.3400 (15) | C10—H10 | 0.9500 |
N1—C3 | 1.3449 (14) | C10—C13 | 1.3922 (16) |
N2—C4 | 1.3454 (13) | C11—H11A | 0.9800 |
N2—C16 | 1.3372 (14) | C11—H11B | 0.9800 |
N3—C17 | 1.3415 (14) | C11—H11C | 0.9800 |
N3—C21 | 1.3403 (14) | C12—C13 | 1.3949 (15) |
C1—H1 | 0.9500 | C13—H13 | 0.9500 |
C1—C2 | 1.3858 (18) | C14—H14 | 0.9500 |
C1—C14 | 1.3855 (18) | C14—C15 | 1.3854 (16) |
C2—H2 | 0.9500 | C15—H15 | 0.9500 |
C3—C4 | 1.4891 (15) | C16—C17 | 1.4896 (14) |
C3—C15 | 1.3949 (15) | C16—C22 | 1.3965 (14) |
C4—C5 | 1.3942 (15) | C17—C18 | 1.3874 (15) |
C5—H5 | 0.9500 | C18—H18 | 0.9500 |
C5—C6 | 1.3950 (15) | C18—C19 | 1.3915 (15) |
C6—C7 | 1.4858 (14) | C19—H19 | 0.9500 |
C6—C22 | 1.3893 (14) | C19—C20 | 1.3783 (16) |
C7—C8 | 1.3943 (15) | C20—H20 | 0.9500 |
C7—C12 | 1.4060 (15) | C20—C21 | 1.3848 (16) |
C8—H8 | 0.9500 | C21—H21 | 0.9500 |
C8—C9 | 1.3909 (15) | C22—H22 | 0.9500 |
C12—O1—C11 | 117.34 (9) | H11A—C11—H11B | 109.5 |
C2—N1—C3 | 117.01 (10) | H11A—C11—H11C | 109.5 |
C16—N2—C4 | 117.74 (9) | H11B—C11—H11C | 109.5 |
C21—N3—C17 | 117.64 (10) | O1—C12—C7 | 116.06 (9) |
C2—C1—H1 | 120.8 | O1—C12—C13 | 123.82 (10) |
C14—C1—H1 | 120.8 | C13—C12—C7 | 120.11 (10) |
C14—C1—C2 | 118.50 (11) | C10—C13—C12 | 119.95 (10) |
N1—C2—C1 | 123.94 (11) | C10—C13—H13 | 120.0 |
N1—C2—H2 | 118.0 | C12—C13—H13 | 120.0 |
C1—C2—H2 | 118.0 | C1—C14—H14 | 120.7 |
N1—C3—C4 | 117.10 (9) | C15—C14—C1 | 118.69 (11) |
N1—C3—C15 | 122.92 (10) | C15—C14—H14 | 120.7 |
C15—C3—C4 | 119.97 (10) | C3—C15—H15 | 120.5 |
N2—C4—C3 | 115.62 (9) | C14—C15—C3 | 118.91 (11) |
N2—C4—C5 | 123.16 (10) | C14—C15—H15 | 120.5 |
C5—C4—C3 | 121.21 (9) | N2—C16—C17 | 117.35 (9) |
C4—C5—H5 | 120.5 | N2—C16—C22 | 122.72 (9) |
C4—C5—C6 | 118.93 (9) | C22—C16—C17 | 119.93 (10) |
C6—C5—H5 | 120.5 | N3—C17—C16 | 115.79 (9) |
C5—C6—C7 | 123.57 (9) | N3—C17—C18 | 122.73 (10) |
C22—C6—C5 | 117.84 (9) | C18—C17—C16 | 121.48 (10) |
C22—C6—C7 | 118.56 (9) | C17—C18—H18 | 120.7 |
C8—C7—C6 | 118.76 (9) | C17—C18—C19 | 118.64 (10) |
C8—C7—C12 | 118.43 (10) | C19—C18—H18 | 120.7 |
C12—C7—C6 | 122.76 (10) | C18—C19—H19 | 120.5 |
C7—C8—H8 | 119.2 | C20—C19—C18 | 119.08 (10) |
C9—C8—C7 | 121.69 (10) | C20—C19—H19 | 120.5 |
C9—C8—H8 | 119.2 | C19—C20—H20 | 120.8 |
C8—C9—H9 | 120.5 | C19—C20—C21 | 118.42 (10) |
C10—C9—C8 | 119.06 (11) | C21—C20—H20 | 120.8 |
C10—C9—H9 | 120.5 | N3—C21—C20 | 123.46 (11) |
C9—C10—H10 | 119.6 | N3—C21—H21 | 118.3 |
C9—C10—C13 | 120.71 (10) | C20—C21—H21 | 118.3 |
C13—C10—H10 | 119.6 | C6—C22—C16 | 119.59 (10) |
O1—C11—H11A | 109.5 | C6—C22—H22 | 120.2 |
O1—C11—H11B | 109.5 | C16—C22—H22 | 120.2 |
O1—C11—H11C | 109.5 | ||
O1—C12—C13—C10 | −178.02 (10) | C7—C8—C9—C10 | 0.04 (17) |
N1—C3—C4—N2 | 158.59 (10) | C7—C12—C13—C10 | 0.84 (16) |
N1—C3—C4—C5 | −22.36 (15) | C8—C7—C12—O1 | 176.60 (9) |
N1—C3—C15—C14 | −1.38 (17) | C8—C7—C12—C13 | −2.34 (16) |
N2—C4—C5—C6 | 0.20 (17) | C8—C9—C10—C13 | −1.61 (17) |
N2—C16—C17—N3 | −179.09 (10) | C9—C10—C13—C12 | 1.18 (17) |
N2—C16—C17—C18 | 1.50 (16) | C11—O1—C12—C7 | −165.58 (11) |
N2—C16—C22—C6 | 0.33 (16) | C11—O1—C12—C13 | 13.32 (16) |
N3—C17—C18—C19 | −1.50 (18) | C12—C7—C8—C9 | 1.92 (16) |
C1—C14—C15—C3 | −0.31 (18) | C14—C1—C2—N1 | −1.13 (19) |
C2—N1—C3—C4 | −178.33 (10) | C15—C3—C4—N2 | −21.48 (15) |
C2—N1—C3—C15 | 1.75 (16) | C15—C3—C4—C5 | 157.57 (11) |
C2—C1—C14—C15 | 1.48 (18) | C16—N2—C4—C3 | 179.67 (9) |
C3—N1—C2—C1 | −0.47 (17) | C16—N2—C4—C5 | 0.65 (16) |
C3—C4—C5—C6 | −178.77 (10) | C16—C17—C18—C19 | 177.86 (10) |
C4—N2—C16—C17 | 179.69 (9) | C17—N3—C21—C20 | 0.10 (19) |
C4—N2—C16—C22 | −0.92 (16) | C17—C16—C22—C6 | 179.71 (10) |
C4—C3—C15—C14 | 178.70 (10) | C17—C18—C19—C20 | 0.23 (17) |
C4—C5—C6—C7 | −178.80 (10) | C18—C19—C20—C21 | 1.09 (17) |
C4—C5—C6—C22 | −0.78 (16) | C19—C20—C21—N3 | −1.31 (19) |
C5—C6—C7—C8 | 131.01 (11) | C21—N3—C17—C16 | −178.07 (10) |
C5—C6—C7—C12 | −51.41 (16) | C21—N3—C17—C18 | 1.33 (17) |
C5—C6—C22—C16 | 0.53 (16) | C22—C6—C7—C8 | −46.99 (14) |
C6—C7—C8—C9 | 179.61 (10) | C22—C6—C7—C12 | 130.59 (11) |
C6—C7—C12—O1 | −0.99 (15) | C22—C16—C17—N3 | 1.50 (15) |
C6—C7—C12—C13 | −179.93 (10) | C22—C16—C17—C18 | −177.91 (10) |
C7—C6—C22—C16 | 178.65 (10) |
Cg1 and Cg4 are the centroids of the N1/C1–3/C14/C15 and C7–C12 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C21—H21···N3i | 0.95 | 2.66 | 3.4138 (16) | 137 |
C8—H8···Cg1ii | 0.95 | 2.68 | 3.5698 (12) | 155 |
C13—H13···Cg4iii | 0.95 | 2.77 | 3.5182 (12) | 136 |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x+1, y, z; (iii) x, −y−1/2, z−1/2. |
Acknowledgements
The authors thank the University of KwaZulu Natal for provision of research facilities.
References
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Demircioğlu, Z., Yeşil, A. E., Altun, M., Bal-Demirci, T. & Özdemir, N. (2018). J. Mol. Struct. 1162, 96–108. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
García–Domínguez, A., Müller, S. & Nevado, C. (2017). Angew. Chem. Int. Ed. 56, 9949–9952. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lazić, D., Arsenijević, A., Puchta, R., Bugarčić, Ž. D., ŽD, & Rilak, A. (2016). Dalton Trans. 45, 4633–4646. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, P., Jiang, Q., Zhao, Y., Zhang, Y., Lin, J., Lin, L., Ding, J. & Guo, Z. (2006). J. Biol. Inorg. Chem. 11, 745–752. CrossRef PubMed CAS Google Scholar
Taniya, O. S., Kopchuk, D. S., Khasanov, A. F., Kovalev, I. S., Santra, S., Zyryanov, G. V., Majee, A., Charushin, V. N. & Chupakhin, O. N. (2021). Coord. Chem. Rev. 442, 213980. CrossRef Google Scholar
Wei, C., He, Y., Shi, X. & Song, Z. (2019). Coord. Chem. Rev. 385, 1–19. Web of Science CrossRef CAS PubMed Google Scholar
Winter, A., van den Berg, A. M., Hoogenboom, R., Kickelbick, G. & Schubert, U. S. (2006). Synthesis, 2006, 2873–2878. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.