organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Chloro-N-(4-hy­dr­oxy­phen­yl)acetamide

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and dDepartment of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

(Received 14 October 2024; accepted 17 October 2024; online 24 October 2024)

The title compound, C8H8ClNO2, is significantly distorted from planarity, with a twist angle between the planes through the hy­droxy­benzene and acetamide groups being 23.5 (2)°. This conformation is supported by intra­molecular C—H⋯O and N—H⋯Cl contacts. In the crystal, N—H⋯O hydrogen-bonding contacts between acetamide groups and O—H⋯O contacts between hydroxyl groups form tapes propagating parallel to [103].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-aryl­acetamides are inter­mediates for the synthesis of medicinal, agrochemical and pharmaceutical compounds (Missioui et al., 2021[Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.]). As part of our ongoing studies of these systems (Missioui et al., 2022[Missioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 687-690.]), we now describe the synthesis and structure of the title compound, C8H8ClNO2.

The mol­ecule, Fig. 1[link], is almost planar as indicated by a twist angle between the planes through the hy­droxy­benzene (C1–C6, O1) and acetamide (C7, C8, N1, O2) groups being 23.5 (2)°; the acetamide group has an anti conformation. The chloro substituent deviates only slightly from the plane of the acetamide group as indicated by the N1—C7—C8—Cl1 torsion angle of 15.4 (4)°.

[Figure 1]
Figure 1
The mol­ecule of 2-chloro-N-(4-hy­droxy­phen­yl)acetamide showing the atom-numbering scheme and displacement parameters at the 50% probability level. The intra­molecular C—H⋯O and N—H⋯Cl contacts are shown as green dotted lines.

Two types of close intra­molecular contacts occur within the mol­ecule. The first contact is of the type C—H⋯O with a C3—H3⋯O2 angle of 116° and a C3⋯O2 distance of 2.873 (4) Å, Table 1[link]. Similar contacts are observed in related structures including 2-chloro-N-(4-fluoro­phen­yl)acetamide (Kang et al., 2008[Kang, S., Zeng, H., Li, H. & Wang, H. (2008). Acta Cryst. E64, o1194.]), 2-chloro-N-phenyl­acetamide (Gowda et al., 2008[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987.]) and 2-chloro-N-(4-chloro­phen­yl)acetamide (Gowda et al., 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o4488.]). The second contact is of the type N—H⋯Cl and has a N1—H1⋯Cl1 angle of 115° and a N1⋯Cl1 distance of 2.999 (2) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2 0.93 2.34 2.873 (4) 116
N1—H1⋯Cl1 0.86 2.53 2.999 (2) 115
N1—H1⋯O2i 0.86 2.28 3.025 (3) 145
O1—H1A⋯O1ii 0.82 2.06 2.8585 (17) 166
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+2, y+{\script{1\over 2}}, -z+2].

In the crystal, neighbouring mol­ecules are linked by N—H⋯O hydrogen-bonding between translationally related acetamide groups with a N1—H1⋯O2i [symmetry code: (i) x, y − 1, z] angle of 145° and a N1⋯O2i distance of 3.025 (3) Å, Table 1[link], to form linear chains parallel to the b axis (Fig. 2[link]). The mol­ecules are also bridged by O—H⋯O contacts with a O1—H1A⋯O1ii [symmetry code: (ii) −x + 2, y + [{1\over 2}], −z + 2] angle of 166° and an O1⋯O1ii distance of 2.8585 (17) Å which, by themselves assemble mol­ecules along the 21 screw axis in the b-axis direction. The combined hydrogen-bonding inter­actions result in almost flat tapes of mol­ecules parallel to [[\overline{1}]03].

[Figure 2]
Figure 2
A segment of the packing in the crystal of 2-chloro-N-(4-hy­droxy­phen­yl)acetamide showing the inter­molecular N—H⋯O and O—H⋯O hydrogen bonds as green dotted lines.

Synthesis and crystallization

4-Amino­phenol (1 mmol) was dissolved in pure acetic acid (30 ml) and placed in an ice-bath. Subsequently, chloro­acetyl chloride (1.2 mmol) was added portion-wise under stirring. At the end of the reaction, a solution of sodium acetate (25 ml) was added, and a solid precipitate formed after 30 min of stirring at room temperature. The resulting solid was filtered, washed with cold water, dried and recrystallized from its ethanol solution to yield the title compound as colourless crystals.

Yield = 89%, colour:colourless, m.p. = 413–415 K. FT–IR (ATR, ν, cm−1): 3385 (OH), 3200 (NH), 1640 (C=O). 1H NMR (500 MHz, DMSO-d6): δ p.p.m. 4.21 (s, 2H, CH2), 6.76–7.34 (m, 4H, Ar—H), 9.20 (s, 1H, OH), 10.23 (s, 1H, NH). 13C NMR (500 MHz, DMSO-d6): 43.42 (CH2); 117.68, 122.20, 131.50, 132.63, 153.68 (C—Ar); 164.76 (C=O). HRMS (ESI): calculated for C8H8ClNO2 [M - H]+ 186.0224, found 186.0328.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H8ClNO2
Mr 185.60
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 6.5088 (6), 5.1758 (5), 12.2175 (14)
β (°) 101.649 (10)
V3) 403.11 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.43
Crystal size (mm) 0.45 × 0.20 × 0.07
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.642, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3642, 1902, 1487
Rint 0.028
(sin θ/λ)max−1) 0.697
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.081, 1.06
No. of reflections 1902
No. of parameters 110
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.19
Absolute structure Flack x determined using 510 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.11 (5)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

2-Chloro-N-(4-hydroxyphenyl)acetamide top
Crystal data top
C8H8ClNO2F(000) = 192
Mr = 185.60Dx = 1.529 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.5088 (6) ÅCell parameters from 1576 reflections
b = 5.1758 (5) Åθ = 3.9–28.2°
c = 12.2175 (14) ŵ = 0.43 mm1
β = 101.649 (10)°T = 296 K
V = 403.11 (7) Å3Plate, colourless
Z = 20.45 × 0.20 × 0.07 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
1487 reflections with I > 2σ(I)
ω scansRint = 0.028
Absorption correction: gaussian
(CrysAlis Pro; Rigaku OD, 2023)
θmax = 29.7°, θmin = 3.3°
Tmin = 0.642, Tmax = 1.000h = 88
3642 measured reflectionsk = 77
1902 independent reflectionsl = 1613
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.0021P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.16 e Å3
1902 reflectionsΔρmin = 0.18 e Å3
110 parametersAbsolute structure: Flack x determined using 510 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.11 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7301 (4)0.3699 (6)0.8980 (2)0.0311 (7)
C20.5982 (4)0.5654 (6)0.9179 (3)0.0334 (7)
H20.6459950.6884490.9725620.040*
C30.3940 (5)0.5786 (6)0.8563 (3)0.0337 (7)
H30.3051270.7107570.8693350.040*
C40.3236 (4)0.3932 (6)0.7754 (2)0.0290 (7)
C50.4562 (5)0.1964 (6)0.7575 (3)0.0335 (8)
H50.4082800.0707860.7039940.040*
C60.6593 (5)0.1844 (6)0.8184 (3)0.0348 (8)
H60.7479840.0516420.8057780.042*
C70.0065 (5)0.6041 (7)0.6835 (3)0.0349 (7)
C80.2181 (5)0.5695 (7)0.6051 (3)0.0442 (9)
H8A0.2389630.7133480.5531730.053*
H8B0.3262640.5800670.6491120.053*
N10.1164 (3)0.3959 (5)0.7083 (2)0.0331 (6)
H10.0659710.2503330.6814010.040*
O10.9342 (3)0.3507 (4)0.9570 (2)0.0433 (6)
H1A0.9672450.4848300.9918100.065*
O20.0363 (3)0.8215 (4)0.7186 (2)0.0500 (6)
Cl10.25580 (12)0.27889 (19)0.52655 (7)0.0555 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (14)0.0296 (17)0.0360 (17)0.0017 (13)0.0002 (12)0.0054 (14)
C20.0334 (17)0.0289 (17)0.0344 (17)0.0011 (14)0.0014 (13)0.0042 (14)
C30.0304 (16)0.0303 (17)0.0383 (18)0.0034 (14)0.0022 (13)0.0025 (14)
C40.0251 (15)0.0268 (15)0.0329 (16)0.0010 (13)0.0006 (12)0.0036 (13)
C50.0326 (16)0.0266 (17)0.0386 (18)0.0022 (13)0.0007 (13)0.0037 (13)
C60.0293 (15)0.0254 (16)0.050 (2)0.0063 (12)0.0079 (14)0.0008 (14)
C70.0279 (16)0.0337 (18)0.0412 (18)0.0000 (14)0.0022 (13)0.0041 (15)
C80.0340 (17)0.0336 (19)0.058 (2)0.0014 (15)0.0066 (15)0.0046 (17)
N10.0279 (13)0.0259 (13)0.0407 (15)0.0005 (11)0.0047 (11)0.0030 (12)
O10.0293 (10)0.0387 (15)0.0545 (14)0.0005 (10)0.0093 (9)0.0015 (12)
O20.0407 (12)0.0297 (14)0.0705 (16)0.0019 (11)0.0105 (11)0.0033 (12)
Cl10.0505 (5)0.0519 (5)0.0530 (5)0.0009 (5)0.0155 (4)0.0056 (5)
Geometric parameters (Å, º) top
C1—C61.378 (4)C5—H50.9300
C1—C21.379 (4)C6—H60.9300
C1—O11.381 (3)C7—O21.216 (4)
C2—C31.391 (4)C7—N11.340 (4)
C2—H20.9300C7—C81.520 (4)
C3—C41.387 (4)C8—Cl11.774 (4)
C3—H30.9300C8—H8A0.9700
C4—C51.381 (4)C8—H8B0.9700
C4—N11.430 (3)N1—H10.8600
C5—C61.382 (4)O1—H1A0.8200
C6—C1—C2120.3 (3)C1—C6—H6120.1
C6—C1—O1117.8 (3)C5—C6—H6120.1
C2—C1—O1121.9 (3)O2—C7—N1125.5 (3)
C1—C2—C3120.1 (3)O2—C7—C8116.4 (3)
C1—C2—H2119.9N1—C7—C8118.1 (3)
C3—C2—H2119.9C7—C8—Cl1116.7 (2)
C4—C3—C2119.6 (3)C7—C8—H8A108.1
C4—C3—H3120.2Cl1—C8—H8A108.1
C2—C3—H3120.2C7—C8—H8B108.1
C5—C4—C3119.8 (3)Cl1—C8—H8B108.1
C5—C4—N1117.6 (3)H8A—C8—H8B107.3
C3—C4—N1122.6 (3)C7—N1—C4126.0 (3)
C4—C5—C6120.6 (3)C7—N1—H1117.0
C4—C5—H5119.7C4—N1—H1117.0
C6—C5—H5119.7C1—O1—H1A109.5
C1—C6—C5119.7 (3)
N1—C7—C8—Cl115.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O20.932.342.873 (4)116
N1—H1···Cl10.862.532.999 (2)115
N1—H1···O2i0.862.283.025 (3)145
O1—H1A···O1ii0.822.062.8585 (17)166
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1/2, z+2.
 

Acknowledgements

YR is thankful to the National Center for Scientific and Technical Research of Morocco (CNRST) for its continuous support. The contributions of the authors are as follows: conceptualization, YR; methodology, AA; investigation, AEMAA and IAEH; writing (original draft), AEMAA; writing (review and editing of the manuscript), YR; formal analysis, YR and BMK; supervision, YR; crystal structure determination, BMK.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o4488.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKang, S., Zeng, H., Li, H. & Wang, H. (2008). Acta Cryst. E64, o1194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMissioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 687–690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMissioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.  Web of Science CSD CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146