organic compounds
2-Chloro-N-(4-hydroxyphenyl)acetamide
aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and dDepartment of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma
The title compound, C8H8ClNO2, is significantly distorted from planarity, with a twist angle between the planes through the hydroxybenzene and acetamide groups being 23.5 (2)°. This conformation is supported by intramolecular C—H⋯O and N—H⋯Cl contacts. In the crystal, N—H⋯O hydrogen-bonding contacts between acetamide groups and O—H⋯O contacts between hydroxyl groups form tapes propagating parallel to [103].
Keywords: crystal structure; acetamide; hydrogen-bonding.
CCDC reference: 2392239
Structure description
N-arylacetamides are intermediates for the synthesis of medicinal, agrochemical and pharmaceutical compounds (Missioui et al., 2021). As part of our ongoing studies of these systems (Missioui et al., 2022), we now describe the synthesis and structure of the title compound, C8H8ClNO2.
The molecule, Fig. 1, is almost planar as indicated by a twist angle between the planes through the hydroxybenzene (C1–C6, O1) and acetamide (C7, C8, N1, O2) groups being 23.5 (2)°; the acetamide group has an anti conformation. The chloro substituent deviates only slightly from the plane of the acetamide group as indicated by the N1—C7—C8—Cl1 torsion angle of 15.4 (4)°.
Two types of close intramolecular contacts occur within the molecule. The first contact is of the type C—H⋯O with a C3—H3⋯O2 angle of 116° and a C3⋯O2 distance of 2.873 (4) Å, Table 1. Similar contacts are observed in related structures including 2-chloro-N-(4-fluorophenyl)acetamide (Kang et al., 2008), 2-chloro-N-phenylacetamide (Gowda et al., 2008) and 2-chloro-N-(4-chlorophenyl)acetamide (Gowda et al., 2007). The second contact is of the type N—H⋯Cl and has a N1—H1⋯Cl1 angle of 115° and a N1⋯Cl1 distance of 2.999 (2) Å.
|
In the crystal, neighbouring molecules are linked by N—H⋯O hydrogen-bonding between translationally related acetamide groups with a N1—H1⋯O2i [symmetry code: (i) x, y − 1, z] angle of 145° and a N1⋯O2i distance of 3.025 (3) Å, Table 1, to form linear chains parallel to the b axis (Fig. 2). The molecules are also bridged by O—H⋯O contacts with a O1—H1A⋯O1ii [symmetry code: (ii) −x + 2, y + , −z + 2] angle of 166° and an O1⋯O1ii distance of 2.8585 (17) Å which, by themselves assemble molecules along the 21 screw axis in the b-axis direction. The combined hydrogen-bonding interactions result in almost flat tapes of molecules parallel to [03].
Synthesis and crystallization
4-Aminophenol (1 mmol) was dissolved in pure acetic acid (30 ml) and placed in an ice-bath. Subsequently, chloroacetyl chloride (1.2 mmol) was added portion-wise under stirring. At the end of the reaction, a solution of sodium acetate (25 ml) was added, and a solid precipitate formed after 30 min of stirring at room temperature. The resulting solid was filtered, washed with cold water, dried and recrystallized from its ethanol solution to yield the title compound as colourless crystals.
Yield = 89%, colour:colourless, m.p. = 413–415 K. FT–IR (ATR, ν, cm−1): 3385 (OH), 3200 (NH), 1640 (C=O). 1H NMR (500 MHz, DMSO-d6): δ p.p.m. 4.21 (s, 2H, CH2), 6.76–7.34 (m, 4H, Ar—H), 9.20 (s, 1H, OH), 10.23 (s, 1H, NH). 13C NMR (500 MHz, DMSO-d6): 43.42 (CH2); 117.68, 122.20, 131.50, 132.63, 153.68 (C—Ar); 164.76 (C=O). HRMS (ESI): calculated for C8H8ClNO2 [M - H]+ 186.0224, found 186.0328.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2392239
https://doi.org/10.1107/S2414314624010150/tk4111sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624010150/tk4111Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624010150/tk4111Isup3.cml
C8H8ClNO2 | F(000) = 192 |
Mr = 185.60 | Dx = 1.529 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5088 (6) Å | Cell parameters from 1576 reflections |
b = 5.1758 (5) Å | θ = 3.9–28.2° |
c = 12.2175 (14) Å | µ = 0.43 mm−1 |
β = 101.649 (10)° | T = 296 K |
V = 403.11 (7) Å3 | Plate, colourless |
Z = 2 | 0.45 × 0.20 × 0.07 mm |
SuperNova, Dual, Cu at home/near, Atlas diffractometer | 1487 reflections with I > 2σ(I) |
ω scans | Rint = 0.028 |
Absorption correction: gaussian (CrysAlis Pro; Rigaku OD, 2023) | θmax = 29.7°, θmin = 3.3° |
Tmin = 0.642, Tmax = 1.000 | h = −8→8 |
3642 measured reflections | k = −7→7 |
1902 independent reflections | l = −16→13 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0294P)2 + 0.0021P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.081 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.16 e Å−3 |
1902 reflections | Δρmin = −0.18 e Å−3 |
110 parameters | Absolute structure: Flack x determined using 510 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.11 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7301 (4) | 0.3699 (6) | 0.8980 (2) | 0.0311 (7) | |
C2 | 0.5982 (4) | 0.5654 (6) | 0.9179 (3) | 0.0334 (7) | |
H2 | 0.645995 | 0.688449 | 0.972562 | 0.040* | |
C3 | 0.3940 (5) | 0.5786 (6) | 0.8563 (3) | 0.0337 (7) | |
H3 | 0.305127 | 0.710757 | 0.869335 | 0.040* | |
C4 | 0.3236 (4) | 0.3932 (6) | 0.7754 (2) | 0.0290 (7) | |
C5 | 0.4562 (5) | 0.1964 (6) | 0.7575 (3) | 0.0335 (8) | |
H5 | 0.408280 | 0.070786 | 0.703994 | 0.040* | |
C6 | 0.6593 (5) | 0.1844 (6) | 0.8184 (3) | 0.0348 (8) | |
H6 | 0.747984 | 0.051642 | 0.805778 | 0.042* | |
C7 | −0.0065 (5) | 0.6041 (7) | 0.6835 (3) | 0.0349 (7) | |
C8 | −0.2181 (5) | 0.5695 (7) | 0.6051 (3) | 0.0442 (9) | |
H8A | −0.238963 | 0.713348 | 0.553173 | 0.053* | |
H8B | −0.326264 | 0.580067 | 0.649112 | 0.053* | |
N1 | 0.1164 (3) | 0.3959 (5) | 0.7083 (2) | 0.0331 (6) | |
H1 | 0.065971 | 0.250333 | 0.681401 | 0.040* | |
O1 | 0.9342 (3) | 0.3507 (4) | 0.9570 (2) | 0.0433 (6) | |
H1A | 0.967245 | 0.484830 | 0.991810 | 0.065* | |
O2 | 0.0363 (3) | 0.8215 (4) | 0.7186 (2) | 0.0500 (6) | |
Cl1 | −0.25580 (12) | 0.27889 (19) | 0.52655 (7) | 0.0555 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0250 (14) | 0.0296 (17) | 0.0360 (17) | −0.0017 (13) | −0.0002 (12) | 0.0054 (14) |
C2 | 0.0334 (17) | 0.0289 (17) | 0.0344 (17) | −0.0011 (14) | −0.0014 (13) | −0.0042 (14) |
C3 | 0.0304 (16) | 0.0303 (17) | 0.0383 (18) | 0.0034 (14) | 0.0022 (13) | −0.0025 (14) |
C4 | 0.0251 (15) | 0.0268 (15) | 0.0329 (16) | −0.0010 (13) | 0.0006 (12) | 0.0036 (13) |
C5 | 0.0326 (16) | 0.0266 (17) | 0.0386 (18) | −0.0022 (13) | 0.0007 (13) | −0.0037 (13) |
C6 | 0.0293 (15) | 0.0254 (16) | 0.050 (2) | 0.0063 (12) | 0.0079 (14) | −0.0008 (14) |
C7 | 0.0279 (16) | 0.0337 (18) | 0.0412 (18) | 0.0000 (14) | 0.0022 (13) | 0.0041 (15) |
C8 | 0.0340 (17) | 0.0336 (19) | 0.058 (2) | 0.0014 (15) | −0.0066 (15) | 0.0046 (17) |
N1 | 0.0279 (13) | 0.0259 (13) | 0.0407 (15) | −0.0005 (11) | −0.0047 (11) | −0.0030 (12) |
O1 | 0.0293 (10) | 0.0387 (15) | 0.0545 (14) | 0.0005 (10) | −0.0093 (9) | −0.0015 (12) |
O2 | 0.0407 (12) | 0.0297 (14) | 0.0705 (16) | 0.0019 (11) | −0.0105 (11) | −0.0033 (12) |
Cl1 | 0.0505 (5) | 0.0519 (5) | 0.0530 (5) | −0.0009 (5) | −0.0155 (4) | −0.0056 (5) |
C1—C6 | 1.378 (4) | C5—H5 | 0.9300 |
C1—C2 | 1.379 (4) | C6—H6 | 0.9300 |
C1—O1 | 1.381 (3) | C7—O2 | 1.216 (4) |
C2—C3 | 1.391 (4) | C7—N1 | 1.340 (4) |
C2—H2 | 0.9300 | C7—C8 | 1.520 (4) |
C3—C4 | 1.387 (4) | C8—Cl1 | 1.774 (4) |
C3—H3 | 0.9300 | C8—H8A | 0.9700 |
C4—C5 | 1.381 (4) | C8—H8B | 0.9700 |
C4—N1 | 1.430 (3) | N1—H1 | 0.8600 |
C5—C6 | 1.382 (4) | O1—H1A | 0.8200 |
C6—C1—C2 | 120.3 (3) | C1—C6—H6 | 120.1 |
C6—C1—O1 | 117.8 (3) | C5—C6—H6 | 120.1 |
C2—C1—O1 | 121.9 (3) | O2—C7—N1 | 125.5 (3) |
C1—C2—C3 | 120.1 (3) | O2—C7—C8 | 116.4 (3) |
C1—C2—H2 | 119.9 | N1—C7—C8 | 118.1 (3) |
C3—C2—H2 | 119.9 | C7—C8—Cl1 | 116.7 (2) |
C4—C3—C2 | 119.6 (3) | C7—C8—H8A | 108.1 |
C4—C3—H3 | 120.2 | Cl1—C8—H8A | 108.1 |
C2—C3—H3 | 120.2 | C7—C8—H8B | 108.1 |
C5—C4—C3 | 119.8 (3) | Cl1—C8—H8B | 108.1 |
C5—C4—N1 | 117.6 (3) | H8A—C8—H8B | 107.3 |
C3—C4—N1 | 122.6 (3) | C7—N1—C4 | 126.0 (3) |
C4—C5—C6 | 120.6 (3) | C7—N1—H1 | 117.0 |
C4—C5—H5 | 119.7 | C4—N1—H1 | 117.0 |
C6—C5—H5 | 119.7 | C1—O1—H1A | 109.5 |
C1—C6—C5 | 119.7 (3) | ||
N1—C7—C8—Cl1 | −15.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2 | 0.93 | 2.34 | 2.873 (4) | 116 |
N1—H1···Cl1 | 0.86 | 2.53 | 2.999 (2) | 115 |
N1—H1···O2i | 0.86 | 2.28 | 3.025 (3) | 145 |
O1—H1A···O1ii | 0.82 | 2.06 | 2.8585 (17) | 166 |
Symmetry codes: (i) x, y−1, z; (ii) −x+2, y+1/2, −z+2. |
Acknowledgements
YR is thankful to the National Center for Scientific and Technical Research of Morocco (CNRST) for its continuous support. The contributions of the authors are as follows: conceptualization, YR; methodology, AA; investigation, AEMAA and IAEH; writing (original draft), AEMAA; writing (review and editing of the manuscript), YR; formal analysis, YR and BMK; supervision, YR;
determination, BMK.References
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o4488. CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kang, S., Zeng, H., Li, H. & Wang, H. (2008). Acta Cryst. E64, o1194. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Missioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 687–690. Web of Science CSD CrossRef IUCr Journals Google Scholar
Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484. Web of Science CSD CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.