organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-N-(2,6-Diiso­propyl­phen­yl)-1-[(2-meth­oxyphen­yl)amino]­methanimine oxide

crossmark logo

aSchool of Chemistry and Physics, University of KwaZulu Natal, Private Bag X54001, Westville, Durban, 4000, South Africa, and bChemistry Department, Bindura University of Science Education, Private Bag 1020, Bindura, Zimbabwe
*Correspondence e-mail: zamisas@ukzn.ac.za

Edited by E. R. T. Tiekink, Universitat de lesIlles Balears, Palma de Mallorca, Spain (Received 1 October 2024; accepted 9 October 2024; online 21 October 2024)

The mol­ecular structure of the title compound, C20H26N2O2 reveals non-co-planarity between the central formamidine backbone and each of the outer meth­oxy- and i-propyl- substituted benzene rings with dihedral angles of 7.88 (15) and 81.17 (15)°, respectively, indicating significant twists in the mol­ecule. In the crystal, inter­molecular C—H⋯O inter­actions, forming an R34(30) graph set, occur within a two-dimensional layer that extends along the ac plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The tittle compound is a member of the formamidine class of compounds, which follow the general structure RN—C(R′)=NR′′, where R, R′ and R′′ can represent either hydrogen, alkyl or aryl groups (Zamisa et al., 2021[Zamisa, S. J., Bongoza, U. & Omondi, B. (2021). CrystEngComm, 23, 4459-4474.]; Barker & Kilner, 1994[Barker, J. & Kilner, M. (1994). Coord. Chem. Rev. 133, 219-300.]). Their varied structures have led to investigations into their potential medicinal uses, uncovering properties such as anti­microbial and anti­cancer activities (Clement, 2002[Clement, B. (2002). Drug Metab. Rev. 34, 565-579.]; Stojak et al., 2014[Stojak, M., Łukawska, M., Oszczapowicz, I., Opydo-Chanek, M. & Mazur, L. (2014). Anticancer Res. 34, 7151-7158.]). Recently, we focused on the application of formamidine metal complexes as catalysts in ring-opening polymerization reactions (Munzeiwa et al., 2018[Munzeiwa, W. A., Nyamori, V. O. & Omondi, B. (2018). Appl. Organomet. Chem. 32, e4247.]). As part of our work to develop new derivatives with superior catalytic abilities, we synthesized the title compound and analysed its crystal structure.

The title crystal has one mol­ecule in the asymmetric unit, as shown in Fig. 1[link]. The mol­ecular conformation of the title compound is described by a dihedral angle between the 2-meth­oxy­benzene plane and the formamidine backbone of 7.88 (15)°, while that between the 2,6-diiso­propyl­benzene plane and the backbone measures 81.17 (15)°, suggesting a notable twist of this plane relative to the backbone. Furthermore, the dihedral angle between the two benzene planes is 78.17 (6)°. All other intra­molecular bond parameters are comparable with those of (Z)-1-[(4-meth­oxy­phen­yl)amino]-N-phenyl­methanimine oxide (CSD refcode: GIKFUB; Giumanini et al., 1999[Giumanini, A. G., Toniutti, N., Verardo, G. & Merli, M. (1999). Eur. J. Org. Chem. pp. 141-143.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. All hydrogen atoms have been omitted for clarity.

Inter­molecular C—H⋯O hydrogen bonds were found in the mol­ecular packing of the title compound, Table 1[link]. The oxygen atom is involved in bifurcated C14—H14C⋯O2 and C9—H9⋯O2 inter­actions with the hydrogen (H14C) atom of the isopropyl substituent and the hydrogen (H9) atom of the 2-meth­oxy­phenyl ring, respectively. The former links neighbouring mol­ecules along [100] whilst the latter joins neighbouring mol­ecules along [001]. Collectively, the two types of C—H⋯O inter­actions can be described by an R43(30) graph set within a two-dimensional supra­molecular arrangement that propagates along the ac plane (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.95 2.39 3.337 (2) 174
C14—H14C⋯O2ii 0.98 2.47 3.445 (2) 172
Symmetry codes: (i) [x-1, y, z]; (ii) [x, y, z+1].
[Figure 2]
Figure 2
Representation of inter­molecular C—H⋯O inter­actions (red dotted bonds).

Synthesis and crystallization

The title compound was synthesized using a modified protocol (Munzeiwa et al., 2017[Munzeiwa, W. A., Omondi, B. & Nyamori, V. O. (2017). Polyhedron, 138, 295-305.]). Thus, N-(2,6-diiso­propyl­phen­yl)-N′-(2-meth­oxy­phen­yl)formamidine (1 mmol) was dissolved in di­chloro­methane (6 ml) followed by the addition of solid sodium hydrogen carbonate (1 mmol). The mixture was cooled to 0°C. A slight excess of meta-chloro­per­oxy­benzoic acid (1.2 mmol) in di­chloro­methane (6 ml) was then added dropwise, and the reaction mixture was allowed to gradually warm to room temperature while stirring for 1 h. The mixture was washed with 2 × 25 ml of 5% potassium carbonate solution. The combined organic layers were dried over anhydrous sodium sulfate, filtered and the solvent evaporated to yield a solid residue. The crude solid was subsequently recrystallized from its methanol solution to produce crystals suitable for X-ray diffraction.

Refinement

Crystallographic data and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H26N2O2
Mr 326.43
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.1243 (4), 23.941 (1), 7.5053 (3)
β (°) 91.315 (3)
V3) 1818.70 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.22 × 0.18 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.984, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 19835, 3268, 2304
Rint 0.050
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.108, 1.03
No. of reflections 3268
No. of parameters 222
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

(Z)-N-(2,6-Diisopropylphenyl)-1-[(2-methoxyphenyl)amino]methanimine oxide top
Crystal data top
C20H26N2O2F(000) = 704
Mr = 326.43Dx = 1.192 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.1243 (4) ÅCell parameters from 3357 reflections
b = 23.941 (1) Åθ = 2.6–26.1°
c = 7.5053 (3) ŵ = 0.08 mm1
β = 91.315 (3)°T = 100 K
V = 1818.70 (13) Å3Block, colourless
Z = 40.22 × 0.18 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.984, Tmax = 0.992k = 2628
19835 measured reflectionsl = 69
3268 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.5644P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3268 reflectionsΔρmax = 0.17 e Å3
222 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24618 (12)0.68362 (5)0.12209 (16)0.0240 (3)
O20.63374 (13)0.64315 (6)0.11780 (18)0.0331 (4)
N10.58378 (14)0.61829 (6)0.25631 (19)0.0170 (3)
N20.37631 (14)0.64203 (6)0.1547 (2)0.0190 (4)
H20.4132340.6589690.0644840.023*
C10.82344 (18)0.54648 (8)0.6549 (3)0.0260 (5)
H10.8741670.5294410.7480580.031*
C20.77386 (18)0.59966 (8)0.6781 (2)0.0225 (4)
H2A0.7911330.6188730.7869100.027*
C30.69884 (16)0.62541 (7)0.5438 (2)0.0180 (4)
C40.67049 (16)0.59410 (7)0.3911 (2)0.0164 (4)
C50.45720 (17)0.61710 (7)0.2758 (2)0.0182 (4)
H50.4211470.5986140.3755760.022*
C60.23759 (17)0.64312 (7)0.1612 (2)0.0170 (4)
C70.16819 (18)0.62453 (8)0.3053 (3)0.0229 (4)
H70.2145620.6108910.4078120.028*
C80.03063 (18)0.62555 (8)0.3021 (3)0.0283 (5)
H80.0164090.6120740.4013490.034*
C90.03726 (18)0.64608 (8)0.1551 (3)0.0277 (5)
H90.1311080.6465430.1525600.033*
C100.1809 (2)0.71154 (9)0.2667 (3)0.0317 (5)
H10A0.1200390.6856180.3274810.048*
H10B0.2465840.7247670.3508760.048*
H10C0.1312820.7434470.2212690.048*
C110.16860 (17)0.66476 (7)0.0128 (2)0.0188 (4)
C120.65352 (17)0.68551 (8)0.5626 (2)0.0210 (4)
H120.6154230.6974750.4445550.025*
C130.76943 (19)0.72415 (8)0.6074 (3)0.0305 (5)
H13A0.8050300.7152030.7264830.046*
H13B0.7391960.7630300.6048300.046*
H13C0.8385290.7190260.5194910.046*
C140.5452 (2)0.69169 (9)0.6997 (3)0.0320 (5)
H14A0.4691310.6685800.6641850.048*
H14B0.5178340.7309000.7061030.048*
H14C0.5790240.6795680.8168290.048*
C150.80004 (18)0.51781 (8)0.4976 (3)0.0239 (5)
H150.8385740.4820280.4817730.029*
C160.72077 (17)0.54058 (7)0.3619 (2)0.0195 (4)
C170.68975 (19)0.50857 (8)0.1912 (2)0.0253 (5)
H170.6527020.5356570.1018120.030*
C180.5848 (2)0.46398 (9)0.2228 (3)0.0419 (6)
H18A0.6205230.4356070.3047290.063*
H18B0.5595950.4463780.1091070.063*
H18C0.5069450.4813620.2747220.063*
C190.03187 (17)0.66612 (7)0.0105 (3)0.0233 (4)
H190.0148890.6807920.0901840.028*
C220.8135 (2)0.48265 (9)0.1134 (3)0.0371 (5)
H22A0.8811680.5115300.1003930.056*
H22B0.7916680.4664600.0035130.056*
H22C0.8470680.4533070.1934540.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0185 (7)0.0334 (8)0.0201 (7)0.0049 (6)0.0014 (6)0.0075 (6)
O20.0261 (8)0.0423 (9)0.0311 (8)0.0019 (6)0.0022 (6)0.0131 (7)
N10.0163 (8)0.0197 (8)0.0150 (8)0.0004 (6)0.0011 (6)0.0019 (6)
N20.0129 (8)0.0246 (8)0.0194 (8)0.0007 (6)0.0006 (6)0.0055 (7)
C10.0223 (10)0.0292 (11)0.0260 (11)0.0024 (9)0.0074 (9)0.0109 (9)
C20.0215 (10)0.0279 (11)0.0179 (10)0.0056 (8)0.0036 (8)0.0027 (8)
C30.0113 (9)0.0228 (10)0.0199 (10)0.0026 (7)0.0003 (8)0.0036 (8)
C40.0120 (9)0.0208 (10)0.0164 (10)0.0012 (7)0.0017 (8)0.0046 (8)
C50.0182 (10)0.0208 (10)0.0155 (10)0.0015 (8)0.0013 (8)0.0006 (8)
C60.0133 (9)0.0162 (9)0.0215 (10)0.0008 (7)0.0010 (8)0.0018 (8)
C70.0182 (10)0.0260 (11)0.0245 (11)0.0037 (8)0.0011 (8)0.0067 (9)
C80.0197 (10)0.0308 (11)0.0346 (12)0.0001 (9)0.0042 (9)0.0088 (10)
C90.0125 (10)0.0282 (11)0.0423 (13)0.0000 (8)0.0008 (9)0.0037 (10)
C100.0286 (11)0.0422 (13)0.0240 (11)0.0090 (10)0.0028 (9)0.0111 (10)
C110.0177 (10)0.0186 (10)0.0201 (10)0.0001 (8)0.0013 (8)0.0005 (8)
C120.0204 (10)0.0236 (10)0.0189 (10)0.0001 (8)0.0027 (8)0.0004 (8)
C130.0273 (11)0.0256 (11)0.0385 (13)0.0039 (9)0.0030 (10)0.0012 (9)
C140.0298 (12)0.0307 (12)0.0357 (12)0.0017 (9)0.0059 (10)0.0029 (10)
C150.0220 (10)0.0213 (10)0.0283 (11)0.0034 (8)0.0003 (9)0.0062 (9)
C160.0163 (9)0.0205 (10)0.0218 (10)0.0019 (8)0.0007 (8)0.0035 (8)
C170.0310 (11)0.0215 (10)0.0232 (11)0.0036 (8)0.0031 (9)0.0002 (8)
C180.0421 (14)0.0421 (14)0.0414 (14)0.0123 (11)0.0004 (11)0.0132 (11)
C190.0189 (10)0.0223 (10)0.0284 (11)0.0018 (8)0.0066 (9)0.0004 (9)
C220.0416 (13)0.0368 (13)0.0331 (12)0.0053 (10)0.0054 (10)0.0065 (10)
Geometric parameters (Å, º) top
O1—C101.424 (2)C10—H10B0.9800
O1—C111.372 (2)C10—H10C0.9800
O2—N11.3095 (19)C11—C191.384 (2)
N1—C41.445 (2)C12—H121.0000
N1—C51.294 (2)C12—C131.526 (3)
N2—H20.8800C12—C141.529 (3)
N2—C51.349 (2)C13—H13A0.9800
N2—C61.407 (2)C13—H13B0.9800
C1—H10.9500C13—H13C0.9800
C1—C21.381 (3)C14—H14A0.9800
C1—C151.381 (3)C14—H14B0.9800
C2—H2A0.9500C14—H14C0.9800
C2—C31.392 (2)C15—H150.9500
C3—C41.394 (2)C15—C161.394 (2)
C3—C121.518 (3)C16—C171.519 (3)
C4—C161.398 (2)C17—H171.0000
C5—H50.9500C17—C181.529 (3)
C6—C71.377 (3)C17—C221.526 (3)
C6—C111.401 (2)C18—H18A0.9800
C7—H70.9500C18—H18B0.9800
C7—C81.393 (3)C18—H18C0.9800
C8—H80.9500C19—H190.9500
C8—C91.377 (3)C22—H22A0.9800
C9—H90.9500C22—H22B0.9800
C9—C191.390 (3)C22—H22C0.9800
C10—H10A0.9800
C11—O1—C10116.96 (14)C3—C12—C13111.26 (15)
O2—N1—C4119.89 (14)C3—C12—C14112.18 (15)
C5—N1—O2120.10 (15)C13—C12—H12107.5
C5—N1—C4119.96 (15)C13—C12—C14110.69 (16)
C5—N2—H2117.4C14—C12—H12107.5
C5—N2—C6125.18 (15)C12—C13—H13A109.5
C6—N2—H2117.4C12—C13—H13B109.5
C2—C1—H1119.7C12—C13—H13C109.5
C2—C1—C15120.67 (17)H13A—C13—H13B109.5
C15—C1—H1119.7H13A—C13—H13C109.5
C1—C2—H2A119.6H13B—C13—H13C109.5
C1—C2—C3120.72 (18)C12—C14—H14A109.5
C3—C2—H2A119.6C12—C14—H14B109.5
C2—C3—C4117.11 (16)C12—C14—H14C109.5
C2—C3—C12120.91 (16)H14A—C14—H14B109.5
C4—C3—C12121.96 (15)H14A—C14—H14C109.5
C3—C4—N1118.05 (15)H14B—C14—H14C109.5
C3—C4—C16123.60 (16)C1—C15—H15119.5
C16—C4—N1118.35 (15)C1—C15—C16121.01 (17)
N1—C5—N2120.13 (16)C16—C15—H15119.5
N1—C5—H5119.9C4—C16—C17121.73 (16)
N2—C5—H5119.9C15—C16—C4116.70 (17)
C7—C6—N2123.31 (16)C15—C16—C17121.57 (16)
C7—C6—C11119.35 (16)C16—C17—H17107.8
C11—C6—N2117.34 (16)C16—C17—C18110.65 (16)
C6—C7—H7119.7C16—C17—C22111.84 (16)
C6—C7—C8120.58 (17)C18—C17—H17107.8
C8—C7—H7119.7C22—C17—H17107.8
C7—C8—H8120.0C22—C17—C18110.80 (17)
C9—C8—C7120.06 (18)C17—C18—H18A109.5
C9—C8—H8120.0C17—C18—H18B109.5
C8—C9—H9120.1C17—C18—H18C109.5
C8—C9—C19119.84 (17)H18A—C18—H18B109.5
C19—C9—H9120.1H18A—C18—H18C109.5
O1—C10—H10A109.5H18B—C18—H18C109.5
O1—C10—H10B109.5C9—C19—H19119.9
O1—C10—H10C109.5C11—C19—C9120.24 (17)
H10A—C10—H10B109.5C11—C19—H19119.9
H10A—C10—H10C109.5C17—C22—H22A109.5
H10B—C10—H10C109.5C17—C22—H22B109.5
O1—C11—C6115.16 (15)C17—C22—H22C109.5
O1—C11—C19124.93 (16)H22A—C22—H22B109.5
C19—C11—C6119.91 (17)H22A—C22—H22C109.5
C3—C12—H12107.5H22B—C22—H22C109.5
O1—C11—C19—C9179.71 (17)C4—C3—C12—C14109.98 (19)
O2—N1—C4—C397.35 (19)C4—C16—C17—C18102.6 (2)
O2—N1—C4—C1683.0 (2)C4—C16—C17—C22133.38 (18)
O2—N1—C5—N20.8 (3)C5—N1—C4—C380.2 (2)
N1—C4—C16—C15177.70 (15)C5—N1—C4—C1699.5 (2)
N1—C4—C16—C171.8 (2)C5—N2—C6—C78.4 (3)
N2—C6—C7—C8178.56 (17)C5—N2—C6—C11172.09 (16)
N2—C6—C11—O11.2 (2)C6—N2—C5—N1179.54 (16)
N2—C6—C11—C19179.04 (16)C6—C7—C8—C91.0 (3)
C1—C2—C3—C43.5 (3)C6—C11—C19—C90.0 (3)
C1—C2—C3—C12175.00 (17)C7—C6—C11—O1178.31 (16)
C1—C15—C16—C42.0 (3)C7—C6—C11—C191.4 (3)
C1—C15—C16—C17177.53 (17)C7—C8—C9—C190.4 (3)
C2—C1—C15—C163.1 (3)C8—C9—C19—C110.9 (3)
C2—C3—C4—N1175.00 (15)C10—O1—C11—C6173.25 (16)
C2—C3—C4—C164.7 (3)C10—O1—C11—C196.5 (3)
C2—C3—C12—C1353.0 (2)C11—C6—C7—C81.9 (3)
C2—C3—C12—C1471.6 (2)C12—C3—C4—N16.5 (2)
C3—C4—C16—C152.0 (3)C12—C3—C4—C16173.79 (16)
C3—C4—C16—C17178.50 (16)C15—C1—C2—C30.2 (3)
C4—N1—C5—N2176.73 (15)C15—C16—C17—C1876.9 (2)
C4—C3—C12—C13125.41 (18)C15—C16—C17—C2247.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.952.393.337 (2)174
C14—H14C···O2ii0.982.473.445 (2)172
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1.
 

Acknowledgements

The authors would like to thank the University of KwaZulu Natal for the research facilities.

References

First citationBarker, J. & Kilner, M. (1994). Coord. Chem. Rev. 133, 219–300.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClement, B. (2002). Drug Metab. Rev. 34, 565–579.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGiumanini, A. G., Toniutti, N., Verardo, G. & Merli, M. (1999). Eur. J. Org. Chem. pp. 141–143.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMunzeiwa, W. A., Nyamori, V. O. & Omondi, B. (2018). Appl. Organomet. Chem. 32, e4247.  CrossRef Google Scholar
First citationMunzeiwa, W. A., Omondi, B. & Nyamori, V. O. (2017). Polyhedron, 138, 295–305.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStojak, M., Łukawska, M., Oszczapowicz, I., Opydo-Chanek, M. & Mazur, L. (2014). Anticancer Res. 34, 7151–7158.  CAS PubMed Google Scholar
First citationZamisa, S. J., Bongoza, U. & Omondi, B. (2021). CrystEngComm, 23, 4459–4474.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146