organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Bromo-N,N′-di­phenyl­benzimidamide N′-oxide

crossmark logo

aDépartement de Chimie, Université de Montréal, Complexe des sciences, 1375, Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada, and bDépartement de biochimie, chimie, physique et science forensique, Université du Québec à Trois-Rivières. 3351, boul. des Forges, CP 500, Trois-Rivières, Québec, G9A 5H7, Canada
*Correspondence e-mail: thierry.maris@umontreal.ca

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 27 September 2024; accepted 1 October 2024; online 8 October 2024)

The title compound, C19H15BrN2O, crystallizes with two similar mol­ecules in the asymmetric unit. The extended structure features dimers linked by pairs of N—H⋯O and C—H⋯O hydrogen bonds. The HNCNO moiety of the title compound shows delocalization over the N—C—N part, as evidenced by the similar C—N bond distances.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound C19H15BrN2O (AMOX-Br) is a symmetrically N,N′-disubstituted aryl­amidine N′-oxide. Its crystal structure was determined as part of a research project involving the synthesis of AMOX ligands and their coordination complexes with trans­ition-metal ions for assessing their photophysical and electrochemical properties (Patel et al., 1979[Patel, K. S., Deb, K. K. & Mishra, R. K. (1979). Bull. Chem. Soc. Jpn, 52, 595-597.]; Verma et al., 1995[Verma, A. N., Gholse, S. B. & Sangal, S. P. (1995). J. Indian Chem. Soc. 72, 685-688.]; Cibian et al., 2018[Cibian, M., Shahalizad, A., Souissi, F., Castro, J., Ferreira, J. G., Chartrand, D., Nunzi, J.-M. & Hanan, G. S. (2018). Eur. J. Inorg. Chem. 2018, 4322-4330.]). The asymmetric unit contains two mol­ecules (labelled with suffixes A and B) in the ortho­rhom­bic Pna21 space group. Each mol­ecule contains an O—N—C—N bridge bearing a central C-aryl ring with 4-bromo substitution and two side N-phenyl rings (Fig. 1[link]).

[Figure 1]
Figure 1
View of the asymmetric unit containing two independent mol­ecules with displacement ellipsoids drawn at the 50% probability level.

The N—C—N moieties in both mol­ecules display electronic delocalization since the bond lengths are shorter than classical C—N single bonds (1.45 Å) and longer than localized C=N double bonds (1.27 Å) (Filgueiras de Athayde-Filho et al., 2003[Filgueiras de Athayde-Filho, P., Miller, J., Mayall Simas, A., Freitas Lira, B., Alixandre de Souza Luis, J. & Zuckerman-Schpector, J. (2003). Synthesis, 5, 685-690.]). This observation is evident from the similar N—C bond distances [C1A—N1A = 1.321 (11) Å, C1A—N2A = 1.338 (12) Å and C1B—N1B = 1.325 (11) Å, C1B—N2B = 1.366 (11) Å] for the two mol­ecules of the asymmetric unit. Furthermore, these values are comparable to those reported for the N—C—N bond lengths in 4-bromo-N-phenyl­benzamidoxime (Cibian et al., 2009[Cibian, M., Ferreira, J. G. & Hanan, G. S. (2009). Acta Cryst. E65, o2820.]). The N—C—N—O moiety is slightly twisted with a torsion angle of 3.9 (11)° for N2B—C1B—N1B—O1B and −3.9 (12)° for O1A—N1A—C1A—N2A. Considering the central and side phenyl rings, if rings C3A–C8A, C9A–C14A and C15A–C20A from mol­ecule A are labelled 1, 2 and 3, respectively (4, 5 and 6, respectively, for the rings of mol­ecule B, Fig. 2[link]), the angle between planes 1 and 3 is 68.9 (3)° while the angle between planes 1 and 2 is 57.1 (3)°, with the corresponding angles for mol­ecule B being 69.6 (3) and 56.9 (3)°, respectively. The angles between the planes of the side N-phenyl rings (2/3 & 5/6 for mol­ecules A and B, respectively) are 73.6 (3) and 72.6 (3)°, respectively.

[Figure 2]
Figure 2
View of planes 1, 2, 3, 4, 5, and 6 for the phenyl rings of the mol­ecules in the asymmetric unit and hydrogen bonds (dotted lines).

Hydrogen bonds are reported in Table 1[link]. The extended structure displays cyclic dimers linked by pairs of N—H⋯O and C—H⋯O hydrogen bonds. No notable inter­molecular ππ stacking inter­actions are observed but there are several C—H⋯π contacts that complement the conventional hydrogen bonds (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3, Cg5 and Cg6 are the centroids of the C9A–C14A, C15A–C20A, C9B–C14B and C15B–C20B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯O1B 0.88 2.20 3.005 (11) 152
C10A—H10A⋯O1Bi 0.95 2.32 3.249 (12) 167
C16A—H16A⋯O1B 0.95 2.41 3.191 (12) 139
N2B—H2B⋯O1A 0.88 2.19 2.999 (10) 152
C10B—H10B⋯O1Aii 0.95 2.28 3.214 (12) 167
C16B—H16B⋯O1A 0.95 2.40 3.188 (12) 140
C4A—H4ACg2ii 0.95 2.77 3.614 (10) 149
C4B—H4BCg6ii 0.95 2.64 3.534 (10) 157
C8A—H8ACg3i 0.95 2.71 3.591 (10) 154
C8B—H8BCg5i 0.95 2.85 3.688 (10) 148
Symmetry codes: (i) [x, y+1, z]; (ii) [x, y-1, z].
[Figure 3]
Figure 3
View of the packing of the title compound in the unit cell.

Synthesis and crystallization

The compound was synthesized with some modification to the procedure reported in the literature (Cibian et al., 2018[Cibian, M., Shahalizad, A., Souissi, F., Castro, J., Ferreira, J. G., Chartrand, D., Nunzi, J.-M. & Hanan, G. S. (2018). Eur. J. Inorg. Chem. 2018, 4322-4330.]): 4-bromo-N,N′-di­phenyl­benzimidamide, AM–Br (0.84 g, 2.4 mmol, 1.0 eq.) was dissolved in di­chloro­methane in the presence of NaHCO3 (1.19 g, 14.2 mmol, 5.0 eq.) and stirred for 10 minutes. Then, m-chloro-peroxi­benzoic acid, m-CPBA, 70% (0.76 g, 3.1 mmol, 1.1 eq.) was added in small aliquotes to the AM–Br solution. The reaction mixture turned brown instantly and darkened within a minute of stirring. The reaction mixture was stirred at room temperature for 2 h and filtered under vacuum. The filtrate was washed with 2 M NaOH solution (2 × 80 ml), distilled water (2 × 80 ml) and brine (3 × 50 ml). The collected di­chloro­methane layer was dried with anhydrous Na2SO4 and the solvent was removed under vacuum. The sticky brown solid obtained was sonicated in a minimum volume of ethyl acetate/hexa­nes. The precipitate thus formed was filtered and washed with ethyl acetate/hexa­nes to give a pale-yellow amorphous powder (yield 76%) of the title compound. Bright-yellow needles suitable for X-ray diffraction measurements were grown over a period of 5 d at room temperature by the hexane anti-solvent layering technique with a di­chloro­methane solution of the compound (1:1 v/v).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal studied was refined as a two-component inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula C19H15BrN2O
Mr 367.24
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 150
a, b, c (Å) 17.7036 (16), 5.8468 (6), 31.418 (3)
V3) 3252.0 (5)
Z 8
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 2.30
Crystal size (mm) 0.19 × 0.03 × 0.03
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.079, 0.201
No. of measured, independent and observed [I > 2σ(I)] reflections 100504, 6071, 4793
Rint 0.090
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.158, 1.07
No. of reflections 6071
No. of parameters 416
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.13, −0.64
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.23 (6)
Computer programs: APEX4 (Bruker, 2022[Bruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2020[Bruker (2020). SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), FinalCIF (Kratzert, 2024[Kratzert, D. (2024). FinalCIF. https://dkratzert.de/finalcif.html.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

4-Bromo-N,N'-diphenylbenzimidamide N'-oxide top
Crystal data top
C19H15BrN2ODx = 1.500 Mg m3
Mr = 367.24Ga Kα radiation, λ = 1.34139 Å
Orthorhombic, Pna21Cell parameters from 9781 reflections
a = 17.7036 (16) Åθ = 4.5–54.4°
b = 5.8468 (6) ŵ = 2.30 mm1
c = 31.418 (3) ÅT = 150 K
V = 3252.0 (5) Å3Needle, clear light colourless
Z = 80.19 × 0.03 × 0.03 mm
F(000) = 1488
Data collection top
Bruker Venture Metaljet
diffractometer
6071 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source4793 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.090
Detector resolution: 10.42 pixels mm-1θmax = 54.9°, θmin = 2.5°
ω and φ scansh = 2121
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 67
Tmin = 0.079, Tmax = 0.201l = 3837
100504 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0728P)2 + 6.1028P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.158(Δ/σ)max < 0.001
S = 1.07Δρmax = 1.13 e Å3
6071 reflectionsΔρmin = 0.64 e Å3
416 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.23 (6)
Primary atom site location: dual
Special details top

Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon III CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Hydrogen atoms attached to nitrogen were first located from Fourier difference map then refined using the equivalent calculated positions. The C-bound H atoms were geometrically placed and refined as riding atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.61038 (7)0.6881 (3)0.25148 (3)0.0760 (4)
O1A0.4180 (4)0.7299 (11)0.4878 (2)0.0500 (18)
N1A0.4538 (4)0.7506 (11)0.4507 (3)0.0344 (17)
C1A0.4319 (4)0.6209 (13)0.4185 (3)0.0351 (18)
N2A0.3778 (4)0.4681 (13)0.4271 (2)0.0417 (17)
H2A0.3639700.4613290.4539730.050*
C3A0.4695 (4)0.6315 (15)0.3761 (3)0.0369 (18)
C4A0.5143 (5)0.4453 (15)0.3630 (3)0.0402 (19)
H4A0.5163300.3105800.3798830.048*
C5A0.5558 (5)0.4585 (18)0.3253 (3)0.047 (2)
H5A0.5865460.3349430.3159940.057*
C6A0.5504 (6)0.6599 (19)0.3018 (3)0.051 (2)
C7A0.5056 (6)0.8449 (17)0.3136 (3)0.047 (2)
H7A0.5031480.9781610.2963940.057*
C8A0.4644 (5)0.8303 (17)0.3516 (3)0.043 (2)
H8A0.4333350.9538210.3604760.051*
C9A0.5134 (5)0.9239 (15)0.4500 (3)0.0396 (19)
C10A0.4990 (5)1.1212 (15)0.4729 (3)0.0380 (19)
H10A0.4519001.1420360.4868320.046*
C11A0.5530 (5)1.2838 (15)0.4752 (3)0.040 (2)
H11A0.5437301.4171410.4916200.048*
C12A0.6217 (5)1.2623 (15)0.4542 (4)0.042 (2)
H12A0.6582051.3812710.4552570.051*
C13A0.6354 (5)1.0632 (17)0.4319 (3)0.048 (2)
H13A0.6824901.0450000.4177890.057*
C14A0.5821 (5)0.8882 (14)0.4296 (3)0.0409 (19)
H14A0.5922820.7502900.4146380.049*
C15A0.3389 (5)0.3147 (16)0.3995 (3)0.041 (2)
C16A0.3139 (5)0.1128 (15)0.4159 (3)0.044 (2)
H16A0.3239750.0765050.4447870.053*
C17A0.2739 (5)0.0410 (16)0.3908 (3)0.047 (2)
H17A0.2563720.1806800.4026440.056*
C18A0.2594 (5)0.0097 (19)0.3481 (3)0.052 (3)
H18A0.2334730.0966760.3304910.062*
C19A0.2838 (6)0.2216 (18)0.3316 (4)0.051 (3)
H19A0.2727540.2605750.3029110.061*
C20A0.3238 (5)0.3733 (16)0.3568 (3)0.045 (2)
H20A0.3408320.5149480.3455480.055*
C1B0.3236 (4)0.3768 (15)0.5820 (3)0.0370 (18)
Br1B0.14367 (7)0.2681 (2)0.74742 (3)0.0701 (4)
N1B0.3017 (4)0.2490 (11)0.5494 (3)0.0336 (17)
O1B0.3366 (4)0.2703 (11)0.5123 (2)0.0478 (17)
N2B0.3789 (4)0.5326 (12)0.5731 (2)0.0417 (17)
H2B0.3932190.5399510.5463010.050*
C3B0.2863 (5)0.3580 (16)0.6241 (3)0.0387 (19)
C4B0.2924 (5)0.1630 (16)0.6482 (3)0.0391 (19)
H4B0.3254010.0440350.6394060.047*
C5B0.2506 (5)0.1381 (18)0.6856 (3)0.048 (2)
H5B0.2545690.0018730.7019170.058*
C6B0.2046 (6)0.3074 (19)0.6984 (3)0.048 (2)
C7B0.1990 (5)0.5162 (18)0.6760 (3)0.050 (2)
H7B0.1678830.6370040.6860580.060*
C8B0.2411 (5)0.5390 (16)0.6382 (3)0.041 (2)
H8B0.2388580.6771530.6223570.049*
C9B0.2439 (5)0.0776 (15)0.5503 (3)0.0393 (19)
C10B0.2578 (5)0.1214 (15)0.5272 (3)0.040 (2)
H10B0.3049070.1421670.5132840.049*
C11B0.2031 (6)0.2875 (16)0.5248 (3)0.042 (2)
H11B0.2125940.4226520.5088510.051*
C12B0.1340 (5)0.2606 (14)0.5453 (4)0.041 (2)
H12B0.0963630.3760870.5433400.049*
C13B0.1207 (5)0.0633 (17)0.5685 (3)0.042 (2)
H13B0.0740960.0456490.5831360.051*
C14B0.1746 (5)0.1094 (15)0.5707 (3)0.0401 (19)
H14B0.1644130.2467870.5857590.048*
C15B0.4160 (5)0.6836 (15)0.6013 (3)0.040 (2)
C16B0.4421 (4)0.8874 (15)0.5840 (3)0.041 (2)
H16B0.4331580.9218770.5548800.050*
C17B0.4814 (5)1.0404 (17)0.6097 (3)0.049 (2)
H17B0.4989501.1803750.5979360.059*
C18B0.4953 (5)0.9913 (18)0.6523 (4)0.054 (3)
H18B0.5215771.0971900.6698080.065*
C19B0.4695 (6)0.7814 (18)0.6691 (5)0.053 (3)
H19B0.4792860.7441640.6980560.063*
C20B0.4308 (5)0.6319 (17)0.6440 (3)0.046 (2)
H20B0.4135830.4910910.6555690.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0716 (8)0.1182 (10)0.0382 (7)0.0140 (7)0.0150 (7)0.0000 (9)
O1A0.060 (4)0.053 (4)0.038 (4)0.010 (3)0.018 (3)0.007 (3)
N1A0.040 (4)0.032 (4)0.031 (5)0.006 (3)0.006 (4)0.006 (3)
C1A0.039 (4)0.026 (4)0.040 (5)0.002 (3)0.003 (3)0.002 (3)
N2A0.045 (4)0.044 (4)0.036 (4)0.005 (3)0.004 (3)0.004 (3)
C3A0.037 (4)0.036 (4)0.037 (5)0.002 (4)0.002 (4)0.000 (4)
C4A0.042 (5)0.040 (5)0.038 (4)0.000 (4)0.001 (4)0.004 (4)
C5A0.048 (5)0.055 (6)0.039 (5)0.005 (4)0.003 (4)0.004 (4)
C6A0.046 (5)0.069 (7)0.037 (5)0.012 (5)0.003 (4)0.003 (5)
C7A0.057 (6)0.040 (5)0.046 (6)0.007 (5)0.015 (5)0.001 (4)
C8A0.038 (4)0.047 (5)0.043 (6)0.001 (4)0.001 (4)0.001 (4)
C9A0.038 (4)0.041 (5)0.039 (4)0.002 (4)0.007 (4)0.005 (4)
C10A0.039 (4)0.045 (5)0.031 (4)0.004 (4)0.002 (3)0.001 (4)
C11A0.049 (5)0.043 (5)0.028 (5)0.002 (4)0.007 (4)0.002 (4)
C12A0.047 (5)0.036 (5)0.045 (6)0.005 (4)0.008 (4)0.001 (4)
C13A0.042 (5)0.051 (6)0.050 (6)0.002 (4)0.003 (4)0.002 (5)
C14A0.043 (5)0.032 (4)0.048 (5)0.001 (4)0.003 (4)0.002 (4)
C15A0.034 (4)0.050 (5)0.039 (5)0.001 (4)0.005 (4)0.005 (4)
C16A0.046 (5)0.039 (5)0.048 (5)0.004 (4)0.001 (4)0.005 (4)
C17A0.050 (5)0.032 (5)0.059 (6)0.003 (4)0.003 (4)0.002 (4)
C18A0.049 (5)0.049 (6)0.057 (6)0.008 (5)0.010 (4)0.012 (5)
C19A0.052 (6)0.063 (7)0.037 (7)0.005 (5)0.008 (4)0.007 (5)
C20A0.043 (5)0.045 (5)0.049 (5)0.002 (4)0.003 (4)0.001 (4)
C1B0.036 (4)0.041 (5)0.034 (4)0.002 (4)0.003 (3)0.000 (4)
Br1B0.0672 (7)0.1061 (9)0.0369 (6)0.0024 (6)0.0184 (6)0.0002 (7)
N1B0.041 (4)0.032 (4)0.028 (5)0.001 (3)0.004 (3)0.004 (3)
O1B0.053 (4)0.051 (4)0.040 (4)0.004 (3)0.010 (3)0.002 (3)
N2B0.046 (4)0.038 (4)0.041 (4)0.007 (3)0.006 (3)0.001 (3)
C3B0.033 (4)0.045 (5)0.037 (5)0.001 (4)0.001 (3)0.001 (4)
C4B0.038 (4)0.041 (5)0.038 (5)0.003 (4)0.001 (4)0.001 (4)
C5B0.046 (5)0.061 (6)0.036 (5)0.013 (5)0.010 (4)0.008 (4)
C6B0.057 (6)0.063 (6)0.024 (5)0.002 (5)0.001 (4)0.007 (4)
C7B0.041 (5)0.066 (6)0.043 (5)0.006 (4)0.005 (4)0.021 (5)
C8B0.043 (5)0.039 (5)0.040 (5)0.002 (4)0.004 (4)0.002 (4)
C9B0.043 (5)0.039 (5)0.035 (4)0.000 (4)0.004 (4)0.000 (4)
C10B0.046 (5)0.040 (5)0.036 (4)0.003 (4)0.004 (4)0.005 (4)
C11B0.053 (6)0.037 (5)0.037 (6)0.004 (4)0.005 (4)0.004 (4)
C12B0.043 (5)0.040 (5)0.040 (6)0.005 (4)0.005 (4)0.002 (4)
C13B0.036 (4)0.044 (6)0.047 (5)0.003 (4)0.003 (4)0.003 (4)
C14B0.037 (4)0.042 (5)0.041 (4)0.001 (4)0.004 (4)0.003 (4)
C15B0.037 (5)0.041 (5)0.042 (5)0.005 (4)0.003 (4)0.000 (4)
C16B0.036 (4)0.044 (5)0.044 (5)0.003 (4)0.006 (4)0.007 (4)
C17B0.048 (5)0.044 (5)0.054 (6)0.002 (4)0.009 (4)0.001 (5)
C18B0.042 (5)0.051 (6)0.070 (7)0.008 (4)0.004 (5)0.011 (5)
C19B0.052 (6)0.057 (7)0.048 (7)0.004 (5)0.007 (5)0.005 (5)
C20B0.039 (5)0.052 (6)0.046 (5)0.001 (4)0.002 (4)0.004 (4)
Geometric parameters (Å, º) top
Br1A—C6A1.911 (10)C1B—N1B1.325 (11)
O1A—N1A1.333 (11)C1B—N2B1.366 (11)
N1A—C1A1.321 (11)C1B—C3B1.485 (12)
N1A—C9A1.463 (11)Br1B—C6B1.894 (10)
C1A—N2A1.338 (11)N1B—O1B1.326 (10)
C1A—C3A1.491 (12)N1B—C9B1.433 (11)
N2A—H2A0.8800N2B—H2B0.8800
N2A—C15A1.423 (12)N2B—C15B1.415 (12)
C3A—C4A1.408 (12)C3B—C4B1.373 (14)
C3A—C8A1.398 (14)C3B—C8B1.398 (13)
C4A—H4A0.9500C4B—H4B0.9500
C4A—C5A1.397 (13)C4B—C5B1.396 (13)
C5A—H5A0.9500C5B—H5B0.9500
C5A—C6A1.393 (15)C5B—C6B1.343 (15)
C6A—C7A1.392 (15)C6B—C7B1.413 (15)
C7A—H7A0.9500C7B—H7B0.9500
C7A—C8A1.400 (14)C7B—C8B1.407 (13)
C8A—H8A0.9500C8B—H8B0.9500
C9A—C10A1.383 (12)C9B—C10B1.393 (12)
C9A—C14A1.391 (12)C9B—C14B1.396 (12)
C10A—H10A0.9500C10B—H10B0.9500
C10A—C11A1.350 (13)C10B—C11B1.374 (13)
C11A—H11A0.9500C11B—H11B0.9500
C11A—C12A1.387 (14)C11B—C12B1.392 (14)
C12A—H12A0.9500C12B—H12B0.9500
C12A—C13A1.381 (14)C12B—C13B1.385 (14)
C13A—H13A0.9500C13B—H13B0.9500
C13A—C14A1.394 (13)C13B—C14B1.391 (13)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.361 (13)C15B—C16B1.389 (13)
C15A—C20A1.410 (13)C15B—C20B1.398 (13)
C16A—H16A0.9500C16B—H16B0.9500
C16A—C17A1.391 (13)C16B—C17B1.391 (13)
C17A—H17A0.9500C17B—H17B0.9500
C17A—C18A1.397 (15)C17B—C18B1.393 (15)
C18A—H18A0.9500C18B—H18B0.9500
C18A—C19A1.412 (16)C18B—C19B1.411 (15)
C19A—H19A0.9500C19B—H19B0.9500
C19A—C20A1.384 (14)C19B—C20B1.364 (15)
C20A—H20A0.9500C20B—H20B0.9500
O1A—N1A—C9A114.7 (7)N1B—C1B—N2B115.3 (7)
C1A—N1A—O1A118.6 (7)N1B—C1B—C3B121.2 (8)
C1A—N1A—C9A126.7 (8)N2B—C1B—C3B123.4 (7)
N1A—C1A—N2A116.1 (7)C1B—N1B—O1B119.3 (7)
N1A—C1A—C3A121.9 (7)C1B—N1B—C9B126.0 (8)
N2A—C1A—C3A121.8 (7)O1B—N1B—C9B114.6 (7)
C1A—N2A—H2A114.9C1B—N2B—H2B115.8
C1A—N2A—C15A130.1 (8)C1B—N2B—C15B128.4 (7)
C15A—N2A—H2A114.9C15B—N2B—H2B115.8
C4A—C3A—C1A118.7 (8)C4B—C3B—C1B121.2 (8)
C8A—C3A—C1A119.9 (8)C4B—C3B—C8B119.9 (9)
C8A—C3A—C4A121.2 (9)C8B—C3B—C1B118.8 (8)
C3A—C4A—H4A120.0C3B—C4B—H4B119.7
C5A—C4A—C3A120.1 (9)C3B—C4B—C5B120.6 (9)
C5A—C4A—H4A120.0C5B—C4B—H4B119.7
C4A—C5A—H5A121.3C4B—C5B—H5B120.1
C6A—C5A—C4A117.4 (9)C6B—C5B—C4B119.8 (9)
C6A—C5A—H5A121.3C6B—C5B—H5B120.1
C5A—C6A—Br1A118.2 (8)C5B—C6B—Br1B119.9 (8)
C5A—C6A—C7A123.7 (10)C5B—C6B—C7B122.0 (9)
C7A—C6A—Br1A118.1 (8)C7B—C6B—Br1B118.0 (7)
C6A—C7A—H7A120.7C6B—C7B—H7B121.2
C6A—C7A—C8A118.5 (9)C8B—C7B—C6B117.7 (9)
C8A—C7A—H7A120.7C8B—C7B—H7B121.2
C3A—C8A—C7A119.1 (9)C3B—C8B—C7B119.9 (9)
C3A—C8A—H8A120.4C3B—C8B—H8B120.1
C7A—C8A—H8A120.4C7B—C8B—H8B120.1
C10A—C9A—N1A116.0 (7)C10B—C9B—N1B116.6 (7)
C10A—C9A—C14A121.7 (8)C10B—C9B—C14B120.3 (8)
C14A—C9A—N1A122.2 (8)C14B—C9B—N1B122.9 (8)
C9A—C10A—H10A120.5C9B—C10B—H10B120.1
C11A—C10A—C9A119.0 (8)C11B—C10B—C9B119.7 (8)
C11A—C10A—H10A120.5C11B—C10B—H10B120.1
C10A—C11A—H11A118.9C10B—C11B—H11B119.5
C10A—C11A—C12A122.1 (9)C10B—C11B—C12B120.9 (9)
C12A—C11A—H11A118.9C12B—C11B—H11B119.5
C11A—C12A—H12A120.9C11B—C12B—H12B120.4
C13A—C12A—C11A118.1 (9)C13B—C12B—C11B119.1 (8)
C13A—C12A—H12A120.9C13B—C12B—H12B120.4
C12A—C13A—H13A119.1C12B—C13B—H13B119.5
C12A—C13A—C14A121.8 (9)C12B—C13B—C14B120.9 (9)
C14A—C13A—H13A119.1C14B—C13B—H13B119.5
C9A—C14A—C13A117.2 (8)C9B—C14B—H14B120.5
C9A—C14A—H14A121.4C13B—C14B—C9B118.9 (8)
C13A—C14A—H14A121.4C13B—C14B—H14B120.5
C16A—C15A—N2A118.3 (9)C16B—C15B—N2B116.3 (8)
C16A—C15A—C20A120.5 (9)C16B—C15B—C20B120.0 (9)
C20A—C15A—N2A121.2 (8)C20B—C15B—N2B123.6 (8)
C15A—C16A—H16A119.6C15B—C16B—H16B120.3
C15A—C16A—C17A120.9 (9)C15B—C16B—C17B119.4 (9)
C17A—C16A—H16A119.6C17B—C16B—H16B120.3
C16A—C17A—H17A120.0C16B—C17B—H17B119.5
C16A—C17A—C18A120.1 (9)C16B—C17B—C18B120.9 (9)
C18A—C17A—H17A120.0C18B—C17B—H17B119.5
C17A—C18A—H18A120.6C17B—C18B—H18B120.6
C17A—C18A—C19A118.8 (9)C17B—C18B—C19B118.9 (10)
C19A—C18A—H18A120.6C19B—C18B—H18B120.6
C18A—C19A—H19A119.7C18B—C19B—H19B119.9
C20A—C19A—C18A120.6 (11)C20B—C19B—C18B120.2 (12)
C20A—C19A—H19A119.7C20B—C19B—H19B119.9
C15A—C20A—H20A120.4C15B—C20B—H20B119.7
C19A—C20A—C15A119.1 (10)C19B—C20B—C15B120.7 (10)
C19A—C20A—H20A120.4C19B—C20B—H20B119.7
Br1A—C6A—C7A—C8A176.9 (7)C1B—N1B—C9B—C10B140.5 (9)
O1A—N1A—C1A—N2A3.9 (12)C1B—N1B—C9B—C14B43.6 (13)
O1A—N1A—C1A—C3A179.3 (8)C1B—N2B—C15B—C16B151.1 (8)
O1A—N1A—C9A—C10A37.2 (11)C1B—N2B—C15B—C20B32.5 (14)
O1A—N1A—C9A—C14A139.3 (8)C1B—C3B—C4B—C5B173.1 (8)
N1A—C1A—N2A—C15A175.7 (8)C1B—C3B—C8B—C7B173.5 (8)
N1A—C1A—C3A—C4A109.5 (9)Br1B—C6B—C7B—C8B176.4 (7)
N1A—C1A—C3A—C8A65.9 (11)N1B—C1B—N2B—C15B176.6 (8)
N1A—C9A—C10A—C11A177.1 (8)N1B—C1B—C3B—C4B66.9 (11)
N1A—C9A—C14A—C13A178.4 (8)N1B—C1B—C3B—C8B109.9 (10)
C1A—N1A—C9A—C10A141.1 (9)N1B—C9B—C10B—C11B176.4 (8)
C1A—N1A—C9A—C14A42.3 (13)N1B—C9B—C14B—C13B177.5 (8)
C1A—N2A—C15A—C16A149.9 (9)O1B—N1B—C9B—C10B37.1 (11)
C1A—N2A—C15A—C20A32.7 (14)O1B—N1B—C9B—C14B138.8 (8)
C1A—C3A—C4A—C5A174.1 (8)N2B—C1B—N1B—O1B3.9 (11)
C1A—C3A—C8A—C7A174.2 (8)N2B—C1B—N1B—C9B178.6 (8)
N2A—C1A—C3A—C4A65.7 (11)N2B—C1B—C3B—C4B117.0 (10)
N2A—C1A—C3A—C8A119.0 (9)N2B—C1B—C3B—C8B66.2 (11)
N2A—C15A—C16A—C17A178.3 (8)N2B—C15B—C16B—C17B177.9 (8)
N2A—C15A—C20A—C19A178.0 (9)N2B—C15B—C20B—C19B177.4 (9)
C3A—C1A—N2A—C15A8.9 (14)C3B—C1B—N1B—O1B179.8 (7)
C3A—C4A—C5A—C6A0.3 (13)C3B—C1B—N1B—C9B2.3 (13)
C4A—C3A—C8A—C7A1.0 (13)C3B—C1B—N2B—C15B7.1 (14)
C4A—C5A—C6A—Br1A177.0 (7)C3B—C4B—C5B—C6B0.8 (14)
C4A—C5A—C6A—C7A0.8 (14)C4B—C3B—C8B—C7B3.3 (13)
C5A—C6A—C7A—C8A0.9 (14)C4B—C5B—C6B—Br1B176.7 (7)
C6A—C7A—C8A—C3A0.0 (13)C4B—C5B—C6B—C7B2.4 (14)
C8A—C3A—C4A—C5A1.2 (13)C5B—C6B—C7B—C8B2.7 (14)
C9A—N1A—C1A—N2A177.8 (8)C6B—C7B—C8B—C3B0.2 (13)
C9A—N1A—C1A—C3A2.4 (13)C8B—C3B—C4B—C5B3.7 (13)
C9A—C10A—C11A—C12A1.9 (14)C9B—C10B—C11B—C12B0.4 (15)
C10A—C9A—C14A—C13A2.0 (13)C10B—C9B—C14B—C13B1.7 (13)
C10A—C11A—C12A—C13A2.6 (15)C10B—C11B—C12B—C13B0.2 (16)
C11A—C12A—C13A—C14A0.9 (15)C11B—C12B—C13B—C14B1.6 (15)
C12A—C13A—C14A—C9A1.3 (14)C12B—C13B—C14B—C9B2.4 (14)
C14A—C9A—C10A—C11A0.5 (13)C14B—C9B—C10B—C11B0.3 (13)
C15A—C16A—C17A—C18A0.6 (14)C15B—C16B—C17B—C18B0.4 (13)
C16A—C15A—C20A—C19A0.6 (14)C16B—C15B—C20B—C19B1.1 (14)
C16A—C17A—C18A—C19A2.1 (14)C16B—C17B—C18B—C19B0.8 (14)
C17A—C18A—C19A—C20A2.2 (15)C17B—C18B—C19B—C20B1.0 (15)
C18A—C19A—C20A—C15A0.9 (15)C18B—C19B—C20B—C15B0.1 (15)
C20A—C15A—C16A—C17A0.8 (14)C20B—C15B—C16B—C17B1.3 (13)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg5 and Cg6 are the centroids of the C9A–C14A, C15A–C20A, C9B–C14B and C15B–C20B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O1B0.882.203.005 (11)152
C10A—H10A···O1Bi0.952.323.249 (12)167
C16A—H16A···O1B0.952.413.191 (12)139
N2B—H2B···O1A0.882.192.999 (10)152
C10B—H10B···O1Aii0.952.283.214 (12)167
C16B—H16B···O1A0.952.403.188 (12)140
C4A—H4A···Cg2ii0.952.773.614 (10)149
C4B—H4B···Cg6ii0.952.643.534 (10)157
C8A—H8A···Cg3i0.952.713.591 (10)154
C8B—H8B···Cg5i0.952.853.688 (10)148
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

We gratefully acknowledge all the personnel from the XRD facilities of Université de Montréal. Professor Frank Schaper is acknowledged for the crystallographic course and training of AS.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (NSERC); Centre in Green Chemistry and Catalysis (CGCC); Quebec Centre for Advanced Materials (CQMF); Université de Montréal ESP excellence scholarship (scholarship to A. Saha).

References

First citationBruker (2020). SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCibian, M., Ferreira, J. G. & Hanan, G. S. (2009). Acta Cryst. E65, o2820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCibian, M., Shahalizad, A., Souissi, F., Castro, J., Ferreira, J. G., Chartrand, D., Nunzi, J.-M. & Hanan, G. S. (2018). Eur. J. Inorg. Chem. 2018, 4322–4330.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilgueiras de Athayde-Filho, P., Miller, J., Mayall Simas, A., Freitas Lira, B., Alixandre de Souza Luis, J. & Zuckerman-Schpector, J. (2003). Synthesis, 5, 685–690.  Google Scholar
First citationKratzert, D. (2024). FinalCIF. https://dkratzert.de/finalcif.html.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPatel, K. S., Deb, K. K. & Mishra, R. K. (1979). Bull. Chem. Soc. Jpn, 52, 595–597.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVerma, A. N., Gholse, S. B. & Sangal, S. P. (1995). J. Indian Chem. Soc. 72, 685–688.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146