organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 2-[(Z)-5-methyl-2-oxoindolin-3-yl­­idene]hydrazinecarbodi­thio­ate

crossmark logo

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: abdfatah@uitm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 25 September 2024; accepted 1 October 2024; online 8 October 2024)

The title di­thio­carbazate imine, C11H11N3OS2, was obtained from the condensation reaction of S-methyl­dithio­carbazate (SMDTC) and 5-methyl­isatin. It shows a Z configuration about the imine C=N bond, which is associated with an intra­molecular N—H⋯O hydrogen bond that closes an S(6) ring. In the crystal, inversion dimers linked by pairwise N—H⋯O hydrogen bonds generate R22(8) loops. The extended structure features C—H⋯S contacts as well as reciprocal carbon­yl–carbonyl (C=O⋯C=O) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In medicinal chemistry, isatin (1H-indole-2,3-dione, C8H5NO2) and its derivatives represent an important class of heterocyclic compounds with potential pharmacological properties (Shu et al., 2024[Shu, V. A., Eni, D. B. & Ntie-Kang, F. (2024). Mol. Divers. In the press, https://doi.org/10.1007/s11030-024-10883-z.]). Taking advantage of the versatile reactivity of the isatin nucleus, a huge library of isatin derivatives with various applications is now available. Most of these derivatives have been obtained by utilizing either the high reactivity of its 3-carbonyl group or the nucleophilic nature of its NH group. The NH group can undergo N-acyl­ation, N-aryl­ation or N-alkyl­ation, whereas the C3 carbonyl group can be utilized in the synthesis of hydrazone or imine derivatives as well as oxindoles and spiro­cyclic compounds (Nath et al., 2020[Nath, R., Pathania, S., Grover, G. & Akhtar, M. J. (2020). J. Mol. Struct. 1222, 128900.]). These derivatives are reported to possess several bio­logical activities and find applications in the field of crystal engineering, supra­molecular chemistry and materials science (Mehreen et al., 2022a[Mehreen, S., Ullah, A., Nadeem, H., Dege, N. & Naseer, M. M. (2022a). RSC Adv. 12, 1788-1796.]; Ahmed et al., 2019[Ahmed, M. N., Arif, M., Jabeen, F., Khan, H. A., Yasin, K. A., Tahir, M. N., Franconetti, A. & Frontera, A. (2019). New J. Chem. 43, 8122-8131.]).

Recently, chemists have recognized both one-sided and reciprocal carbon­yl–carbonyl inter­actions as non-covalent inter­actions of significant inter­est due to their ability to influence the geometries of small mol­ecules and affect the three dimensional structures of peptides, peptoids, proteins and polyesters (Rahim et al., 2017[Rahim, A., Saha, P., Jha, K. K., Sukumar, N. & Sarma, B. K. (2017). Nat. Commun. 8, 78.]). Very recently, the use of isatin-derived compounds as potent α-glucosidase inhibitors in managing diabetes has been reported, highlighting the role of C=O⋯C=O inter­actions in inhibiting α-glucosidase and controlling postprandial hyperglycemia (Mehreen et al., 2022b[Mehreen, S., Zia, M., Khan, A., Hussain, J., Ullah, S., Anwar, M. U., Al-Harrasi, A. & Naseer, M. M. (2022b). RSC Adv. 12, 20919-20928.]). As a continuation of our research inter­ests in isatin derivatives, we now report the synthesis and crystal structure of the title compound, C11H11N3OS2.

The asymmetric unit of the title compound (Fig. 1[link]) comprises one mol­ecule and crystallizes in the monoclinic space group P21/c. The methyl hydrazinecarbodi­thio­ate chain connects to the nine-membered 5-methyisatin ring at C3 and adopts a near planar geometry (r.m.s. deviation from planarity = 0.033 Å). The essentially planar conformation of the mol­ecule is associated with the formation of an intra­molecular N4—H4⋯O2 hydrogen bond (Table 1[link]), which closes an S(6) loop. In the solid state, the compound exists in its thione tautomeric form with the di­thio­carbazate fragment adopting a Z conformation about the C=N bond with respect to the 5-methyl­isatin moiety, while the S-methyl group adopts a syn conformation relative to the azomethine nitro­gen atom. Otherwise, the bond lengths and angles in the title compound may be regarded as normal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O2 0.98 (2) 2.01 (6) 2.754 (6) 130 (6)
N1—H1⋯O2i 0.98 (2) 1.85 (2) 2.825 (6) 171 (7)
Symmetry code: (i) [-x+2, -y+1, -z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

In the crystal, the mol­ecules of the title compound form inversion dimers through pairwise N1—H1⋯O2 hydrogen bonds (Table 1[link]) in the common R22(8) motif. There are additional weak, non-classical C7—H7⋯S11 hydrogen bonds, which link mol­ecules into C(10) chains propagating along [010]. The combination of the chains and inversion dimers forms corrugated sheets lying in the (102) plane (Fig. 2[link]). The aforementioned sheets stack by way of reciprocal carbon­yl–carbonyl inter­actions [C2⋯O2 = 3.166 (6) Å, C=O⋯C = 75.1 (3)°, O=C⋯O = 104.8 (3)°] (Fig. 3[link]). The contact observed differs from the ideal motif-II type inter­action (Sahariah & Sarma, 2019[Sahariah, B. & Sarma, B. K. (2019). Chem. Sci. 10, 909-917.]) with O2 lying over the adjacent pyrrolone ring (Fig. 4[link]).

[Figure 2]
Figure 2
View of the N—H⋯O and C—H⋯S hydrogen bonds generating R22(8) dimers (centre) and C(10) chains (left to right), which combine to form corrugated (102) sheets.
[Figure 3]
Figure 3
View showing the stacking of the corrugated sheets supported by reciprocal carbon­yl–carbonyl inter­actions (green).
[Figure 4]
Figure 4
Offset geometry of the carbon­yl–carbonyl inter­action showing how O2 is positioned over the adjacent pyrrolone ring.

Synthesis and crystallization

The di­thio­carbazate precursor (SMDTC) was prepared by the literature method (Das & Livingstone, 1976[Das, M. & Livingstone, S. E. (1976). Inorg. Chim. Acta, 19, 5-10.]). The title compound was prepared by adding 5-methyl­isatin (1.61 g, 10.0 mmol, 1.0 eq) dissolved in hot ethanol (20 ml) to a solution of SMDTC (1.22 g, 10.0 mmol, 1.0 eq) in hot ethanol (35 ml). The mixture was heated (80°C) with continuous stirring for 15 min and later allowed to stand for 20 min at room temperature until a precipitate formed, which was then filtered and dried over silica gel, yielding orange needles of the title compound on recrystallization form ethanol solution (yield: 2.12 g, 80%). m.p. 236–237°C; 1H NMR (400 MHz, d6-DMSO) δ: (p.p.m): 2.31 (s, 3H), 2.62 (s, 3H), 6.84 (d, J = 7.96 Hz, 1H), 7.22 (d, J = 7.96 Hz, 1H), 7.36 (s, 1H), 11.27 (s, 1H), 14.00 (s, 1H); HRMS m/z (ESI+), found: [M+H]+ 266.0417, C11H12N3OS2 requires [M+H]+ 266.0422.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two-component twin with component 2 rotated by 2.05° around [001] (reciprocal) or [105] (direct), and a refined twin fraction of 0.128 (6).

Table 2
Experimental details

Crystal data
Chemical formula C11H11N3OS2
Mr 265.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 125
a, b, c (Å) 4.9897 (4), 21.8014 (19), 11.3394 (9)
β (°) 92.995 (8)
V3) 1231.83 (18)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.82
Crystal size (mm) 0.23 × 0.01 × 0.01
 
Data collection
Diffractometer Rigaku XtaLAB P200K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.631, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23143, 2554, 1548
Rint 0.171
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.185, 1.09
No. of reflections 2554
No. of parameters 165
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.63
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Methyl 2-[(Z)-5-methyl-2-oxoindolin-3-ylidene]hydrazinecarbodithioate top
Crystal data top
C11H11N3OS2F(000) = 552
Mr = 265.35Dx = 1.431 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 4.9897 (4) ÅCell parameters from 2965 reflections
b = 21.8014 (19) Åθ = 4.0–68.3°
c = 11.3394 (9) ŵ = 3.82 mm1
β = 92.995 (8)°T = 125 K
V = 1231.83 (18) Å3Needle, orange
Z = 40.23 × 0.01 × 0.01 mm
Data collection top
Rigaku XtaLAB P200K
diffractometer
2554 independent reflections
Radiation source: Rotating Anode, Rigaku MM-007HF1548 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.171
Detector resolution: 5.8140 pixels mm-1θmax = 76.3°, θmin = 4.1°
shutterless scansh = 66
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 2727
Tmin = 0.631, Tmax = 1.000l = 014
23143 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.079H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.185 w = 1/[σ2(Fo2) + 4.5988P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2554 reflectionsΔρmax = 0.46 e Å3
165 parametersΔρmin = 0.63 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin using an HKLF5 file generated by TWINROTMAT running in PLATON (Spek, 2009), with twin law [-1 0 0 0 -1 0 0.237 0 1]. N—H hydrogen atoms located from Fmap and refined isotropically with appropriate distance restraints.

The N-bound H atoms were located in a difference map and refined isotropically with a distance restraint. The C-bound H atoms were located geometrically (phenyl C—H =0.95 Å, methyl C—H = 0.98 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(phenyl C) or 1.5Ueq(methyl C) was applied in all cases.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.1241 (3)0.27752 (7)0.01332 (14)0.0469 (4)
S120.0419 (3)0.32382 (7)0.22526 (13)0.0413 (4)
O20.7445 (7)0.43673 (16)0.0099 (3)0.0370 (9)
N10.8229 (9)0.5243 (2)0.1228 (4)0.0368 (11)
H10.962 (11)0.542 (3)0.075 (6)0.09 (3)*
N30.3151 (9)0.4171 (2)0.1850 (4)0.0333 (10)
N40.3199 (9)0.3741 (2)0.0983 (4)0.0348 (10)
H40.440 (12)0.378 (3)0.033 (5)0.09 (3)*
C20.6980 (10)0.4710 (2)0.0933 (5)0.0332 (12)
C30.4865 (10)0.4614 (2)0.1812 (5)0.0325 (12)
C40.5034 (10)0.5136 (2)0.2617 (5)0.0330 (12)
C50.3648 (11)0.5306 (2)0.3595 (5)0.0364 (12)
H50.2271480.5051070.3874260.044*
C60.4315 (12)0.5858 (3)0.4162 (5)0.0410 (14)
C70.6350 (12)0.6224 (3)0.3727 (6)0.0460 (15)
H70.6789150.6599760.4115730.055*
C80.7741 (12)0.6058 (3)0.2752 (5)0.0430 (14)
H80.9096750.6314880.2461800.052*
C90.7089 (11)0.5509 (2)0.2222 (5)0.0354 (12)
C100.2876 (13)0.6062 (3)0.5235 (5)0.0503 (16)
H10A0.1950410.6450940.5062300.075*
H10B0.4181460.6118210.5901870.075*
H10C0.1562070.5749840.5435050.075*
C110.1427 (11)0.3261 (3)0.0983 (5)0.0363 (12)
C120.2434 (12)0.2564 (3)0.1973 (6)0.0517 (16)
H12A0.3445670.2607500.1213660.078*
H12B0.3687010.2514750.2604090.078*
H12C0.1268020.2203140.1950530.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0550 (9)0.0417 (8)0.0435 (8)0.0003 (7)0.0028 (7)0.0055 (7)
S120.0400 (8)0.0386 (8)0.0453 (8)0.0014 (6)0.0031 (6)0.0030 (7)
O20.035 (2)0.038 (2)0.037 (2)0.0033 (17)0.0029 (17)0.0032 (17)
N10.033 (2)0.035 (2)0.043 (3)0.002 (2)0.002 (2)0.003 (2)
N30.034 (2)0.033 (2)0.033 (2)0.004 (2)0.0005 (19)0.0010 (19)
N40.035 (2)0.034 (2)0.036 (3)0.001 (2)0.002 (2)0.001 (2)
C20.031 (3)0.035 (3)0.034 (3)0.008 (2)0.000 (2)0.009 (2)
C30.031 (3)0.031 (3)0.035 (3)0.005 (2)0.004 (2)0.005 (2)
C40.030 (3)0.031 (3)0.037 (3)0.001 (2)0.004 (2)0.006 (2)
C50.039 (3)0.038 (3)0.033 (3)0.003 (2)0.004 (2)0.006 (2)
C60.044 (3)0.034 (3)0.045 (3)0.009 (3)0.004 (3)0.003 (3)
C70.044 (3)0.039 (3)0.055 (4)0.008 (3)0.009 (3)0.008 (3)
C80.037 (3)0.037 (3)0.055 (4)0.001 (3)0.004 (3)0.002 (3)
C90.032 (3)0.037 (3)0.036 (3)0.005 (2)0.003 (2)0.004 (2)
C100.063 (4)0.045 (3)0.043 (3)0.010 (3)0.001 (3)0.005 (3)
C110.037 (3)0.034 (3)0.038 (3)0.003 (2)0.001 (2)0.006 (2)
C120.045 (4)0.036 (3)0.074 (5)0.002 (3)0.001 (3)0.010 (3)
Geometric parameters (Å, º) top
S11—C111.649 (6)C5—H50.9500
S12—C111.750 (6)C5—C61.396 (8)
S12—C121.799 (6)C6—C71.402 (8)
O2—C21.237 (6)C6—C101.511 (8)
N1—H10.98 (2)C7—H70.9500
N1—C21.354 (7)C7—C81.384 (8)
N1—C91.412 (7)C8—H80.9500
N3—N41.360 (6)C8—C91.372 (8)
N3—C31.292 (7)C10—H10A0.9800
N4—H40.98 (2)C10—H10B0.9800
N4—C111.370 (7)C10—H10C0.9800
C2—C31.503 (7)C12—H12A0.9800
C3—C41.460 (7)C12—H12B0.9800
C4—C51.387 (7)C12—H12C0.9800
C4—C91.400 (7)
C11—S12—C12101.1 (3)C8—C7—C6122.3 (6)
C2—N1—H1122 (5)C8—C7—H7118.8
C2—N1—C9110.5 (4)C7—C8—H8121.3
C9—N1—H1128 (5)C9—C8—C7117.4 (5)
C3—N3—N4117.0 (4)C9—C8—H8121.3
N3—N4—H4121 (4)C4—C9—N1110.5 (5)
N3—N4—C11119.3 (4)C8—C9—N1127.7 (5)
C11—N4—H4119 (4)C8—C9—C4121.8 (5)
O2—C2—N1127.3 (5)C6—C10—H10A109.5
O2—C2—C3126.1 (5)C6—C10—H10B109.5
N1—C2—C3106.6 (5)C6—C10—H10C109.5
N3—C3—C2128.0 (5)H10A—C10—H10B109.5
N3—C3—C4125.4 (5)H10A—C10—H10C109.5
C4—C3—C2106.6 (4)H10B—C10—H10C109.5
C5—C4—C3133.9 (5)S11—C11—S12127.0 (3)
C5—C4—C9120.4 (5)N4—C11—S11120.0 (4)
C9—C4—C3105.8 (5)N4—C11—S12112.9 (4)
C4—C5—H5120.6S12—C12—H12A109.5
C4—C5—C6118.7 (5)S12—C12—H12B109.5
C6—C5—H5120.6S12—C12—H12C109.5
C5—C6—C7119.3 (5)H12A—C12—H12B109.5
C5—C6—C10120.8 (5)H12A—C12—H12C109.5
C7—C6—C10119.9 (5)H12B—C12—H12C109.5
C6—C7—H7118.8
O2—C2—C3—N31.0 (8)C3—C4—C9—N10.8 (6)
O2—C2—C3—C4179.2 (5)C3—C4—C9—C8177.6 (5)
N1—C2—C3—N3178.2 (5)C4—C5—C6—C70.2 (8)
N1—C2—C3—C40.1 (5)C4—C5—C6—C10179.7 (5)
N3—N4—C11—S11173.7 (4)C5—C4—C9—N1179.3 (5)
N3—N4—C11—S127.1 (6)C5—C4—C9—C82.3 (8)
N3—C3—C4—C52.1 (9)C5—C6—C7—C80.2 (9)
N3—C3—C4—C9177.7 (5)C6—C7—C8—C91.0 (9)
N4—N3—C3—C21.5 (7)C7—C8—C9—N1179.7 (5)
N4—N3—C3—C4176.3 (5)C7—C8—C9—C42.2 (8)
C2—N1—C9—C40.9 (6)C9—N1—C2—O2178.6 (5)
C2—N1—C9—C8177.3 (5)C9—N1—C2—C30.6 (5)
C2—C3—C4—C5179.7 (5)C9—C4—C5—C61.0 (8)
C2—C3—C4—C90.5 (5)C10—C6—C7—C8179.7 (5)
C3—N3—N4—C11179.9 (5)C12—S12—C11—S110.1 (5)
C3—C4—C5—C6178.8 (5)C12—S12—C11—N4179.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O20.98 (2)2.01 (6)2.754 (6)130 (6)
N1—H1···O2i0.98 (2)1.85 (2)2.825 (6)171 (7)
Symmetry code: (i) x+2, y+1, z.
 

Funding information

The authors acknowledge Universiti Teknologi MARA for financial support.

References

First citationAhmed, M. N., Arif, M., Jabeen, F., Khan, H. A., Yasin, K. A., Tahir, M. N., Franconetti, A. & Frontera, A. (2019). New J. Chem. 43, 8122–8131.  Web of Science CSD CrossRef CAS Google Scholar
First citationDas, M. & Livingstone, S. E. (1976). Inorg. Chim. Acta, 19, 5–10.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMehreen, S., Ullah, A., Nadeem, H., Dege, N. & Naseer, M. M. (2022a). RSC Adv. 12, 1788–1796.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMehreen, S., Zia, M., Khan, A., Hussain, J., Ullah, S., Anwar, M. U., Al-Harrasi, A. & Naseer, M. M. (2022b). RSC Adv. 12, 20919–20928.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNath, R., Pathania, S., Grover, G. & Akhtar, M. J. (2020). J. Mol. Struct. 1222, 128900.  Web of Science CrossRef Google Scholar
First citationRahim, A., Saha, P., Jha, K. K., Sukumar, N. & Sarma, B. K. (2017). Nat. Commun. 8, 78.  Web of Science CSD CrossRef PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSahariah, B. & Sarma, B. K. (2019). Chem. Sci. 10, 909–917.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShu, V. A., Eni, D. B. & Ntie-Kang, F. (2024). Mol. Divers. In the press, https://doi.org/10.1007/s11030-024-10883-z.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146