organic compounds
Methyl 2-[(Z)-5-methyl-2-oxoindolin-3-ylidene]hydrazinecarbodithioate
aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: abdfatah@uitm.edu.my
The title dithiocarbazate imine, C11H11N3OS2, was obtained from the condensation reaction of S-methyldithiocarbazate (SMDTC) and 5-methylisatin. It shows a Z configuration about the imine C=N bond, which is associated with an intramolecular N—H⋯O hydrogen bond that closes an S(6) ring. In the crystal, inversion dimers linked by pairwise N—H⋯O hydrogen bonds generate R22(8) loops. The extended structure features C—H⋯S contacts as well as reciprocal carbonyl–carbonyl (C=O⋯C=O) interactions.
CCDC reference: 2388258
Structure description
In medicinal chemistry, isatin (1H-indole-2,3-dione, C8H5NO2) and its derivatives represent an important class of with potential pharmacological properties (Shu et al., 2024). Taking advantage of the versatile reactivity of the isatin nucleus, a huge library of isatin derivatives with various applications is now available. Most of these derivatives have been obtained by utilizing either the high reactivity of its 3-carbonyl group or the nucleophilic nature of its NH group. The NH group can undergo N-acylation, N-arylation or N-alkylation, whereas the C3 carbonyl group can be utilized in the synthesis of hydrazone or imine derivatives as well as oxindoles and spirocyclic compounds (Nath et al., 2020). These derivatives are reported to possess several biological activities and find applications in the field of crystal engineering, supramolecular chemistry and materials science (Mehreen et al., 2022a; Ahmed et al., 2019).
Recently, chemists have recognized both one-sided and reciprocal carbonyl–carbonyl interactions as non-covalent interactions of significant interest due to their ability to influence the geometries of small molecules and affect the three dimensional structures of et al., 2017). Very recently, the use of isatin-derived compounds as potent α-glucosidase inhibitors in managing diabetes has been reported, highlighting the role of C=O⋯C=O interactions in inhibiting α-glucosidase and controlling postprandial hyperglycemia (Mehreen et al., 2022b). As a continuation of our research interests in isatin derivatives, we now report the synthesis and of the title compound, C11H11N3OS2.
peptoids, proteins and polyesters (RahimThe ) comprises one molecule and crystallizes in the monoclinic P21/c. The methyl hydrazinecarbodithioate chain connects to the nine-membered 5-methyisatin ring at C3 and adopts a near planar geometry (r.m.s. deviation from planarity = 0.033 Å). The essentially planar conformation of the molecule is associated with the formation of an intramolecular N4—H4⋯O2 hydrogen bond (Table 1), which closes an S(6) loop. In the solid state, the compound exists in its thione tautomeric form with the dithiocarbazate fragment adopting a Z conformation about the C=N bond with respect to the 5-methylisatin moiety, while the S-methyl group adopts a syn conformation relative to the azomethine nitrogen atom. Otherwise, the bond lengths and angles in the title compound may be regarded as normal.
of the title compound (Fig. 1
|
In the crystal, the molecules of the title compound form inversion dimers through pairwise N1—H1⋯O2 hydrogen bonds (Table 1) in the common R22(8) motif. There are additional weak, non-classical C7—H7⋯S11 hydrogen bonds, which link molecules into C(10) chains propagating along [010]. The combination of the chains and inversion dimers forms corrugated sheets lying in the (102) plane (Fig. 2). The aforementioned sheets stack by way of reciprocal carbonyl–carbonyl interactions [C2⋯O2 = 3.166 (6) Å, C=O⋯C = 75.1 (3)°, O=C⋯O = 104.8 (3)°] (Fig. 3). The contact observed differs from the ideal motif-II type interaction (Sahariah & Sarma, 2019) with O2 lying over the adjacent pyrrolone ring (Fig. 4).
Synthesis and crystallization
The dithiocarbazate precursor (SMDTC) was prepared by the literature method (Das & Livingstone, 1976). The title compound was prepared by adding 5-methylisatin (1.61 g, 10.0 mmol, 1.0 eq) dissolved in hot ethanol (20 ml) to a solution of SMDTC (1.22 g, 10.0 mmol, 1.0 eq) in hot ethanol (35 ml). The mixture was heated (80°C) with continuous stirring for 15 min and later allowed to stand for 20 min at room temperature until a precipitate formed, which was then filtered and dried over silica gel, yielding orange needles of the title compound on recrystallization form ethanol solution (yield: 2.12 g, 80%). m.p. 236–237°C; 1H NMR (400 MHz, d6-DMSO) δ: (p.p.m): 2.31 (s, 3H), 2.62 (s, 3H), 6.84 (d, J = 7.96 Hz, 1H), 7.22 (d, J = 7.96 Hz, 1H), 7.36 (s, 1H), 11.27 (s, 1H), 14.00 (s, 1H); HRMS m/z (ESI+), found: [M+H]+ 266.0417, C11H12N3OS2 requires [M+H]+ 266.0422.
Refinement
Crystal data, data collection and structure . The structure was refined as a two-component twin with component 2 rotated by 2.05° around [001] (reciprocal) or [105] (direct), and a refined twin fraction of 0.128 (6).
details are summarized in Table 2Structural data
CCDC reference: 2388258
https://doi.org/10.1107/S2414314624009672/hb4486sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624009672/hb4486Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624009672/hb4486Isup3.cml
C11H11N3OS2 | F(000) = 552 |
Mr = 265.35 | Dx = 1.431 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 4.9897 (4) Å | Cell parameters from 2965 reflections |
b = 21.8014 (19) Å | θ = 4.0–68.3° |
c = 11.3394 (9) Å | µ = 3.82 mm−1 |
β = 92.995 (8)° | T = 125 K |
V = 1231.83 (18) Å3 | Needle, orange |
Z = 4 | 0.23 × 0.01 × 0.01 mm |
Rigaku XtaLAB P200K diffractometer | 2554 independent reflections |
Radiation source: Rotating Anode, Rigaku MM-007HF | 1548 reflections with I > 2σ(I) |
Rigaku Osmic Confocal Optical System monochromator | Rint = 0.171 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 76.3°, θmin = 4.1° |
shutterless scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −27→27 |
Tmin = 0.631, Tmax = 1.000 | l = 0→14 |
23143 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.185 | w = 1/[σ2(Fo2) + 4.5988P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2554 reflections | Δρmax = 0.46 e Å−3 |
165 parameters | Δρmin = −0.63 e Å−3 |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin using an HKLF5 file generated by TWINROTMAT running in PLATON (Spek, 2009), with twin law [-1 0 0 0 -1 0 0.237 0 1]. N—H hydrogen atoms located from Fmap and refined isotropically with appropriate distance restraints. The N-bound H atoms were located in a difference map and refined isotropically with a distance restraint. The C-bound H atoms were located geometrically (phenyl C—H =0.95 Å, methyl C—H = 0.98 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(phenyl C) or 1.5Ueq(methyl C) was applied in all cases. |
x | y | z | Uiso*/Ueq | ||
S11 | 0.1241 (3) | 0.27752 (7) | −0.01332 (14) | 0.0469 (4) | |
S12 | −0.0419 (3) | 0.32382 (7) | 0.22526 (13) | 0.0413 (4) | |
O2 | 0.7445 (7) | 0.43673 (16) | 0.0099 (3) | 0.0370 (9) | |
N1 | 0.8229 (9) | 0.5243 (2) | 0.1228 (4) | 0.0368 (11) | |
H1 | 0.962 (11) | 0.542 (3) | 0.075 (6) | 0.09 (3)* | |
N3 | 0.3151 (9) | 0.4171 (2) | 0.1850 (4) | 0.0333 (10) | |
N4 | 0.3199 (9) | 0.3741 (2) | 0.0983 (4) | 0.0348 (10) | |
H4 | 0.440 (12) | 0.378 (3) | 0.033 (5) | 0.09 (3)* | |
C2 | 0.6980 (10) | 0.4710 (2) | 0.0933 (5) | 0.0332 (12) | |
C3 | 0.4865 (10) | 0.4614 (2) | 0.1812 (5) | 0.0325 (12) | |
C4 | 0.5034 (10) | 0.5136 (2) | 0.2617 (5) | 0.0330 (12) | |
C5 | 0.3648 (11) | 0.5306 (2) | 0.3595 (5) | 0.0364 (12) | |
H5 | 0.227148 | 0.505107 | 0.387426 | 0.044* | |
C6 | 0.4315 (12) | 0.5858 (3) | 0.4162 (5) | 0.0410 (14) | |
C7 | 0.6350 (12) | 0.6224 (3) | 0.3727 (6) | 0.0460 (15) | |
H7 | 0.678915 | 0.659976 | 0.411573 | 0.055* | |
C8 | 0.7741 (12) | 0.6058 (3) | 0.2752 (5) | 0.0430 (14) | |
H8 | 0.909675 | 0.631488 | 0.246180 | 0.052* | |
C9 | 0.7089 (11) | 0.5509 (2) | 0.2222 (5) | 0.0354 (12) | |
C10 | 0.2876 (13) | 0.6062 (3) | 0.5235 (5) | 0.0503 (16) | |
H10A | 0.195041 | 0.645094 | 0.506230 | 0.075* | |
H10B | 0.418146 | 0.611821 | 0.590187 | 0.075* | |
H10C | 0.156207 | 0.574984 | 0.543505 | 0.075* | |
C11 | 0.1427 (11) | 0.3261 (3) | 0.0983 (5) | 0.0363 (12) | |
C12 | −0.2434 (12) | 0.2564 (3) | 0.1973 (6) | 0.0517 (16) | |
H12A | −0.344567 | 0.260750 | 0.121366 | 0.078* | |
H12B | −0.368701 | 0.251475 | 0.260409 | 0.078* | |
H12C | −0.126802 | 0.220314 | 0.195053 | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S11 | 0.0550 (9) | 0.0417 (8) | 0.0435 (8) | 0.0003 (7) | −0.0028 (7) | −0.0055 (7) |
S12 | 0.0400 (8) | 0.0386 (8) | 0.0453 (8) | −0.0014 (6) | 0.0031 (6) | 0.0030 (7) |
O2 | 0.035 (2) | 0.038 (2) | 0.037 (2) | 0.0033 (17) | 0.0029 (17) | 0.0032 (17) |
N1 | 0.033 (2) | 0.035 (2) | 0.043 (3) | 0.002 (2) | 0.002 (2) | 0.003 (2) |
N3 | 0.034 (2) | 0.033 (2) | 0.033 (2) | 0.004 (2) | 0.0005 (19) | 0.0010 (19) |
N4 | 0.035 (2) | 0.034 (2) | 0.036 (3) | 0.001 (2) | 0.002 (2) | 0.001 (2) |
C2 | 0.031 (3) | 0.035 (3) | 0.034 (3) | 0.008 (2) | 0.000 (2) | 0.009 (2) |
C3 | 0.031 (3) | 0.031 (3) | 0.035 (3) | 0.005 (2) | −0.004 (2) | 0.005 (2) |
C4 | 0.030 (3) | 0.031 (3) | 0.037 (3) | 0.001 (2) | −0.004 (2) | 0.006 (2) |
C5 | 0.039 (3) | 0.038 (3) | 0.033 (3) | 0.003 (2) | 0.004 (2) | 0.006 (2) |
C6 | 0.044 (3) | 0.034 (3) | 0.045 (3) | 0.009 (3) | −0.004 (3) | −0.003 (3) |
C7 | 0.044 (3) | 0.039 (3) | 0.055 (4) | 0.008 (3) | −0.009 (3) | −0.008 (3) |
C8 | 0.037 (3) | 0.037 (3) | 0.055 (4) | −0.001 (3) | 0.004 (3) | −0.002 (3) |
C9 | 0.032 (3) | 0.037 (3) | 0.036 (3) | 0.005 (2) | −0.003 (2) | 0.004 (2) |
C10 | 0.063 (4) | 0.045 (3) | 0.043 (3) | 0.010 (3) | 0.001 (3) | −0.005 (3) |
C11 | 0.037 (3) | 0.034 (3) | 0.038 (3) | 0.003 (2) | 0.001 (2) | 0.006 (2) |
C12 | 0.045 (4) | 0.036 (3) | 0.074 (5) | −0.002 (3) | −0.001 (3) | 0.010 (3) |
S11—C11 | 1.649 (6) | C5—H5 | 0.9500 |
S12—C11 | 1.750 (6) | C5—C6 | 1.396 (8) |
S12—C12 | 1.799 (6) | C6—C7 | 1.402 (8) |
O2—C2 | 1.237 (6) | C6—C10 | 1.511 (8) |
N1—H1 | 0.98 (2) | C7—H7 | 0.9500 |
N1—C2 | 1.354 (7) | C7—C8 | 1.384 (8) |
N1—C9 | 1.412 (7) | C8—H8 | 0.9500 |
N3—N4 | 1.360 (6) | C8—C9 | 1.372 (8) |
N3—C3 | 1.292 (7) | C10—H10A | 0.9800 |
N4—H4 | 0.98 (2) | C10—H10B | 0.9800 |
N4—C11 | 1.370 (7) | C10—H10C | 0.9800 |
C2—C3 | 1.503 (7) | C12—H12A | 0.9800 |
C3—C4 | 1.460 (7) | C12—H12B | 0.9800 |
C4—C5 | 1.387 (7) | C12—H12C | 0.9800 |
C4—C9 | 1.400 (7) | ||
C11—S12—C12 | 101.1 (3) | C8—C7—C6 | 122.3 (6) |
C2—N1—H1 | 122 (5) | C8—C7—H7 | 118.8 |
C2—N1—C9 | 110.5 (4) | C7—C8—H8 | 121.3 |
C9—N1—H1 | 128 (5) | C9—C8—C7 | 117.4 (5) |
C3—N3—N4 | 117.0 (4) | C9—C8—H8 | 121.3 |
N3—N4—H4 | 121 (4) | C4—C9—N1 | 110.5 (5) |
N3—N4—C11 | 119.3 (4) | C8—C9—N1 | 127.7 (5) |
C11—N4—H4 | 119 (4) | C8—C9—C4 | 121.8 (5) |
O2—C2—N1 | 127.3 (5) | C6—C10—H10A | 109.5 |
O2—C2—C3 | 126.1 (5) | C6—C10—H10B | 109.5 |
N1—C2—C3 | 106.6 (5) | C6—C10—H10C | 109.5 |
N3—C3—C2 | 128.0 (5) | H10A—C10—H10B | 109.5 |
N3—C3—C4 | 125.4 (5) | H10A—C10—H10C | 109.5 |
C4—C3—C2 | 106.6 (4) | H10B—C10—H10C | 109.5 |
C5—C4—C3 | 133.9 (5) | S11—C11—S12 | 127.0 (3) |
C5—C4—C9 | 120.4 (5) | N4—C11—S11 | 120.0 (4) |
C9—C4—C3 | 105.8 (5) | N4—C11—S12 | 112.9 (4) |
C4—C5—H5 | 120.6 | S12—C12—H12A | 109.5 |
C4—C5—C6 | 118.7 (5) | S12—C12—H12B | 109.5 |
C6—C5—H5 | 120.6 | S12—C12—H12C | 109.5 |
C5—C6—C7 | 119.3 (5) | H12A—C12—H12B | 109.5 |
C5—C6—C10 | 120.8 (5) | H12A—C12—H12C | 109.5 |
C7—C6—C10 | 119.9 (5) | H12B—C12—H12C | 109.5 |
C6—C7—H7 | 118.8 | ||
O2—C2—C3—N3 | −1.0 (8) | C3—C4—C9—N1 | −0.8 (6) |
O2—C2—C3—C4 | −179.2 (5) | C3—C4—C9—C8 | 177.6 (5) |
N1—C2—C3—N3 | 178.2 (5) | C4—C5—C6—C7 | 0.2 (8) |
N1—C2—C3—C4 | 0.1 (5) | C4—C5—C6—C10 | −179.7 (5) |
N3—N4—C11—S11 | 173.7 (4) | C5—C4—C9—N1 | 179.3 (5) |
N3—N4—C11—S12 | −7.1 (6) | C5—C4—C9—C8 | −2.3 (8) |
N3—C3—C4—C5 | 2.1 (9) | C5—C6—C7—C8 | −0.2 (9) |
N3—C3—C4—C9 | −177.7 (5) | C6—C7—C8—C9 | −1.0 (9) |
N4—N3—C3—C2 | −1.5 (7) | C7—C8—C9—N1 | −179.7 (5) |
N4—N3—C3—C4 | 176.3 (5) | C7—C8—C9—C4 | 2.2 (8) |
C2—N1—C9—C4 | 0.9 (6) | C9—N1—C2—O2 | 178.6 (5) |
C2—N1—C9—C8 | −177.3 (5) | C9—N1—C2—C3 | −0.6 (5) |
C2—C3—C4—C5 | −179.7 (5) | C9—C4—C5—C6 | 1.0 (8) |
C2—C3—C4—C9 | 0.5 (5) | C10—C6—C7—C8 | 179.7 (5) |
C3—N3—N4—C11 | 179.9 (5) | C12—S12—C11—S11 | 0.1 (5) |
C3—C4—C5—C6 | −178.8 (5) | C12—S12—C11—N4 | −179.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···O2 | 0.98 (2) | 2.01 (6) | 2.754 (6) | 130 (6) |
N1—H1···O2i | 0.98 (2) | 1.85 (2) | 2.825 (6) | 171 (7) |
Symmetry code: (i) −x+2, −y+1, −z. |
Funding information
The authors acknowledge Universiti Teknologi MARA for financial support.
References
Ahmed, M. N., Arif, M., Jabeen, F., Khan, H. A., Yasin, K. A., Tahir, M. N., Franconetti, A. & Frontera, A. (2019). New J. Chem. 43, 8122–8131. Web of Science CSD CrossRef CAS Google Scholar
Das, M. & Livingstone, S. E. (1976). Inorg. Chim. Acta, 19, 5–10. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mehreen, S., Ullah, A., Nadeem, H., Dege, N. & Naseer, M. M. (2022a). RSC Adv. 12, 1788–1796. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mehreen, S., Zia, M., Khan, A., Hussain, J., Ullah, S., Anwar, M. U., Al-Harrasi, A. & Naseer, M. M. (2022b). RSC Adv. 12, 20919–20928. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nath, R., Pathania, S., Grover, G. & Akhtar, M. J. (2020). J. Mol. Struct. 1222, 128900. Web of Science CrossRef Google Scholar
Rahim, A., Saha, P., Jha, K. K., Sukumar, N. & Sarma, B. K. (2017). Nat. Commun. 8, 78. Web of Science CSD CrossRef PubMed Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sahariah, B. & Sarma, B. K. (2019). Chem. Sci. 10, 909–917. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shu, V. A., Eni, D. B. & Ntie-Kang, F. (2024). Mol. Divers. In the press, https://doi.org/10.1007/s11030-024-10883-z. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.