organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Benzilic acid: a monoclinic polymorph

crossmark logo

aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: Richard.Betz@mandela.ac.za

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 23 October 2024; accepted 24 October 2024; online 31 October 2024)

The title compound, C14H12O3, is an α-hy­droxy­carb­oxy­lic acid whose ortho­rhom­bic polymorph has been reported earlier [Qiu et al. (2007[Qiu, Y., Wang, K., Liu, Y., Deng, H., Sun, F. & Cai, Y. (2007). Inorg. Chim. Acta, 360, 1819-1824.]). Inorg. Chim. Acta, 360, 1819–1824]. The asymmetric unit contains two complete mol­ecules. Classical hydrogen bonds, as well as C—H⋯O contacts, connect the mol­ecules to infinite chains along the crystallographic c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chelate ligands have found widespread use in coordination chemistry due to the increased stability of coordination compounds they can form in comparison to monodentate ligands (Gade, 1998[Gade, L. H. (1998). Koordinationschemie, 1st ed. Weinheim: Wiley-VCH.]). α-Hy­droxy­carb­oxy­lic acids are particularly inter­esting in this aspect as they offer two different donor sites of markedly diverging acidity as potential bonding partners. Upon variation of the substitution pattern on the hydro­carbon backbone, the acidity of the two donor sites can be varied over a wide range, thus turning them into probes for establishing the rules in which pKa range coordination to various central atoms of variable Lewis acidity can be observed. In addition, the spatial pretence of the substitution pattern can also be exploited to enable unusual coordination numbers. Furthermore, certain α-hy­droxy­carb­oxy­lic acids form an integral part of metabolic pathways (Berg et al., 2023[Berg, J., Gatto, G. Jr, Hines, J., Tymoczko, J. L. & Stryer, L. (2023). Biochemistry, 10th ed. New York: Macmillan Learning.]), i.e. their derivatives might show inter­esting pharmaceutical properties. During an attempt at synthesizing a coordination compound of benzilic acid, the starting material was recovered unchanged, however, diffraction studies found the latter to have crystallized in a monoclinic polymorph. To prevent the waste of valuable measurement time on diffractometers for other researchers the structural details shall be reported herein. The latter is a continuation of our own ongoing inter­est in structural aspects of hy­droxy­carb­oxy­lic acids (Betz & Klüfers, 2007a[Betz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o3891.],b[Betz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4032.],c[Betz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o3932.],d[Betz, R. & Klüfers, P. (2007d). Acta Cryst. E63, o4921.]; Betz, Klüfers & Mangstl, 2007[Betz, R., Klüfers, P. & Mangstl, M. M. (2007). Acta Cryst. E63, o4144.]) as well as aromatic carb­oxy­lic acids (Betz, Betzler & Klüfers, 2007[Betz, R., Betzler, F. & Klüfers, P. (2007). Acta Cryst. E63, o4184.]; Betz et al., 2011[Betz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o1063.]; Betz & Gerber, 2011[Betz, R. & Gerber, T. (2011). Acta Cryst. E67, o907.]). The ortho­rhom­bic polymorph of the title compound has been reported earlier (Qiu et al., 2007[Qiu, Y., Wang, K., Liu, Y., Deng, H., Sun, F. & Cai, Y. (2007). Inorg. Chim. Acta, 360, 1819-1824.]) as well as structural data of a number of co-crystallizates of the title compound with, among others, derivatives of pyridine (Ahsan et al., 2023[Ahsan, M. R., Singh, L., Varma, H. & Mukherjee, A. (2023). Chem. Commun. 59, 12711-12714.]). Furthermore, the mol­ecular and crystal structures of (R)-mandelic acid (Zhang et al., 2013[Zhang, S.-W., Harasimowicz, M. T., de Villiers, M. M. & Yu, L. (2013). J. Am. Chem. Soc. 135, 18981-18989.]), (S)-mandelic acid (Patil et al., 1987[Patil, A. O., Pennington, W. T., Paul, I. C., Curtin, D. Y. & Dykstra, C. E. (1987). J. Am. Chem. Soc. 109, 1529-1535.]) as well as racemic mandelic acid (Fischer & Profir, 2003[Fischer, A. & Profir, V. M. (2003). Acta Cryst. E59, o1113-o1116.]) and the archaetypical α-hy­droxy­carb­oxy­lic acid – glycolic acid (Pijper, 1971[Pijper, W. P. (1971). Acta Cryst. B27, 344-348.]) – are apparent in the literature.

The title compound is a derivative of hy­droxy­acetic acid bearing two phenyl groups on the carbon scaffold. The asymmetric unit contains two complete mol­ecules (Fig. 1[link]). The two C=O bond lengths are identical at 1.204 (2) Å, which closely resembles the situation found for the two alcoholic C—O bonds measured at 1.428 (2) Å and 1.431 (2) Å, respectively, in the two independent mol­ecules. The phenyl groups in both mol­ecules are orientated almost perpendicular to one another with the least-squares planes as defined by the respective individual carbon atoms of the aromatic moieties in the two benzilic acid units inter­secting at angles of 83.08 (12) and 85.16 (12)°. The O—C—C—O torsion angles spanning the two protic groups were found at 159.29 (16) and 163.99 (15)°. In comparison, the bond lengths mentioned for the monoclinic polymorph of benzilic acid are found at slightly larger values than the ones reported for the ortho­rhom­bic one while, overall, bond lengths and angles are found in good agreement with other α-hy­droxy­carb­oxy­lic acids whose mol­ecular and crystal structures were determined on grounds of diffraction studies conducted on single crystals and whose metrical parameters have been deposited with the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The structure was refined as a two-component twin with a volume ratio of 73.6:26.4.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level).

In the crystal, classical hydrogen bonds of the O—H⋯O type are found along with C—H⋯O contacts (Table 1[link]) whose range falls by more than 0.1 Å below the sum of van der Waals radii of the atoms participating in them. While the alcoholic hydroxyl groups invariably form hydrogen bonds to carbonyl-type oxygen atoms as acceptors, the carboxyl-based hydrogen atoms exclusively form hydrogen bonds to the oxygen atoms of the alcoholic groups. It is worthwhile pointing out that the former type of hydrogen bonding alternates in between and connects the two independent mol­ecules present in the asymmetric unit while the latter type of hydrogen bonding described above is fully reserved for each individual of the two independent mol­ecules present in the asymmetric unit as well as its respective symmetry-generated equivalents (Fig. 2[link]). The C—H⋯O contacts are established by one of the hydrogen atoms in ortho-position on one of the phenyl groups and the carbonyl-type oxygen atom of its symmetry-generated equivalent for both independent mol­ecules present in the asymmetric unit. In terms of graph-set analysis (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), the classical hydrogen bonds require a DDC11(5)  C11(5) descriptor on the unary level while the C—H⋯O contacts necessitate a C11(6)  C11(6) descriptor on the same level. In total, the mol­ecules are connected to infinite strands along the c-axis direction. π-Stacking is not a prominent stabilizing feature in the crystal structure of the title compound with the shortest inter­centroid distance between two aromatic systems measured at 4.5914 (13) Å, apparent in between one of the phenyl groups and its symmetry-generated equivalent.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O22i 0.87 (3) 1.98 (3) 2.7776 (19) 153 (3)
O13—H13⋯O11ii 0.90 (3) 1.77 (3) 2.6545 (18) 168 (3)
O21—H21⋯O12 0.87 (3) 1.97 (3) 2.7461 (19) 149 (3)
O23—H23⋯O21ii 0.93 (4) 1.69 (4) 2.6125 (19) 172 (3)
C126—H126⋯O12i 0.95 2.58 3.472 (3) 157
C226—H226⋯O22i 0.95 2.55 3.447 (3) 158
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Inter­molecular contacts, view approximately onto the ac plane.

Synthesis and crystallization

After an initial unintentional isolation of the crystalline compound from a different synthesis product the compound was targeted by recrystallizing the title compound from THF.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H12O3
Mr 228.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 24.8929 (9), 8.5889 (4), 11.2678 (4)
β (°) 103.0264 (12)
V3) 2347.09 (16)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.39 × 0.15 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.715, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 75829, 5766, 4908
Rint 0.049
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.175, 1.27
No. of reflections 5766
No. of parameters 325
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.69, −0.68
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

2,2-Diphenyl-2-hydroxyethanoic acid top
Crystal data top
C14H12O3F(000) = 960
Mr = 228.24Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 24.8929 (9) ÅCell parameters from 9910 reflections
b = 8.5889 (4) Åθ = 3.0–28.1°
c = 11.2678 (4) ŵ = 0.09 mm1
β = 103.0264 (12)°T = 200 K
V = 2347.09 (16) Å3Rod, colourless
Z = 80.39 × 0.15 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
4908 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 1.9°
Tmin = 0.715, Tmax = 0.746h = 3231
75829 measured reflectionsk = 1111
5766 independent reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.081H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0977P)2 + 0.2671P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max = 0.001
5766 reflectionsΔρmax = 0.69 e Å3
325 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.48 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin. The aromatic carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The oxygen-bonded H atoms were located on a DFM and refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.82588 (5)0.28942 (15)0.85279 (12)0.0277 (3)
H110.7908 (11)0.280 (3)0.821 (3)0.043 (7)*
O120.78554 (6)0.2500 (2)0.61874 (14)0.0413 (4)
O130.86377 (6)0.14787 (19)0.58744 (12)0.0363 (4)
H130.8461 (13)0.167 (3)0.510 (3)0.059 (8)*
O210.67403 (5)0.21606 (16)0.52974 (12)0.0285 (3)
H210.7089 (12)0.218 (4)0.529 (3)0.055 (8)*
O220.71287 (5)0.2323 (2)0.33290 (13)0.0386 (4)
O230.63800 (6)0.35107 (19)0.22422 (13)0.0382 (4)
H230.6527 (15)0.335 (4)0.156 (4)0.075 (10)*
C110.85555 (7)0.1825 (2)0.79411 (15)0.0254 (4)
C120.83115 (7)0.1979 (2)0.65616 (16)0.0287 (4)
C210.64460 (7)0.3188 (2)0.43824 (16)0.0263 (4)
C220.66896 (7)0.2952 (2)0.32526 (16)0.0283 (4)
C1110.91561 (7)0.2350 (2)0.83067 (17)0.0286 (4)
C1120.93433 (8)0.3575 (2)0.77093 (19)0.0360 (5)
H1120.9106750.4020870.7011610.043*
C1130.98732 (9)0.4159 (3)0.8120 (2)0.0466 (5)
H1130.9999070.4989600.7695560.056*
C1141.02166 (9)0.3535 (3)0.9142 (2)0.0481 (6)
H1141.0578270.3937110.9425610.058*
C1151.00331 (8)0.2325 (3)0.9750 (2)0.0457 (6)
H1151.0269140.1895651.0455020.055*
C1160.95052 (8)0.1730 (3)0.93373 (19)0.0369 (5)
H1160.9382100.0895060.9761520.044*
C1210.84577 (7)0.0136 (2)0.82826 (17)0.0296 (4)
C1220.86857 (10)0.1088 (3)0.7756 (2)0.0437 (5)
H1220.8909890.0879740.7194980.052*
C1230.85863 (11)0.2614 (3)0.8050 (3)0.0580 (7)
H1230.8742370.3444950.7684700.070*
C1240.82638 (12)0.2937 (3)0.8866 (3)0.0590 (7)
H1240.8194540.3985520.9055040.071*
C1250.80435 (12)0.1735 (3)0.9403 (3)0.0565 (7)
H1250.7826900.1953910.9977180.068*
C1260.81351 (9)0.0196 (2)0.9112 (2)0.0412 (5)
H1260.7976950.0628240.9480270.049*
C2110.58455 (7)0.2658 (2)0.41614 (17)0.0284 (4)
C2120.56538 (9)0.1445 (2)0.33656 (19)0.0369 (5)
H2120.5886650.1010990.2889640.044*
C2130.51266 (10)0.0860 (3)0.3258 (2)0.0471 (6)
H2130.4999140.0031890.2707860.057*
C2140.47850 (9)0.1482 (3)0.3951 (2)0.0476 (6)
H2140.4423580.1080300.3879240.057*
C2150.49708 (8)0.2683 (3)0.4743 (2)0.0474 (6)
H2150.4737520.3107080.5221670.057*
C2160.55002 (8)0.3284 (3)0.48470 (19)0.0377 (5)
H2160.5624290.4123960.5388340.045*
C2210.65375 (8)0.4897 (2)0.47835 (17)0.0298 (4)
C2220.63148 (10)0.6090 (3)0.3992 (2)0.0456 (5)
H2220.6102860.5849670.3201010.055*
C2230.64013 (11)0.7627 (3)0.4353 (3)0.0600 (7)
H2230.6251950.8437770.3803420.072*
C2240.67020 (12)0.7993 (3)0.5503 (3)0.0623 (8)
H2240.6760680.9050620.5744890.075*
C2250.69157 (12)0.6821 (3)0.6294 (3)0.0576 (7)
H2250.7117170.7067910.7092360.069*
C2260.68395 (9)0.5271 (2)0.5935 (2)0.0407 (5)
H2260.6995730.4465780.6483160.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0226 (7)0.0369 (7)0.0237 (6)0.0034 (5)0.0058 (5)0.0011 (5)
O120.0254 (7)0.0705 (10)0.0260 (7)0.0067 (7)0.0013 (6)0.0049 (7)
O130.0355 (8)0.0526 (9)0.0208 (6)0.0068 (6)0.0061 (6)0.0005 (6)
O210.0243 (7)0.0383 (7)0.0225 (6)0.0033 (5)0.0044 (5)0.0039 (5)
O220.0246 (7)0.0634 (9)0.0285 (7)0.0018 (6)0.0074 (6)0.0072 (6)
O230.0411 (8)0.0529 (9)0.0216 (7)0.0073 (6)0.0092 (6)0.0041 (6)
C110.0235 (8)0.0336 (9)0.0193 (8)0.0030 (6)0.0053 (6)0.0002 (6)
C120.0263 (8)0.0373 (9)0.0220 (8)0.0000 (7)0.0044 (7)0.0022 (7)
C210.0270 (9)0.0326 (8)0.0192 (8)0.0026 (7)0.0048 (7)0.0011 (6)
C220.0259 (9)0.0365 (9)0.0230 (8)0.0034 (7)0.0066 (7)0.0024 (7)
C1110.0221 (8)0.0398 (9)0.0232 (9)0.0029 (7)0.0038 (7)0.0008 (7)
C1120.0332 (10)0.0439 (11)0.0310 (10)0.0025 (8)0.0075 (8)0.0018 (8)
C1130.0393 (11)0.0561 (13)0.0460 (12)0.0140 (10)0.0132 (10)0.0008 (10)
C1140.0273 (10)0.0677 (15)0.0484 (13)0.0075 (9)0.0061 (9)0.0101 (11)
C1150.0285 (10)0.0620 (14)0.0402 (12)0.0029 (9)0.0059 (10)0.0006 (10)
C1160.0291 (9)0.0486 (11)0.0305 (10)0.0029 (8)0.0014 (8)0.0042 (8)
C1210.0268 (9)0.0336 (9)0.0258 (8)0.0024 (7)0.0005 (7)0.0014 (7)
C1220.0475 (13)0.0402 (11)0.0424 (12)0.0110 (9)0.0079 (10)0.0022 (9)
C1230.0641 (16)0.0369 (11)0.0652 (17)0.0135 (11)0.0020 (15)0.0066 (11)
C1240.0639 (16)0.0333 (11)0.0723 (18)0.0043 (10)0.0001 (14)0.0082 (11)
C1250.0618 (16)0.0465 (12)0.0638 (17)0.0089 (11)0.0195 (14)0.0140 (12)
C1260.0445 (12)0.0381 (10)0.0427 (11)0.0022 (8)0.0134 (10)0.0043 (9)
C2110.0232 (8)0.0383 (9)0.0223 (9)0.0027 (7)0.0025 (7)0.0022 (7)
C2120.0348 (10)0.0442 (11)0.0321 (10)0.0031 (8)0.0082 (8)0.0041 (8)
C2130.0412 (12)0.0574 (14)0.0404 (11)0.0112 (10)0.0040 (9)0.0046 (10)
C2140.0287 (10)0.0669 (15)0.0461 (13)0.0078 (10)0.0064 (9)0.0037 (11)
C2150.0291 (10)0.0683 (15)0.0473 (14)0.0022 (10)0.0139 (10)0.0017 (11)
C2160.0305 (10)0.0485 (11)0.0357 (10)0.0028 (8)0.0109 (8)0.0019 (8)
C2210.0282 (9)0.0319 (9)0.0315 (9)0.0028 (7)0.0117 (7)0.0015 (7)
C2220.0476 (13)0.0412 (11)0.0481 (13)0.0126 (9)0.0111 (10)0.0070 (9)
C2230.0700 (17)0.0368 (11)0.080 (2)0.0129 (12)0.0306 (17)0.0089 (12)
C2240.0674 (17)0.0362 (12)0.092 (2)0.0025 (11)0.0373 (17)0.0166 (13)
C2250.0621 (16)0.0484 (13)0.0635 (17)0.0087 (11)0.0167 (13)0.0231 (12)
C2260.0472 (12)0.0388 (10)0.0354 (10)0.0004 (8)0.0081 (9)0.0078 (8)
Geometric parameters (Å, º) top
O11—C111.431 (2)C122—H1220.9500
O11—H110.87 (3)C123—C1241.378 (5)
O12—C121.204 (2)C123—H1230.9500
O13—C121.314 (2)C124—C1251.372 (4)
O13—H130.90 (3)C124—H1240.9500
O21—C211.428 (2)C125—C1261.393 (3)
O21—H210.87 (3)C125—H1250.9500
O22—C221.204 (2)C126—H1260.9500
O23—C221.314 (2)C211—C2121.387 (3)
O23—H230.93 (4)C211—C2161.387 (3)
C11—C1111.527 (2)C212—C2131.385 (3)
C11—C1211.534 (2)C212—H2120.9500
C11—C121.542 (2)C213—C2141.385 (4)
C21—C2111.528 (2)C213—H2130.9500
C21—C2211.538 (2)C214—C2151.374 (4)
C21—C221.542 (2)C214—H2140.9500
C111—C1121.385 (3)C215—C2161.395 (3)
C111—C1161.390 (3)C215—H2150.9500
C112—C1131.390 (3)C216—H2160.9500
C112—H1120.9500C221—C2261.382 (3)
C113—C1141.379 (4)C221—C2221.389 (3)
C113—H1130.9500C222—C2231.384 (4)
C114—C1151.378 (4)C222—H2220.9500
C114—H1140.9500C223—C2241.379 (5)
C115—C1161.389 (3)C223—H2230.9500
C115—H1150.9500C224—C2251.370 (4)
C116—H1160.9500C224—H2240.9500
C121—C1221.390 (3)C225—C2261.392 (3)
C121—C1261.392 (3)C225—H2250.9500
C122—C1231.388 (4)C226—H2260.9500
C11—O11—H11109.0 (18)C124—C123—H123119.6
C12—O13—H13106.1 (19)C122—C123—H123119.6
C21—O21—H21109 (2)C125—C124—C123119.5 (2)
C22—O23—H23113 (2)C125—C124—H124120.2
O11—C11—C111105.17 (14)C123—C124—H124120.2
O11—C11—C121111.31 (14)C124—C125—C126120.5 (3)
C111—C11—C121114.39 (15)C124—C125—H125119.8
O11—C11—C12106.46 (13)C126—C125—H125119.8
C111—C11—C12112.70 (15)C121—C126—C125120.2 (2)
C121—C11—C12106.60 (14)C121—C126—H126119.9
O12—C12—O13125.03 (18)C125—C126—H126119.9
O12—C12—C11120.73 (17)C212—C211—C216119.03 (18)
O13—C12—C11114.23 (15)C212—C211—C21120.68 (17)
O21—C21—C211104.93 (14)C216—C211—C21119.99 (17)
O21—C21—C221111.09 (14)C213—C212—C211120.7 (2)
C211—C21—C221114.00 (15)C213—C212—H212119.7
O21—C21—C22106.35 (14)C211—C212—H212119.7
C211—C21—C22112.25 (15)C212—C213—C214120.1 (2)
C221—C21—C22107.97 (14)C212—C213—H213120.0
O22—C22—O23124.86 (17)C214—C213—H213120.0
O22—C22—C21121.29 (17)C215—C214—C213119.7 (2)
O23—C22—C21113.85 (15)C215—C214—H214120.1
C112—C111—C116118.79 (18)C213—C214—H214120.1
C112—C111—C11120.63 (17)C214—C215—C216120.4 (2)
C116—C111—C11120.13 (18)C214—C215—H215119.8
C111—C112—C113120.7 (2)C216—C215—H215119.8
C111—C112—H112119.6C211—C216—C215120.1 (2)
C113—C112—H112119.6C211—C216—H216120.0
C114—C113—C112120.1 (2)C215—C216—H216120.0
C114—C113—H113120.0C226—C221—C222119.06 (19)
C112—C113—H113120.0C226—C221—C21120.69 (17)
C115—C114—C113119.7 (2)C222—C221—C21120.25 (18)
C115—C114—H114120.1C223—C222—C221120.1 (2)
C113—C114—H114120.1C223—C222—H222120.0
C114—C115—C116120.4 (2)C221—C222—H222120.0
C114—C115—H115119.8C224—C223—C222120.6 (3)
C116—C115—H115119.8C224—C223—H223119.7
C115—C116—C111120.3 (2)C222—C223—H223119.7
C115—C116—H116119.8C225—C224—C223119.5 (2)
C111—C116—H116119.8C225—C224—H224120.2
C122—C121—C126118.96 (19)C223—C224—H224120.2
C122—C121—C11120.33 (18)C224—C225—C226120.4 (3)
C126—C121—C11120.71 (17)C224—C225—H225119.8
C123—C122—C121120.0 (2)C226—C225—H225119.8
C123—C122—H122120.0C221—C226—C225120.3 (2)
C121—C122—H122120.0C221—C226—H226119.9
C124—C123—C122120.8 (3)C225—C226—H226119.9
O11—C11—C12—O1221.8 (2)C121—C122—C123—C1240.2 (4)
C111—C11—C12—O12136.58 (19)C122—C123—C124—C1250.7 (4)
C121—C11—C12—O1297.1 (2)C123—C124—C125—C1261.2 (4)
O11—C11—C12—O13159.29 (16)C122—C121—C126—C1250.1 (3)
C111—C11—C12—O1344.5 (2)C11—C121—C126—C125179.2 (2)
C121—C11—C12—O1381.80 (19)C124—C125—C126—C1210.8 (4)
O21—C21—C22—O2216.9 (2)O21—C21—C211—C21284.3 (2)
C211—C21—C22—O22131.11 (18)C221—C21—C211—C212153.97 (17)
C221—C21—C22—O22102.4 (2)C22—C21—C211—C21230.8 (2)
O21—C21—C22—O23163.99 (15)O21—C21—C211—C21689.3 (2)
C211—C21—C22—O2349.8 (2)C221—C21—C211—C21632.4 (2)
C221—C21—C22—O2376.71 (19)C22—C21—C211—C216155.58 (18)
O11—C11—C111—C11280.9 (2)C216—C211—C212—C2130.3 (3)
C121—C11—C111—C112156.67 (18)C21—C211—C212—C213173.42 (19)
C12—C11—C111—C11234.7 (2)C211—C212—C213—C2140.2 (3)
O11—C11—C111—C11691.3 (2)C212—C213—C214—C2150.2 (4)
C121—C11—C111—C11631.1 (2)C213—C214—C215—C2160.3 (4)
C12—C11—C111—C116153.11 (18)C212—C211—C216—C2150.8 (3)
C116—C111—C112—C1131.0 (3)C21—C211—C216—C215173.0 (2)
C11—C111—C112—C113173.34 (19)C214—C215—C216—C2110.8 (4)
C111—C112—C113—C1140.9 (4)O21—C21—C221—C2264.3 (2)
C112—C113—C114—C1150.3 (4)C211—C21—C221—C226114.0 (2)
C113—C114—C115—C1160.1 (4)C22—C21—C221—C226120.55 (19)
C114—C115—C116—C1110.0 (4)O21—C21—C221—C222175.96 (18)
C112—C111—C116—C1150.5 (3)C211—C21—C221—C22265.7 (2)
C11—C111—C116—C115172.9 (2)C22—C21—C221—C22259.7 (2)
O11—C11—C121—C122176.53 (17)C226—C221—C222—C2230.7 (3)
C111—C11—C121—C12264.4 (2)C21—C221—C222—C223179.6 (2)
C12—C11—C121—C12260.8 (2)C221—C222—C223—C2240.8 (4)
O11—C11—C121—C1262.8 (2)C222—C223—C224—C2250.1 (4)
C111—C11—C121—C126116.3 (2)C223—C224—C225—C2261.2 (4)
C12—C11—C121—C126118.46 (19)C222—C221—C226—C2250.4 (3)
C126—C121—C122—C1230.6 (3)C21—C221—C226—C225179.4 (2)
C11—C121—C122—C123178.67 (19)C224—C225—C226—C2211.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O22i0.87 (3)1.98 (3)2.7776 (19)153 (3)
O13—H13···O11ii0.90 (3)1.77 (3)2.6545 (18)168 (3)
O21—H21···O120.87 (3)1.97 (3)2.7461 (19)149 (3)
O23—H23···O21ii0.93 (4)1.69 (4)2.6125 (19)172 (3)
C126—H126···O12i0.952.583.472 (3)157
C226—H226···O22i0.952.553.447 (3)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

References

First citationAhsan, M. R., Singh, L., Varma, H. & Mukherjee, A. (2023). Chem. Commun. 59, 12711–12714.  CrossRef CAS Google Scholar
First citationBerg, J., Gatto, G. Jr, Hines, J., Tymoczko, J. L. & Stryer, L. (2023). Biochemistry, 10th ed. New York: Macmillan Learning.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., Betzler, F. & Klüfers, P. (2007). Acta Cryst. E63, o4184.  CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Gerber, T. (2011). Acta Cryst. E67, o907.  CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o1063.  CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o3891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4032.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o3932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007d). Acta Cryst. E63, o4921.  CrossRef IUCr Journals Google Scholar
First citationBetz, R., Klüfers, P. & Mangstl, M. M. (2007). Acta Cryst. E63, o4144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, A. & Profir, V. M. (2003). Acta Cryst. E59, o1113–o1116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1st ed. Weinheim: Wiley-VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatil, A. O., Pennington, W. T., Paul, I. C., Curtin, D. Y. & Dykstra, C. E. (1987). J. Am. Chem. Soc. 109, 1529–1535.  CSD CrossRef CAS Web of Science Google Scholar
First citationPijper, W. P. (1971). Acta Cryst. B27, 344–348.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationQiu, Y., Wang, K., Liu, Y., Deng, H., Sun, F. & Cai, Y. (2007). Inorg. Chim. Acta, 360, 1819–1824.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, S.-W., Harasimowicz, M. T., de Villiers, M. M. & Yu, L. (2013). J. Am. Chem. Soc. 135, 18981–18989.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146