organic compounds
Benzilic acid: a monoclinic polymorph
aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: Richard.Betz@mandela.ac.za
The title compound, C14H12O3, is an α-hydroxycarboxylic acid whose orthorhombic polymorph has been reported earlier [Qiu et al. (2007). Inorg. Chim. Acta, 360, 1819–1824]. The contains two complete molecules. Classical hydrogen bonds, as well as C—H⋯O contacts, connect the molecules to infinite chains along the crystallographic c-axis direction.
Keywords: crystal structure; polymorph; benzilic acid.
CCDC reference: 2393641
Structure description
Chelate ligands have found widespread use in coordination chemistry due to the increased stability of coordination compounds they can form in comparison to monodentate ligands (Gade, 1998). α-Hydroxycarboxylic acids are particularly interesting in this aspect as they offer two different donor sites of markedly diverging acidity as potential bonding partners. Upon variation of the substitution pattern on the hydrocarbon backbone, the acidity of the two donor sites can be varied over a wide range, thus turning them into probes for establishing the rules in which pKa range coordination to various central atoms of variable can be observed. In addition, the spatial pretence of the substitution pattern can also be exploited to enable unusual coordination numbers. Furthermore, certain α-hydroxycarboxylic acids form an integral part of metabolic pathways (Berg et al., 2023), i.e. their derivatives might show interesting pharmaceutical properties. During an attempt at synthesizing a coordination compound of benzilic acid, the starting material was recovered unchanged, however, diffraction studies found the latter to have crystallized in a monoclinic polymorph. To prevent the waste of valuable measurement time on diffractometers for other researchers the structural details shall be reported herein. The latter is a continuation of our own ongoing interest in structural aspects of hydroxycarboxylic acids (Betz & Klüfers, 2007a,b,c,d; Betz, Klüfers & Mangstl, 2007) as well as aromatic carboxylic acids (Betz, Betzler & Klüfers, 2007; Betz et al., 2011; Betz & Gerber, 2011). The orthorhombic polymorph of the title compound has been reported earlier (Qiu et al., 2007) as well as structural data of a number of co-crystallizates of the title compound with, among others, derivatives of pyridine (Ahsan et al., 2023). Furthermore, the molecular and crystal structures of (R)-mandelic acid (Zhang et al., 2013), (S)-mandelic acid (Patil et al., 1987) as well as racemic mandelic acid (Fischer & Profir, 2003) and the archaetypical α-hydroxycarboxylic acid – glycolic acid (Pijper, 1971) – are apparent in the literature.
The title compound is a derivative of hydroxyacetic acid bearing two phenyl groups on the carbon scaffold. The ). The two C=O bond lengths are identical at 1.204 (2) Å, which closely resembles the situation found for the two alcoholic C—O bonds measured at 1.428 (2) Å and 1.431 (2) Å, respectively, in the two independent molecules. The phenyl groups in both molecules are orientated almost perpendicular to one another with the least-squares planes as defined by the respective individual carbon atoms of the aromatic moieties in the two benzilic acid units intersecting at angles of 83.08 (12) and 85.16 (12)°. The O—C—C—O torsion angles spanning the two protic groups were found at 159.29 (16) and 163.99 (15)°. In comparison, the bond lengths mentioned for the monoclinic polymorph of benzilic acid are found at slightly larger values than the ones reported for the orthorhombic one while, overall, bond lengths and angles are found in good agreement with other α-hydroxycarboxylic acids whose molecular and crystal structures were determined on grounds of diffraction studies conducted on single crystals and whose metrical parameters have been deposited with the Cambridge Structural Database (Groom et al., 2016). The structure was refined as a two-component twin with a volume ratio of 73.6:26.4.
contains two complete molecules (Fig. 1In the crystal, classical hydrogen bonds of the O—H⋯O type are found along with C—H⋯O contacts (Table 1) whose range falls by more than 0.1 Å below the sum of van der Waals radii of the atoms participating in them. While the alcoholic hydroxyl groups invariably form hydrogen bonds to carbonyl-type oxygen atoms as acceptors, the carboxyl-based hydrogen atoms exclusively form hydrogen bonds to the oxygen atoms of the alcoholic groups. It is worthwhile pointing out that the former type of hydrogen bonding alternates in between and connects the two independent molecules present in the while the latter type of hydrogen bonding described above is fully reserved for each individual of the two independent molecules present in the as well as its respective symmetry-generated equivalents (Fig. 2). The C—H⋯O contacts are established by one of the hydrogen atoms in ortho-position on one of the phenyl groups and the carbonyl-type oxygen atom of its symmetry-generated equivalent for both independent molecules present in the In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the classical hydrogen bonds require a DDC11(5) C11(5) descriptor on the unary level while the C—H⋯O contacts necessitate a C11(6) C11(6) descriptor on the same level. In total, the molecules are connected to infinite strands along the c-axis direction. π-Stacking is not a prominent stabilizing feature in the of the title compound with the shortest intercentroid distance between two aromatic systems measured at 4.5914 (13) Å, apparent in between one of the phenyl groups and its symmetry-generated equivalent.
Synthesis and crystallization
After an initial unintentional isolation of the crystalline compound from a different synthesis product the compound was targeted by recrystallizing the title compound from THF.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2393641
https://doi.org/10.1107/S2414314624010393/bt4158sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624010393/bt4158Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624010393/bt4158Isup3.cml
C14H12O3 | F(000) = 960 |
Mr = 228.24 | Dx = 1.292 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 24.8929 (9) Å | Cell parameters from 9910 reflections |
b = 8.5889 (4) Å | θ = 3.0–28.1° |
c = 11.2678 (4) Å | µ = 0.09 mm−1 |
β = 103.0264 (12)° | T = 200 K |
V = 2347.09 (16) Å3 | Rod, colourless |
Z = 8 | 0.39 × 0.15 × 0.05 mm |
Bruker APEXII CCD diffractometer | 4908 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.049 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.3°, θmin = 1.9° |
Tmin = 0.715, Tmax = 0.746 | h = −32→31 |
75829 measured reflections | k = −11→11 |
5766 independent reflections | l = −14→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.175 | w = 1/[σ2(Fo2) + (0.0977P)2 + 0.2671P] where P = (Fo2 + 2Fc2)/3 |
S = 1.27 | (Δ/σ)max = 0.001 |
5766 reflections | Δρmax = 0.69 e Å−3 |
325 parameters | Δρmin = −0.68 e Å−3 |
0 restraints | Extinction correction: SHELXL2019/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.48 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. The aromatic carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The oxygen-bonded H atoms were located on a DFM and refined freely. |
x | y | z | Uiso*/Ueq | ||
O11 | 0.82588 (5) | 0.28942 (15) | 0.85279 (12) | 0.0277 (3) | |
H11 | 0.7908 (11) | 0.280 (3) | 0.821 (3) | 0.043 (7)* | |
O12 | 0.78554 (6) | 0.2500 (2) | 0.61874 (14) | 0.0413 (4) | |
O13 | 0.86377 (6) | 0.14787 (19) | 0.58744 (12) | 0.0363 (4) | |
H13 | 0.8461 (13) | 0.167 (3) | 0.510 (3) | 0.059 (8)* | |
O21 | 0.67403 (5) | 0.21606 (16) | 0.52974 (12) | 0.0285 (3) | |
H21 | 0.7089 (12) | 0.218 (4) | 0.529 (3) | 0.055 (8)* | |
O22 | 0.71287 (5) | 0.2323 (2) | 0.33290 (13) | 0.0386 (4) | |
O23 | 0.63800 (6) | 0.35107 (19) | 0.22422 (13) | 0.0382 (4) | |
H23 | 0.6527 (15) | 0.335 (4) | 0.156 (4) | 0.075 (10)* | |
C11 | 0.85555 (7) | 0.1825 (2) | 0.79411 (15) | 0.0254 (4) | |
C12 | 0.83115 (7) | 0.1979 (2) | 0.65616 (16) | 0.0287 (4) | |
C21 | 0.64460 (7) | 0.3188 (2) | 0.43824 (16) | 0.0263 (4) | |
C22 | 0.66896 (7) | 0.2952 (2) | 0.32526 (16) | 0.0283 (4) | |
C111 | 0.91561 (7) | 0.2350 (2) | 0.83067 (17) | 0.0286 (4) | |
C112 | 0.93433 (8) | 0.3575 (2) | 0.77093 (19) | 0.0360 (5) | |
H112 | 0.910675 | 0.402087 | 0.701161 | 0.043* | |
C113 | 0.98732 (9) | 0.4159 (3) | 0.8120 (2) | 0.0466 (5) | |
H113 | 0.999907 | 0.498960 | 0.769556 | 0.056* | |
C114 | 1.02166 (9) | 0.3535 (3) | 0.9142 (2) | 0.0481 (6) | |
H114 | 1.057827 | 0.393711 | 0.942561 | 0.058* | |
C115 | 1.00331 (8) | 0.2325 (3) | 0.9750 (2) | 0.0457 (6) | |
H115 | 1.026914 | 0.189565 | 1.045502 | 0.055* | |
C116 | 0.95052 (8) | 0.1730 (3) | 0.93373 (19) | 0.0369 (5) | |
H116 | 0.938210 | 0.089506 | 0.976152 | 0.044* | |
C121 | 0.84577 (7) | 0.0136 (2) | 0.82826 (17) | 0.0296 (4) | |
C122 | 0.86857 (10) | −0.1088 (3) | 0.7756 (2) | 0.0437 (5) | |
H122 | 0.890989 | −0.087974 | 0.719498 | 0.052* | |
C123 | 0.85863 (11) | −0.2614 (3) | 0.8050 (3) | 0.0580 (7) | |
H123 | 0.874237 | −0.344495 | 0.768470 | 0.070* | |
C124 | 0.82638 (12) | −0.2937 (3) | 0.8866 (3) | 0.0590 (7) | |
H124 | 0.819454 | −0.398552 | 0.905504 | 0.071* | |
C125 | 0.80435 (12) | −0.1735 (3) | 0.9403 (3) | 0.0565 (7) | |
H125 | 0.782690 | −0.195391 | 0.997718 | 0.068* | |
C126 | 0.81351 (9) | −0.0196 (2) | 0.9112 (2) | 0.0412 (5) | |
H126 | 0.797695 | 0.062824 | 0.948027 | 0.049* | |
C211 | 0.58455 (7) | 0.2658 (2) | 0.41614 (17) | 0.0284 (4) | |
C212 | 0.56538 (9) | 0.1445 (2) | 0.33656 (19) | 0.0369 (5) | |
H212 | 0.588665 | 0.101099 | 0.288964 | 0.044* | |
C213 | 0.51266 (10) | 0.0860 (3) | 0.3258 (2) | 0.0471 (6) | |
H213 | 0.499914 | 0.003189 | 0.270786 | 0.057* | |
C214 | 0.47850 (9) | 0.1482 (3) | 0.3951 (2) | 0.0476 (6) | |
H214 | 0.442358 | 0.108030 | 0.387924 | 0.057* | |
C215 | 0.49708 (8) | 0.2683 (3) | 0.4743 (2) | 0.0474 (6) | |
H215 | 0.473752 | 0.310708 | 0.522167 | 0.057* | |
C216 | 0.55002 (8) | 0.3284 (3) | 0.48470 (19) | 0.0377 (5) | |
H216 | 0.562429 | 0.412396 | 0.538834 | 0.045* | |
C221 | 0.65375 (8) | 0.4897 (2) | 0.47835 (17) | 0.0298 (4) | |
C222 | 0.63148 (10) | 0.6090 (3) | 0.3992 (2) | 0.0456 (5) | |
H222 | 0.610286 | 0.584967 | 0.320101 | 0.055* | |
C223 | 0.64013 (11) | 0.7627 (3) | 0.4353 (3) | 0.0600 (7) | |
H223 | 0.625195 | 0.843777 | 0.380342 | 0.072* | |
C224 | 0.67020 (12) | 0.7993 (3) | 0.5503 (3) | 0.0623 (8) | |
H224 | 0.676068 | 0.905062 | 0.574489 | 0.075* | |
C225 | 0.69157 (12) | 0.6821 (3) | 0.6294 (3) | 0.0576 (7) | |
H225 | 0.711717 | 0.706791 | 0.709236 | 0.069* | |
C226 | 0.68395 (9) | 0.5271 (2) | 0.5935 (2) | 0.0407 (5) | |
H226 | 0.699573 | 0.446578 | 0.648316 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O11 | 0.0226 (7) | 0.0369 (7) | 0.0237 (6) | 0.0034 (5) | 0.0058 (5) | −0.0011 (5) |
O12 | 0.0254 (7) | 0.0705 (10) | 0.0260 (7) | 0.0067 (7) | 0.0013 (6) | 0.0049 (7) |
O13 | 0.0355 (8) | 0.0526 (9) | 0.0208 (6) | 0.0068 (6) | 0.0061 (6) | −0.0005 (6) |
O21 | 0.0243 (7) | 0.0383 (7) | 0.0225 (6) | 0.0033 (5) | 0.0044 (5) | 0.0039 (5) |
O22 | 0.0246 (7) | 0.0634 (9) | 0.0285 (7) | 0.0018 (6) | 0.0074 (6) | −0.0072 (6) |
O23 | 0.0411 (8) | 0.0529 (9) | 0.0216 (7) | 0.0073 (6) | 0.0092 (6) | 0.0041 (6) |
C11 | 0.0235 (8) | 0.0336 (9) | 0.0193 (8) | 0.0030 (6) | 0.0053 (6) | 0.0002 (6) |
C12 | 0.0263 (8) | 0.0373 (9) | 0.0220 (8) | 0.0000 (7) | 0.0044 (7) | 0.0022 (7) |
C21 | 0.0270 (9) | 0.0326 (8) | 0.0192 (8) | 0.0026 (7) | 0.0048 (7) | 0.0011 (6) |
C22 | 0.0259 (9) | 0.0365 (9) | 0.0230 (8) | −0.0034 (7) | 0.0066 (7) | −0.0024 (7) |
C111 | 0.0221 (8) | 0.0398 (9) | 0.0232 (9) | 0.0029 (7) | 0.0038 (7) | −0.0008 (7) |
C112 | 0.0332 (10) | 0.0439 (11) | 0.0310 (10) | −0.0025 (8) | 0.0075 (8) | 0.0018 (8) |
C113 | 0.0393 (11) | 0.0561 (13) | 0.0460 (12) | −0.0140 (10) | 0.0132 (10) | −0.0008 (10) |
C114 | 0.0273 (10) | 0.0677 (15) | 0.0484 (13) | −0.0075 (9) | 0.0061 (9) | −0.0101 (11) |
C115 | 0.0285 (10) | 0.0620 (14) | 0.0402 (12) | 0.0029 (9) | −0.0059 (10) | −0.0006 (10) |
C116 | 0.0291 (9) | 0.0486 (11) | 0.0305 (10) | 0.0029 (8) | 0.0014 (8) | 0.0042 (8) |
C121 | 0.0268 (9) | 0.0336 (9) | 0.0258 (8) | 0.0024 (7) | 0.0005 (7) | 0.0014 (7) |
C122 | 0.0475 (13) | 0.0402 (11) | 0.0424 (12) | 0.0110 (9) | 0.0079 (10) | −0.0022 (9) |
C123 | 0.0641 (16) | 0.0369 (11) | 0.0652 (17) | 0.0135 (11) | −0.0020 (15) | −0.0066 (11) |
C124 | 0.0639 (16) | 0.0333 (11) | 0.0723 (18) | −0.0043 (10) | −0.0001 (14) | 0.0082 (11) |
C125 | 0.0618 (16) | 0.0465 (12) | 0.0638 (17) | −0.0089 (11) | 0.0195 (14) | 0.0140 (12) |
C126 | 0.0445 (12) | 0.0381 (10) | 0.0427 (11) | −0.0022 (8) | 0.0134 (10) | 0.0043 (9) |
C211 | 0.0232 (8) | 0.0383 (9) | 0.0223 (9) | 0.0027 (7) | 0.0025 (7) | 0.0022 (7) |
C212 | 0.0348 (10) | 0.0442 (11) | 0.0321 (10) | −0.0031 (8) | 0.0082 (8) | −0.0041 (8) |
C213 | 0.0412 (12) | 0.0574 (14) | 0.0404 (11) | −0.0112 (10) | 0.0040 (9) | −0.0046 (10) |
C214 | 0.0287 (10) | 0.0669 (15) | 0.0461 (13) | −0.0078 (10) | 0.0064 (9) | 0.0037 (11) |
C215 | 0.0291 (10) | 0.0683 (15) | 0.0473 (14) | 0.0022 (10) | 0.0139 (10) | −0.0017 (11) |
C216 | 0.0305 (10) | 0.0485 (11) | 0.0357 (10) | 0.0028 (8) | 0.0109 (8) | −0.0019 (8) |
C221 | 0.0282 (9) | 0.0319 (9) | 0.0315 (9) | 0.0028 (7) | 0.0117 (7) | −0.0015 (7) |
C222 | 0.0476 (13) | 0.0412 (11) | 0.0481 (13) | 0.0126 (9) | 0.0111 (10) | 0.0070 (9) |
C223 | 0.0700 (17) | 0.0368 (11) | 0.080 (2) | 0.0129 (12) | 0.0306 (17) | 0.0089 (12) |
C224 | 0.0674 (17) | 0.0362 (12) | 0.092 (2) | −0.0025 (11) | 0.0373 (17) | −0.0166 (13) |
C225 | 0.0621 (16) | 0.0484 (13) | 0.0635 (17) | −0.0087 (11) | 0.0167 (13) | −0.0231 (12) |
C226 | 0.0472 (12) | 0.0388 (10) | 0.0354 (10) | −0.0004 (8) | 0.0081 (9) | −0.0078 (8) |
O11—C11 | 1.431 (2) | C122—H122 | 0.9500 |
O11—H11 | 0.87 (3) | C123—C124 | 1.378 (5) |
O12—C12 | 1.204 (2) | C123—H123 | 0.9500 |
O13—C12 | 1.314 (2) | C124—C125 | 1.372 (4) |
O13—H13 | 0.90 (3) | C124—H124 | 0.9500 |
O21—C21 | 1.428 (2) | C125—C126 | 1.393 (3) |
O21—H21 | 0.87 (3) | C125—H125 | 0.9500 |
O22—C22 | 1.204 (2) | C126—H126 | 0.9500 |
O23—C22 | 1.314 (2) | C211—C212 | 1.387 (3) |
O23—H23 | 0.93 (4) | C211—C216 | 1.387 (3) |
C11—C111 | 1.527 (2) | C212—C213 | 1.385 (3) |
C11—C121 | 1.534 (2) | C212—H212 | 0.9500 |
C11—C12 | 1.542 (2) | C213—C214 | 1.385 (4) |
C21—C211 | 1.528 (2) | C213—H213 | 0.9500 |
C21—C221 | 1.538 (2) | C214—C215 | 1.374 (4) |
C21—C22 | 1.542 (2) | C214—H214 | 0.9500 |
C111—C112 | 1.385 (3) | C215—C216 | 1.395 (3) |
C111—C116 | 1.390 (3) | C215—H215 | 0.9500 |
C112—C113 | 1.390 (3) | C216—H216 | 0.9500 |
C112—H112 | 0.9500 | C221—C226 | 1.382 (3) |
C113—C114 | 1.379 (4) | C221—C222 | 1.389 (3) |
C113—H113 | 0.9500 | C222—C223 | 1.384 (4) |
C114—C115 | 1.378 (4) | C222—H222 | 0.9500 |
C114—H114 | 0.9500 | C223—C224 | 1.379 (5) |
C115—C116 | 1.389 (3) | C223—H223 | 0.9500 |
C115—H115 | 0.9500 | C224—C225 | 1.370 (4) |
C116—H116 | 0.9500 | C224—H224 | 0.9500 |
C121—C122 | 1.390 (3) | C225—C226 | 1.392 (3) |
C121—C126 | 1.392 (3) | C225—H225 | 0.9500 |
C122—C123 | 1.388 (4) | C226—H226 | 0.9500 |
C11—O11—H11 | 109.0 (18) | C124—C123—H123 | 119.6 |
C12—O13—H13 | 106.1 (19) | C122—C123—H123 | 119.6 |
C21—O21—H21 | 109 (2) | C125—C124—C123 | 119.5 (2) |
C22—O23—H23 | 113 (2) | C125—C124—H124 | 120.2 |
O11—C11—C111 | 105.17 (14) | C123—C124—H124 | 120.2 |
O11—C11—C121 | 111.31 (14) | C124—C125—C126 | 120.5 (3) |
C111—C11—C121 | 114.39 (15) | C124—C125—H125 | 119.8 |
O11—C11—C12 | 106.46 (13) | C126—C125—H125 | 119.8 |
C111—C11—C12 | 112.70 (15) | C121—C126—C125 | 120.2 (2) |
C121—C11—C12 | 106.60 (14) | C121—C126—H126 | 119.9 |
O12—C12—O13 | 125.03 (18) | C125—C126—H126 | 119.9 |
O12—C12—C11 | 120.73 (17) | C212—C211—C216 | 119.03 (18) |
O13—C12—C11 | 114.23 (15) | C212—C211—C21 | 120.68 (17) |
O21—C21—C211 | 104.93 (14) | C216—C211—C21 | 119.99 (17) |
O21—C21—C221 | 111.09 (14) | C213—C212—C211 | 120.7 (2) |
C211—C21—C221 | 114.00 (15) | C213—C212—H212 | 119.7 |
O21—C21—C22 | 106.35 (14) | C211—C212—H212 | 119.7 |
C211—C21—C22 | 112.25 (15) | C212—C213—C214 | 120.1 (2) |
C221—C21—C22 | 107.97 (14) | C212—C213—H213 | 120.0 |
O22—C22—O23 | 124.86 (17) | C214—C213—H213 | 120.0 |
O22—C22—C21 | 121.29 (17) | C215—C214—C213 | 119.7 (2) |
O23—C22—C21 | 113.85 (15) | C215—C214—H214 | 120.1 |
C112—C111—C116 | 118.79 (18) | C213—C214—H214 | 120.1 |
C112—C111—C11 | 120.63 (17) | C214—C215—C216 | 120.4 (2) |
C116—C111—C11 | 120.13 (18) | C214—C215—H215 | 119.8 |
C111—C112—C113 | 120.7 (2) | C216—C215—H215 | 119.8 |
C111—C112—H112 | 119.6 | C211—C216—C215 | 120.1 (2) |
C113—C112—H112 | 119.6 | C211—C216—H216 | 120.0 |
C114—C113—C112 | 120.1 (2) | C215—C216—H216 | 120.0 |
C114—C113—H113 | 120.0 | C226—C221—C222 | 119.06 (19) |
C112—C113—H113 | 120.0 | C226—C221—C21 | 120.69 (17) |
C115—C114—C113 | 119.7 (2) | C222—C221—C21 | 120.25 (18) |
C115—C114—H114 | 120.1 | C223—C222—C221 | 120.1 (2) |
C113—C114—H114 | 120.1 | C223—C222—H222 | 120.0 |
C114—C115—C116 | 120.4 (2) | C221—C222—H222 | 120.0 |
C114—C115—H115 | 119.8 | C224—C223—C222 | 120.6 (3) |
C116—C115—H115 | 119.8 | C224—C223—H223 | 119.7 |
C115—C116—C111 | 120.3 (2) | C222—C223—H223 | 119.7 |
C115—C116—H116 | 119.8 | C225—C224—C223 | 119.5 (2) |
C111—C116—H116 | 119.8 | C225—C224—H224 | 120.2 |
C122—C121—C126 | 118.96 (19) | C223—C224—H224 | 120.2 |
C122—C121—C11 | 120.33 (18) | C224—C225—C226 | 120.4 (3) |
C126—C121—C11 | 120.71 (17) | C224—C225—H225 | 119.8 |
C123—C122—C121 | 120.0 (2) | C226—C225—H225 | 119.8 |
C123—C122—H122 | 120.0 | C221—C226—C225 | 120.3 (2) |
C121—C122—H122 | 120.0 | C221—C226—H226 | 119.9 |
C124—C123—C122 | 120.8 (3) | C225—C226—H226 | 119.9 |
O11—C11—C12—O12 | −21.8 (2) | C121—C122—C123—C124 | −0.2 (4) |
C111—C11—C12—O12 | −136.58 (19) | C122—C123—C124—C125 | −0.7 (4) |
C121—C11—C12—O12 | 97.1 (2) | C123—C124—C125—C126 | 1.2 (4) |
O11—C11—C12—O13 | 159.29 (16) | C122—C121—C126—C125 | −0.1 (3) |
C111—C11—C12—O13 | 44.5 (2) | C11—C121—C126—C125 | 179.2 (2) |
C121—C11—C12—O13 | −81.80 (19) | C124—C125—C126—C121 | −0.8 (4) |
O21—C21—C22—O22 | −16.9 (2) | O21—C21—C211—C212 | −84.3 (2) |
C211—C21—C22—O22 | −131.11 (18) | C221—C21—C211—C212 | 153.97 (17) |
C221—C21—C22—O22 | 102.4 (2) | C22—C21—C211—C212 | 30.8 (2) |
O21—C21—C22—O23 | 163.99 (15) | O21—C21—C211—C216 | 89.3 (2) |
C211—C21—C22—O23 | 49.8 (2) | C221—C21—C211—C216 | −32.4 (2) |
C221—C21—C22—O23 | −76.71 (19) | C22—C21—C211—C216 | −155.58 (18) |
O11—C11—C111—C112 | −80.9 (2) | C216—C211—C212—C213 | −0.3 (3) |
C121—C11—C111—C112 | 156.67 (18) | C21—C211—C212—C213 | 173.42 (19) |
C12—C11—C111—C112 | 34.7 (2) | C211—C212—C213—C214 | −0.2 (3) |
O11—C11—C111—C116 | 91.3 (2) | C212—C213—C214—C215 | 0.2 (4) |
C121—C11—C111—C116 | −31.1 (2) | C213—C214—C215—C216 | 0.3 (4) |
C12—C11—C111—C116 | −153.11 (18) | C212—C211—C216—C215 | 0.8 (3) |
C116—C111—C112—C113 | 1.0 (3) | C21—C211—C216—C215 | −173.0 (2) |
C11—C111—C112—C113 | 173.34 (19) | C214—C215—C216—C211 | −0.8 (4) |
C111—C112—C113—C114 | −0.9 (4) | O21—C21—C221—C226 | −4.3 (2) |
C112—C113—C114—C115 | 0.3 (4) | C211—C21—C221—C226 | 114.0 (2) |
C113—C114—C115—C116 | 0.1 (4) | C22—C21—C221—C226 | −120.55 (19) |
C114—C115—C116—C111 | 0.0 (4) | O21—C21—C221—C222 | 175.96 (18) |
C112—C111—C116—C115 | −0.5 (3) | C211—C21—C221—C222 | −65.7 (2) |
C11—C111—C116—C115 | −172.9 (2) | C22—C21—C221—C222 | 59.7 (2) |
O11—C11—C121—C122 | 176.53 (17) | C226—C221—C222—C223 | 0.7 (3) |
C111—C11—C121—C122 | −64.4 (2) | C21—C221—C222—C223 | −179.6 (2) |
C12—C11—C121—C122 | 60.8 (2) | C221—C222—C223—C224 | −0.8 (4) |
O11—C11—C121—C126 | −2.8 (2) | C222—C223—C224—C225 | −0.1 (4) |
C111—C11—C121—C126 | 116.3 (2) | C223—C224—C225—C226 | 1.2 (4) |
C12—C11—C121—C126 | −118.46 (19) | C222—C221—C226—C225 | 0.4 (3) |
C126—C121—C122—C123 | 0.6 (3) | C21—C221—C226—C225 | −179.4 (2) |
C11—C121—C122—C123 | −178.67 (19) | C224—C225—C226—C221 | −1.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···O22i | 0.87 (3) | 1.98 (3) | 2.7776 (19) | 153 (3) |
O13—H13···O11ii | 0.90 (3) | 1.77 (3) | 2.6545 (18) | 168 (3) |
O21—H21···O12 | 0.87 (3) | 1.97 (3) | 2.7461 (19) | 149 (3) |
O23—H23···O21ii | 0.93 (4) | 1.69 (4) | 2.6125 (19) | 172 (3) |
C126—H126···O12i | 0.95 | 2.58 | 3.472 (3) | 157 |
C226—H226···O22i | 0.95 | 2.55 | 3.447 (3) | 158 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2. |
References
Ahsan, M. R., Singh, L., Varma, H. & Mukherjee, A. (2023). Chem. Commun. 59, 12711–12714. CrossRef CAS Google Scholar
Berg, J., Gatto, G. Jr, Hines, J., Tymoczko, J. L. & Stryer, L. (2023). Biochemistry, 10th ed. New York: Macmillan Learning. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Betz, R., Betzler, F. & Klüfers, P. (2007). Acta Cryst. E63, o4184. CrossRef IUCr Journals Google Scholar
Betz, R. & Gerber, T. (2011). Acta Cryst. E67, o907. CrossRef IUCr Journals Google Scholar
Betz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o1063. CrossRef IUCr Journals Google Scholar
Betz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o3891. Web of Science CSD CrossRef IUCr Journals Google Scholar
Betz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4032. Web of Science CSD CrossRef IUCr Journals Google Scholar
Betz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o3932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Betz, R. & Klüfers, P. (2007d). Acta Cryst. E63, o4921. CrossRef IUCr Journals Google Scholar
Betz, R., Klüfers, P. & Mangstl, M. M. (2007). Acta Cryst. E63, o4144. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fischer, A. & Profir, V. M. (2003). Acta Cryst. E59, o1113–o1116. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gade, L. H. (1998). Koordinationschemie, 1st ed. Weinheim: Wiley-VCH. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Patil, A. O., Pennington, W. T., Paul, I. C., Curtin, D. Y. & Dykstra, C. E. (1987). J. Am. Chem. Soc. 109, 1529–1535. CSD CrossRef CAS Web of Science Google Scholar
Pijper, W. P. (1971). Acta Cryst. B27, 344–348. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Qiu, Y., Wang, K., Liu, Y., Deng, H., Sun, F. & Cai, Y. (2007). Inorg. Chim. Acta, 360, 1819–1824. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, S.-W., Harasimowicz, M. T., de Villiers, M. M. & Yu, L. (2013). J. Am. Chem. Soc. 135, 18981–18989. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.