organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Eth­­oxy-3-[4-(eth­­oxy­carbon­yl)phen­yl]-3-hy­dr­oxy-1-oxopropan-2-aminium chloride

crossmark logo

aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 10 October 2024; accepted 23 October 2024; online 31 October 2024)

The title compound, C14H20NO5+·Cl, was prepared as a racemate of R,R- and S,S-enanti­omers by reduction of the corresponding hy­droxy­imino­ketone. In the crystal, layers are formed via hydrogen bridges of four ammonium groups to chloride ions; these lamellae are connected via inter­digitated benzoic ester groups.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, [C14H20NO5]+·Cl (Fig. 1[link]), was prepared by nitro­sation of the corres­ponding keto-ester followed by catalytic reduction of the resulting hy­droxy­imino­ketone. As was observed with a similar oxime (Ebel & Deuschel, 1956[Ebel, F. & Deuschel, W. (1956). Chem. Ber. 89, 2799-2807.]), the hydrogenation occurred on both functional groups, the oxime and the ketone, generating two vicinal chiral centers. The crystalline compound obtained from the hydrogenation is a racemic mixture of the (S,S)- and (R,R)-enanti­omers. The compound crystallizes with a disordered benzoic ester function, the ratio of the two conformers being 0.745/0.255 (11). The minor occupied conformer exhibits a dihedral angle between the plane of the benzene ring and the ester function (C16A—O17A—O18A—C19A—C20A) of 29.8 (9)°, whereas in the major occupied conformer, the planes of the ring and the ethyl ester (C16—O17—O18—C19—C20) subtend an angle of 14.0 (3)°, with a maximum deviation of −0.148 (7) Å from the ester mean plane at C19. The other ester moiety (C9—C10—O11—O12—C13—C14) is also nearly planar [maximum deviation from mean plane on C14: 0.0733 (19) Å]. This plane and the benzene ring subtend a dihedral angle of 49.16 (8)°. The hy­droxy and amino groups are nearly staggered, the torsion angle O8—C7—C9—N15 being 71.81 (13)°. All the ammonium hydrogen atoms are connected with symmetry-related chloride ions via N—H⋯Cl hydrogen bonds (Fig. 2[link], Table 1[link]); furthermore, H15A forms an inter­molecular bond to the carbonyl oxygen O1, therefore, four mol­ecules are connected via hydrogen bonds to one chloride ion and a carbonyl O atom. The packing in the crystal is dominated by the hydrogen bridges, resulting in lamellae formation in the bc plane. These layers are connected in the ac plane via inter­digitated benzoic ester groups, connected via van der Waals inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl1 1.00 2.89 3.4784 (13) 119
C7—H7⋯Cl1i 1.00 2.96 3.6365 (14) 126
O8—H8⋯Cl1 0.84 (2) 2.24 (2) 3.0625 (11) 165.1 (19)
N15—H15A⋯Cl1i 0.87 (2) 2.53 (2) 3.2470 (13) 140.7 (16)
N15—H15A⋯O11ii 0.87 (2) 2.279 (19) 2.8484 (15) 123.0 (16)
N15—H15B⋯Cl1iii 0.94 (2) 2.31 (2) 3.2011 (12) 159.3 (15)
N15—H15C⋯Cl1iv 0.94 (2) 2.19 (2) 3.1155 (13) 168.4 (16)
C20—H20A⋯O17v 0.98 2.64 3.520 (6) 149
C20A—H20D⋯O18Avi 0.98 2.03 2.75 (2) 129
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z+1]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The bonds involving the minor occupied sites are drawn as broken bonds.
[Figure 2]
Figure 2
Part of the packing diagram. View along the c axis.

Synthesis and crystallization

Ethyl 4-(3-eth­oxy-3-oxo­propano­yl)benzoate (Korsager et al., 2013[Korsager, S., Nielsen, D. U., Taaning, R. H. & Skrydstrup, T. (2013). Angew. Chem. Int. Ed. 52, 9763-9766.]) (1.95 g, 7.4 mmol) was added to glacial acetic acid (1.8 ml) at 283 K. While stirring, a solution of 0.76 g NaNO2 (11 mmol) in a minimal amount of water was added dropwise. The mixture was allowed to reach room temperature and after stirring for 1 h, the product was extracted with ethyl acetate, pooled extracts were deacidified with sodium bicarbonate, dried, and the product, ethyl 4-(3-eth­oxy-2-hy­droxy­imino-3-oxo­propano­yl)benzoate, was purified by column chromatography (SiO2, petroleum ether/ethyl acetate 20/1, then toluene /ethyl acetate 9/1) colorless oil, yield: 1.43 g, 66%. 200 mg (0.7 mmol) of this compound were dissolved in ethanol (1 ml) and Pd/C (5%, 0.24 g) and hydro­chloric acid (36%, 0.05 ml) were added, stirring for 48 h in a hydrogen atmos­phere. The mixture was filtered through silica, the silica washed with ethanol and the solvent was slowly evaporated to obtain 63 mg (0.2 mmol, 32%) as a colorless solid with m.p.= 445-447 K. 1H-NMR (400 MHz, D2O): 7.97 (m, 2 H), 7.43 (d, J = 8.3 Hz, 2 H), 5.39 (d, 1 H), 4.44 (q, 1 H), 4.29 (m, J = 7.1 Hz, 2 H), 4.04 (qd, J = 7.2 Hz, 2 H), 1.28 (t, J = 7.1 Hz, 3 H), 0.97 (t, J = 7.1 Hz, 3 H). C-NMR (100 MHz, D2O): 168.52, 167.16, 143.05, 130.05, 129.68, 126.07, 70.57, 63.29, 62,34, 58.16, 13.34, 12.89. IR: 2985, 2356, 1718, 1506, 1370, 1277, 1107, 1017, 960, 868, 862, 821, 805 cm−1. MS (ESI) 282.13.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H20NO5+·Cl
Mr 317.76
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 20.5205 (9), 8.1626 (3), 9.4732 (4)
β (°) 90.788 (4)
V3) 1586.62 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.45 × 0.26 × 0.07
 
Data collection
Diffractometer Stoe IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 13552, 3856, 3370
Rint 0.025
(sin θ/λ)max−1) 0.663
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.07
No. of reflections 3856
No. of parameters 253
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.24
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt,]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

1-Ethoxy-3-[4-(ethoxycarbonyl)phenyl]-3-hydroxy-1-oxopropan-2-aminium chloride top
Crystal data top
C14H20NO5+·ClF(000) = 672
Mr = 317.76Dx = 1.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.5205 (9) ÅCell parameters from 20325 reflections
b = 8.1626 (3) Åθ = 2.7–28.6°
c = 9.4732 (4) ŵ = 0.26 mm1
β = 90.788 (4)°T = 120 K
V = 1586.62 (11) Å3Plate, colorless
Z = 40.45 × 0.26 × 0.07 mm
Data collection top
Stoe IPDS 2T
diffractometer
3370 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12x0.4mm long-fine focusRint = 0.025
Detector resolution: 6.67 pixels mm-1θmax = 28.1°, θmin = 2.7°
rotation method, ω scansh = 2627
13552 measured reflectionsk = 1010
3856 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.8357P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3856 reflectionsΔρmax = 0.37 e Å3
253 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with Caromatic–H = 0.95 Å, Cmethyl–H = 0.98 Å, Cmethylene–H = 0.99 Å, Ctertiary–H = 1.00 Å, and with Uiso(H) = 1.5 Ueq(Cmethyl) or with Uiso(H) = 1.2 Ueq(C). The methyl groups were allowed to rotate but not to tip. The H atom bonded to O was freely refined. The coordinates of the H atoms bonded to N were freely refined, using the same displacement parameter for all of them.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.04788 (2)0.74584 (4)0.53772 (3)0.02717 (10)
C10.20763 (7)0.53804 (17)0.26788 (16)0.0290 (3)
C20.25645 (7)0.4881 (2)0.36094 (18)0.0396 (4)
H20.2454920.4366950.4473960.047*
C30.32166 (8)0.5135 (3)0.3275 (2)0.0489 (5)
H30.3549620.4800690.3919410.059*
C40.33832 (8)0.5868 (2)0.2013 (2)0.0459 (4)
C50.28952 (8)0.6384 (2)0.1090 (2)0.0432 (4)
H50.3006190.6897100.0226320.052*
C60.22461 (8)0.61534 (19)0.14216 (18)0.0356 (3)
H60.1914390.6524000.0789230.043*
C70.13615 (6)0.51234 (17)0.29996 (14)0.0247 (3)
H70.1135790.6206390.2925710.030*
O80.12629 (5)0.44954 (13)0.43765 (10)0.0290 (2)
H80.1037 (10)0.520 (3)0.479 (2)0.044 (5)*
C90.10290 (6)0.39315 (16)0.19502 (14)0.0224 (3)
H90.1164690.4197790.0966630.027*
C100.11986 (6)0.21598 (16)0.22877 (14)0.0242 (3)
O110.08032 (5)0.11362 (12)0.25813 (12)0.0318 (2)
O120.18364 (5)0.19266 (13)0.22279 (11)0.0302 (2)
C130.20667 (8)0.0287 (2)0.25851 (19)0.0387 (4)
H13A0.1926950.0508540.1852130.046*
H13B0.1889890.0065960.3503520.046*
C140.27998 (9)0.0386 (3)0.2664 (2)0.0529 (5)
H14A0.2979700.0704630.2856450.079*
H14B0.2930630.1137330.3423810.079*
H14C0.2965760.0790710.1763890.079*
N150.03125 (5)0.41088 (15)0.20662 (13)0.0244 (2)
H15A0.0204 (9)0.513 (3)0.193 (2)0.037 (3)*
H15B0.0158 (9)0.381 (2)0.296 (2)0.037 (3)*
H15C0.0093 (9)0.347 (2)0.139 (2)0.037 (3)*
C160.40734 (16)0.6211 (5)0.1514 (7)0.0389 (10)0.745 (11)
O170.42199 (18)0.6711 (5)0.0352 (5)0.0582 (9)0.745 (11)
O180.44929 (13)0.5912 (7)0.2542 (4)0.0615 (10)0.745 (11)
C190.51701 (16)0.6271 (9)0.2243 (5)0.0714 (15)0.745 (11)
H19A0.5208570.7340030.1757590.086*0.745 (11)
H19B0.5357690.5410440.1634860.086*0.745 (11)
C200.55162 (16)0.6316 (9)0.3649 (5)0.0711 (13)0.745 (11)
H20A0.5303600.7115480.4262590.085*0.745 (11)
H20B0.5971860.6633540.3516740.085*0.745 (11)
H20C0.5499000.5229240.4086360.085*0.745 (11)
C16A0.4092 (10)0.583 (2)0.2027 (17)0.062 (5)0.255 (11)
O17A0.4281 (7)0.6462 (18)0.0916 (14)0.070 (3)0.255 (11)
O18A0.4507 (3)0.5225 (12)0.2963 (14)0.049 (2)0.255 (11)
C19A0.5220 (4)0.5443 (15)0.2706 (19)0.061 (4)0.255 (11)
H19C0.5471170.4630370.3265740.073*0.255 (11)
H19D0.5310530.5257590.1694900.073*0.255 (11)
C20A0.5421 (5)0.710 (2)0.311 (2)0.069 (4)0.255 (11)
H20D0.5215170.7894920.2467250.103*0.255 (11)
H20E0.5895820.7192290.3047790.103*0.255 (11)
H20F0.5286350.7322730.4077780.103*0.255 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03246 (18)0.02436 (17)0.02476 (16)0.00383 (12)0.00350 (12)0.00027 (12)
C10.0241 (6)0.0261 (7)0.0367 (7)0.0015 (5)0.0013 (5)0.0113 (6)
C20.0272 (7)0.0524 (10)0.0391 (8)0.0013 (7)0.0027 (6)0.0125 (7)
C30.0260 (8)0.0657 (12)0.0549 (11)0.0042 (8)0.0059 (7)0.0210 (9)
C40.0282 (8)0.0449 (9)0.0649 (12)0.0056 (7)0.0105 (7)0.0211 (9)
C50.0369 (8)0.0345 (8)0.0585 (11)0.0070 (7)0.0125 (7)0.0056 (8)
C60.0305 (7)0.0286 (7)0.0479 (9)0.0028 (6)0.0046 (6)0.0040 (6)
C70.0235 (6)0.0248 (6)0.0257 (6)0.0012 (5)0.0003 (5)0.0037 (5)
O80.0306 (5)0.0323 (5)0.0242 (5)0.0066 (4)0.0009 (4)0.0040 (4)
C90.0206 (6)0.0227 (6)0.0239 (6)0.0000 (5)0.0005 (5)0.0008 (5)
C100.0250 (6)0.0252 (6)0.0223 (6)0.0026 (5)0.0007 (5)0.0035 (5)
O110.0303 (5)0.0238 (5)0.0415 (6)0.0008 (4)0.0059 (4)0.0021 (4)
O120.0250 (5)0.0282 (5)0.0372 (5)0.0050 (4)0.0006 (4)0.0044 (4)
C130.0395 (8)0.0339 (8)0.0425 (9)0.0154 (7)0.0041 (7)0.0026 (7)
C140.0408 (9)0.0609 (12)0.0566 (11)0.0239 (9)0.0127 (8)0.0142 (9)
N150.0221 (5)0.0233 (5)0.0277 (6)0.0006 (4)0.0010 (4)0.0017 (5)
C160.0231 (14)0.0503 (19)0.044 (3)0.0071 (12)0.0116 (14)0.0005 (17)
O170.0346 (11)0.0832 (19)0.057 (2)0.0068 (11)0.0143 (15)0.0125 (17)
O180.0223 (10)0.098 (3)0.0647 (17)0.0070 (14)0.0010 (10)0.0146 (17)
C190.0209 (13)0.112 (4)0.081 (2)0.0046 (19)0.0032 (13)0.014 (3)
C200.0244 (13)0.106 (4)0.083 (3)0.0029 (18)0.0030 (14)0.012 (2)
C16A0.101 (12)0.054 (7)0.033 (7)0.031 (6)0.041 (7)0.003 (5)
O17A0.054 (6)0.113 (8)0.044 (6)0.022 (5)0.025 (5)0.021 (5)
O18A0.024 (3)0.046 (4)0.076 (6)0.005 (3)0.014 (3)0.001 (3)
C19A0.021 (4)0.054 (6)0.108 (11)0.007 (4)0.011 (5)0.006 (6)
C20A0.029 (5)0.079 (9)0.098 (11)0.013 (5)0.015 (5)0.016 (7)
Geometric parameters (Å, º) top
C1—C21.387 (2)C13—H13B0.9900
C1—C61.396 (2)C14—H14A0.9800
C1—C71.5165 (18)C14—H14B0.9800
C2—C31.395 (2)C14—H14C0.9800
C2—H20.9500N15—H15A0.87 (2)
C3—C41.384 (3)N15—H15B0.94 (2)
C3—H30.9500N15—H15C0.94 (2)
C4—C51.386 (3)C16—O171.216 (5)
C4—C16A1.45 (2)C16—O181.314 (5)
C4—C161.525 (5)O18—C191.452 (4)
C5—C61.385 (2)C19—C201.501 (7)
C5—H50.9500C19—H19A0.9900
C6—H60.9500C19—H19B0.9900
C7—O81.4186 (16)C20—H20A0.9800
C7—C91.5433 (18)C20—H20B0.9800
C7—H71.0000C20—H20C0.9800
O8—H80.84 (2)C16A—O17A1.238 (10)
C9—N151.4831 (16)C16A—O18A1.32 (2)
C9—C101.5204 (18)O18A—C19A1.496 (11)
C9—H91.0000C19A—C20A1.463 (18)
C10—O111.2000 (17)C19A—H19C0.9900
C10—O121.3245 (16)C19A—H19D0.9900
O12—C131.4579 (18)C20A—H20D0.9800
C13—C141.508 (2)C20A—H20E0.9800
C13—H13A0.9900C20A—H20F0.9800
C2—C1—C6119.24 (14)C13—C14—H14B109.5
C2—C1—C7121.62 (14)H14A—C14—H14B109.5
C6—C1—C7119.14 (13)C13—C14—H14C109.5
C1—C2—C3119.93 (17)H14A—C14—H14C109.5
C1—C2—H2120.0H14B—C14—H14C109.5
C3—C2—H2120.0C9—N15—H15A109.5 (12)
C4—C3—C2120.63 (17)C9—N15—H15B112.9 (11)
C4—C3—H3119.7H15A—N15—H15B107.4 (17)
C2—C3—H3119.7C9—N15—H15C111.3 (11)
C3—C4—C5119.42 (15)H15A—N15—H15C108.0 (17)
C3—C4—C16A104.1 (7)H15B—N15—H15C107.7 (16)
C5—C4—C16A136.5 (7)O17—C16—O18124.5 (3)
C3—C4—C16126.1 (3)O17—C16—C4125.8 (3)
C5—C4—C16114.5 (3)O18—C16—C4109.8 (4)
C6—C5—C4120.30 (17)C16—O18—C19115.9 (3)
C6—C5—H5119.8O18—C19—C20105.9 (3)
C4—C5—H5119.8O18—C19—H19A110.6
C5—C6—C1120.44 (16)C20—C19—H19A110.6
C5—C6—H6119.8O18—C19—H19B110.6
C1—C6—H6119.8C20—C19—H19B110.6
O8—C7—C1112.63 (11)H19A—C19—H19B108.7
O8—C7—C9107.28 (11)C19—C20—H20A109.5
C1—C7—C9112.23 (11)C19—C20—H20B109.5
O8—C7—H7108.2H20A—C20—H20B109.5
C1—C7—H7108.2C19—C20—H20C109.5
C9—C7—H7108.2H20A—C20—H20C109.5
C7—O8—H8105.4 (14)H20B—C20—H20C109.5
N15—C9—C10107.55 (10)O17A—C16A—O18A121.4 (15)
N15—C9—C7108.70 (10)O17A—C16A—C4108.0 (16)
C10—C9—C7111.49 (11)O18A—C16A—C4130.6 (9)
N15—C9—H9109.7C16A—O18A—C19A118.1 (9)
C10—C9—H9109.7C20A—C19A—O18A109.9 (8)
C7—C9—H9109.7C20A—C19A—H19C109.7
O11—C10—O12125.56 (13)O18A—C19A—H19C109.7
O11—C10—C9123.88 (12)C20A—C19A—H19D109.7
O12—C10—C9110.56 (11)O18A—C19A—H19D109.7
C10—O12—C13116.06 (12)H19C—C19A—H19D108.2
O12—C13—C14106.39 (15)C19A—C20A—H20D109.5
O12—C13—H13A110.5C19A—C20A—H20E109.5
C14—C13—H13A110.5H20D—C20A—H20E109.5
O12—C13—H13B110.5C19A—C20A—H20F109.5
C14—C13—H13B110.5H20D—C20A—H20F109.5
H13A—C13—H13B108.6H20E—C20A—H20F109.5
C13—C14—H14A109.5
C6—C1—C2—C30.8 (2)C7—C9—C10—O11119.45 (14)
C7—C1—C2—C3179.81 (15)N15—C9—C10—O12178.83 (11)
C1—C2—C3—C40.6 (3)C7—C9—C10—O1259.76 (14)
C2—C3—C4—C51.3 (3)O11—C10—O12—C131.5 (2)
C2—C3—C4—C16A177.1 (6)C9—C10—O12—C13177.71 (11)
C2—C3—C4—C16179.7 (2)C10—O12—C13—C14171.43 (13)
C3—C4—C5—C60.6 (3)C3—C4—C16—O17172.6 (4)
C16A—C4—C5—C6177.3 (8)C5—C4—C16—O178.4 (5)
C16—C4—C5—C6179.65 (19)C3—C4—C16—O188.6 (4)
C4—C5—C6—C10.9 (2)C5—C4—C16—O18170.4 (3)
C2—C1—C6—C51.6 (2)O17—C16—O18—C192.1 (6)
C7—C1—C6—C5179.05 (14)C4—C16—O18—C19176.8 (3)
C2—C1—C7—O86.05 (19)C16—O18—C19—C20163.8 (7)
C6—C1—C7—O8173.30 (12)C3—C4—C16A—O17A179.4 (10)
C2—C1—C7—C9115.16 (15)C5—C4—C16A—O17A1.4 (17)
C6—C1—C7—C965.49 (17)C3—C4—C16A—O18A1.8 (14)
O8—C7—C9—N1571.81 (13)C5—C4—C16A—O18A176.2 (8)
C1—C7—C9—N15163.95 (11)O17A—C16A—O18A—C19A5.2 (19)
O8—C7—C9—C1046.57 (14)C4—C16A—O18A—C19A177.5 (10)
C1—C7—C9—C1077.66 (14)C16A—O18A—C19A—C20A79.2 (19)
N15—C9—C10—O110.38 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl11.002.893.4784 (13)119
C7—H7···Cl1i1.002.963.6365 (14)126
O8—H8···Cl10.84 (2)2.24 (2)3.0625 (11)165.1 (19)
N15—H15A···Cl1i0.87 (2)2.53 (2)3.2470 (13)140.7 (16)
N15—H15A···O11ii0.87 (2)2.279 (19)2.8484 (15)123.0 (16)
N15—H15B···Cl1iii0.94 (2)2.31 (2)3.2011 (12)159.3 (15)
N15—H15C···Cl1iv0.94 (2)2.19 (2)3.1155 (13)168.4 (16)
C20—H20A···O17v0.982.643.520 (6)149
C20A—H20D···O18Avi0.982.032.75 (2)129
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x+1, y+1/2, z+1/2.
 

References

First citationEbel, F. & Deuschel, W. (1956). Chem. Ber. 89, 2799–2807.  CrossRef CAS Google Scholar
First citationKorsager, S., Nielsen, D. U., Taaning, R. H. & Skrydstrup, T. (2013). Angew. Chem. Int. Ed. 52, 9763–9766.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt,  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146