metal-organic compounds
Δ-Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N′)ruthenium(III) hexafluoridophosphate
aDepartment of Chemical Sciences, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
*Correspondence e-mail: mansieurkelani@gmail.com
The title compound, [Ru(C12H14NO2)2(C12H8N2)]PF6 crystallizes in the tetragonal Sohnke P41212. The two bidentate chiral salicyloxazoline ligands and the phenanthroline co-ligand coordinate to the central RuIII atom through N,O and N,N atom pairs to form bite angles of 89.76 (15) and 79.0 (2)°, respectively. The octahedral coordination of the bidentate ligands leads to a propeller-like shape, which induces metal-centered onto the complex, with a right-handed (Δ) [the value is −0.003 (14)]. Both the complex cation and the disordered PF6− counter-anion are located on twofold rotation axes. Apart from Coulombic forces, the crystal cohesion is ensured by non-classical C—H⋯O and C—H⋯F interactions.
CCDC reference: 2383614
Structure description
The syntheses of optically pure metal complexes are usually costly and sophisticated, especially with the use of traditional methods for the resolution of racemic mixtures. A straightforward alternative strategy, therefore, requires the coordination of pure chiral auxiliary ligands tailored for the selective synthesis of ). Hayoz and co-workers were the first to report the diastereoselective synthesis of optically pure ruthenium polypyridyl complexes in the quest for generating compounds with metal-centered so-called chiral-at-metal complexes (Hayoz et al., 1993). Such metal-centered refers to the type of induced at a central metal atom as a result of an helical octahedral coordination around a metal in bis-chelate or tris-chelate systems. In this context, optically pure salicyloxazoline is often used as an auxiliary ligand to implement and control the at central metal atoms during ligand exchange. In this case, the absolute configurations at the central metal could either be right-handed or left-handed twist systems, which are symbolized by Δ and Λ stereochemical descriptors, respectively (Gong et al., 2010). The salicyloxazoline ligand is often used in this manner because of its reversible coordination upon acid protonation of its phenolate group while leaving the stereochemistry of the metal complex intact (Gong et al., 2009, 2010, 2013).
which are easily converted to the corresponding enantiomerically pure complexes (Knof & von Zelewsky, 1999The complex cation of the title salt constitutes of two optically pure bidentate salicyloxazoline ligands and a phenanthroline co-ligand arranged within an octahedral coordination sphere around the central RuIII atom, which is located about a twofold rotation axis bisecting the phenantroline ligand (Fig. 1). This right-handed twist of the ligands leads to a Δ stereochemical configuration of the complex; the correctness of the is indicated by a (Parsons et al., 2013) value of −0.003 (14). The bite angles, 89.76 (15)°, for the salicyloxazoline ligands are comparable with reported values, e.g. 86.68° (Brunner et al., 1998), 88.29° (Davenport et al., 2004), 86.88° (Kelani et al., 2024), or 90.00 (Gong et al., 2010) while that for the phenanthroline ligand, 79.0 (2)°, is almost similar to that of 80.12° (Gong et al., 2010). The bond lengths of the RuIII atom with the ligating atoms of 1.974 (3), 2.079 (4) and 2.072 (4) Å to O1, N1(phenanthroline) and N2(salicyloxazoline) atoms, respectively, also agree well with reported values. The crystal packing (Fig. 2) includes the disordered PF6− counter-anion (located about a twofold rotation axis). Non-classical intermolecular interactions featuring C—H⋯O and C—H⋯F contacts (Table 1) are present.
Synthesis and crystallization
Dichlorido-bis(1,10-phenanthroline)ruthenium(II) (50.0 mg, 0.09 mmol, 1 eq) was added to (S)-isopropyl-2-(2-hydroxyphenyl)oxazoline (38.5 mg, 0.2 mmol, 2 eq) in ethanol in the presence of K2CO3 (26.0 mg, 0.2 mmol, 2 eq). The reaction mixture was refluxed for 6 h under continuous stirring after which it was cooled to room temperature and then concentrated in vacuo under reduced pressure. The crude product was purified by with silica gel using a solvent system of CH2Cl2:CH3OH:CH3CN = 9.7:0.2:0.1 v:v:v) to obtain a purple crystalline compound. Yield, 31 mg (46%, 0.04 mmol).
Refinement
Details of the data collection, solution and . The disordered PF6− anion was treated as equally disordered around the twofold rotation axis and was kept stable with SADI, SIMU and DELU restraints in SHELXL (Sheldrick, 2015b). The highest remaining maximum and minimum electron density are 1.32 and 0.76 Å away from F1A and Ru1, respectively.
are given in Table 2Structural data
CCDC reference: 2383614
https://doi.org/10.1107/S2414314624008939/wm4221sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624008939/wm4221Isup3.hkl
[Ru(C12H14NO2)2(C12H8N2)]PF6 | Dx = 1.545 Mg m−3 |
Mr = 834.73 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41212 | Cell parameters from 8341 reflections |
a = 15.3094 (13) Å | θ = 2.3–20.4° |
c = 15.315 (2) Å | µ = 0.56 mm−1 |
V = 3589.5 (8) Å3 | T = 173 K |
Z = 4 | Cuboid, purple |
F(000) = 1700 | 0.46 × 0.43 × 0.42 mm |
Bruker APEXII CCD diffractometer | 4516 independent reflections |
Radiation source: sealed-tube | 3564 reflections with I > 2σ(I) |
Triumph monochromator | Rint = 0.067 |
φ and ω scans | θmax = 28.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −20→20 |
Tmin = 0.638, Tmax = 0.746 | k = −20→20 |
53896 measured reflections | l = −20→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0587P)2 + 0.7144P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4516 reflections | Δρmax = 0.38 e Å−3 |
245 parameters | Δρmin = −0.41 e Å−3 |
26 restraints | Absolute structure: Flack x determined using 1296 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.003 (14) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.2882 (4) | 0.4278 (4) | 0.6429 (3) | 0.0615 (13) | |
H1 | 0.237967 | 0.400278 | 0.666771 | 0.074* | |
C2 | 0.3215 (4) | 0.5005 (4) | 0.6832 (4) | 0.0760 (18) | |
H2 | 0.294934 | 0.521584 | 0.735125 | 0.091* | |
C3 | 0.3917 (5) | 0.5426 (4) | 0.6499 (4) | 0.0828 (19) | |
H3 | 0.412522 | 0.594417 | 0.676826 | 0.099* | |
C4 | 0.4345 (4) | 0.5090 (4) | 0.5742 (4) | 0.0615 (13) | |
C5 | 0.3979 (3) | 0.4353 (3) | 0.5381 (3) | 0.0463 (10) | |
C6 | 0.5100 (4) | 0.5455 (4) | 0.5356 (4) | 0.0723 (16) | |
H6 | 0.535851 | 0.595990 | 0.560765 | 0.087* | |
C7 | 0.3015 (3) | 0.1129 (3) | 0.4108 (3) | 0.0539 (12) | |
C8 | 0.2786 (4) | 0.0607 (4) | 0.3381 (3) | 0.0678 (14) | |
H8 | 0.238849 | 0.082913 | 0.295931 | 0.081* | |
C9 | 0.3130 (5) | −0.0217 (4) | 0.3273 (4) | 0.0815 (19) | |
H9 | 0.295857 | −0.055716 | 0.278301 | 0.098* | |
C10 | 0.3710 (5) | −0.0552 (4) | 0.3853 (5) | 0.0852 (19) | |
H10 | 0.393287 | −0.112595 | 0.377536 | 0.102* | |
C11 | 0.3975 (4) | −0.0054 (4) | 0.4556 (5) | 0.0759 (17) | |
H11 | 0.439237 | −0.028411 | 0.495301 | 0.091* | |
C12 | 0.3633 (4) | 0.0795 (3) | 0.4695 (3) | 0.0592 (12) | |
C13 | 0.3904 (3) | 0.1261 (4) | 0.5476 (3) | 0.0553 (12) | |
C14 | 0.4704 (4) | 0.1478 (5) | 0.6678 (4) | 0.0838 (19) | |
H14A | 0.529714 | 0.171713 | 0.658200 | 0.101* | |
H14B | 0.468526 | 0.119533 | 0.725909 | 0.101* | |
C15 | 0.4011 (3) | 0.2208 (4) | 0.6615 (3) | 0.0618 (13) | |
H15 | 0.430056 | 0.279348 | 0.662139 | 0.074* | |
C16 | 0.3308 (4) | 0.2163 (4) | 0.7321 (3) | 0.0730 (15) | |
H16 | 0.285475 | 0.260943 | 0.717068 | 0.088* | |
C17 | 0.2847 (5) | 0.1280 (5) | 0.7371 (4) | 0.102 (2) | |
H17A | 0.240548 | 0.129560 | 0.783417 | 0.152* | |
H17B | 0.256291 | 0.115575 | 0.681064 | 0.152* | |
H17C | 0.327529 | 0.082258 | 0.749904 | 0.152* | |
C18 | 0.3698 (6) | 0.2424 (7) | 0.8209 (4) | 0.122 (3) | |
H18A | 0.398851 | 0.299210 | 0.815570 | 0.183* | |
H18B | 0.323026 | 0.246367 | 0.864392 | 0.183* | |
H18C | 0.412379 | 0.198299 | 0.839249 | 0.183* | |
N1 | 0.3248 (2) | 0.3946 (3) | 0.5709 (2) | 0.0483 (9) | |
N2 | 0.3638 (3) | 0.2026 (3) | 0.5728 (2) | 0.0523 (9) | |
O1 | 0.2614 (2) | 0.1896 (2) | 0.4175 (2) | 0.0570 (9) | |
O2 | 0.4479 (3) | 0.0854 (3) | 0.5994 (3) | 0.0767 (11) | |
F1A | 0.6349 (16) | 0.2780 (8) | 0.7374 (14) | 0.203 (8) | 0.5 |
F1B | 0.6026 (17) | 0.3041 (13) | 0.8114 (17) | 0.250 (11) | 0.5 |
F2 | 0.5257 (5) | 0.3866 (6) | 0.7660 (8) | 0.247 (5) | |
F3 | 0.6459 (7) | 0.4151 (7) | 0.8395 (6) | 0.241 (4) | |
P1 | 0.6246 (2) | 0.3754 (2) | 0.750000 | 0.1405 (16) | |
Ru1 | 0.28566 (2) | 0.28566 (2) | 0.500000 | 0.04461 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.049 (3) | 0.084 (4) | 0.051 (2) | 0.001 (3) | 0.006 (2) | −0.025 (2) |
C2 | 0.064 (3) | 0.093 (4) | 0.072 (3) | 0.001 (3) | 0.007 (3) | −0.046 (3) |
C3 | 0.096 (5) | 0.072 (4) | 0.080 (4) | 0.000 (3) | −0.015 (4) | −0.036 (3) |
C4 | 0.060 (3) | 0.062 (3) | 0.063 (3) | −0.004 (2) | −0.009 (3) | −0.013 (3) |
C5 | 0.046 (2) | 0.048 (2) | 0.046 (2) | 0.0082 (19) | −0.0020 (19) | −0.0070 (19) |
C6 | 0.067 (4) | 0.060 (3) | 0.090 (4) | −0.017 (3) | −0.005 (3) | −0.006 (3) |
C7 | 0.063 (3) | 0.050 (3) | 0.049 (2) | −0.013 (2) | 0.009 (2) | −0.0008 (19) |
C8 | 0.076 (4) | 0.068 (3) | 0.060 (3) | −0.015 (3) | 0.009 (3) | −0.015 (3) |
C9 | 0.098 (5) | 0.065 (4) | 0.081 (4) | −0.015 (3) | 0.020 (4) | −0.025 (3) |
C10 | 0.091 (5) | 0.059 (4) | 0.106 (5) | −0.001 (3) | 0.021 (4) | −0.018 (4) |
C11 | 0.069 (4) | 0.060 (3) | 0.099 (4) | 0.001 (3) | 0.020 (3) | −0.003 (3) |
C12 | 0.063 (3) | 0.056 (3) | 0.060 (3) | −0.006 (2) | 0.013 (2) | 0.005 (2) |
C13 | 0.055 (3) | 0.057 (3) | 0.054 (3) | −0.001 (2) | 0.004 (2) | 0.004 (2) |
C14 | 0.078 (4) | 0.108 (5) | 0.066 (3) | 0.011 (4) | −0.018 (3) | 0.017 (4) |
C15 | 0.063 (3) | 0.073 (3) | 0.049 (2) | −0.003 (3) | −0.012 (2) | 0.005 (3) |
C16 | 0.076 (3) | 0.098 (4) | 0.044 (3) | −0.001 (4) | −0.003 (2) | 0.001 (3) |
C17 | 0.110 (5) | 0.124 (6) | 0.071 (4) | −0.029 (5) | 0.013 (4) | 0.019 (4) |
C18 | 0.125 (6) | 0.195 (10) | 0.047 (3) | −0.025 (6) | −0.005 (4) | −0.020 (4) |
N1 | 0.042 (2) | 0.061 (2) | 0.0424 (18) | 0.0039 (17) | −0.0001 (16) | −0.0117 (17) |
N2 | 0.054 (2) | 0.064 (3) | 0.0390 (16) | −0.0075 (19) | −0.0008 (16) | 0.0044 (19) |
O1 | 0.071 (2) | 0.0503 (19) | 0.0500 (17) | −0.0074 (16) | −0.0063 (16) | −0.0046 (14) |
O2 | 0.082 (3) | 0.072 (3) | 0.075 (3) | 0.009 (2) | −0.015 (2) | 0.012 (2) |
F1A | 0.29 (2) | 0.091 (7) | 0.225 (17) | 0.020 (10) | −0.067 (18) | −0.003 (11) |
F1B | 0.24 (2) | 0.145 (16) | 0.36 (3) | −0.025 (16) | 0.01 (2) | 0.080 (16) |
F2 | 0.149 (6) | 0.235 (9) | 0.357 (14) | −0.025 (6) | −0.022 (8) | −0.047 (11) |
F3 | 0.268 (10) | 0.262 (11) | 0.194 (8) | −0.019 (9) | −0.078 (8) | −0.046 (8) |
P1 | 0.1223 (17) | 0.1223 (17) | 0.177 (4) | −0.025 (2) | −0.051 (2) | −0.051 (2) |
Ru1 | 0.04954 (19) | 0.04954 (19) | 0.0347 (2) | −0.0046 (2) | 0.00213 (16) | −0.00213 (16) |
C1—N1 | 1.337 (5) | C13—N2 | 1.299 (7) |
C1—C2 | 1.370 (8) | C13—O2 | 1.338 (6) |
C1—H1 | 0.9500 | C14—O2 | 1.458 (7) |
C2—C3 | 1.353 (9) | C14—C15 | 1.544 (8) |
C2—H2 | 0.9500 | C14—H14A | 0.9900 |
C3—C4 | 1.426 (8) | C14—H14B | 0.9900 |
C3—H3 | 0.9500 | C15—N2 | 1.499 (6) |
C4—C5 | 1.375 (7) | C15—C16 | 1.528 (7) |
C4—C6 | 1.414 (8) | C15—H15 | 1.0000 |
C5—N1 | 1.376 (6) | C16—C17 | 1.527 (10) |
C5—C5i | 1.421 (8) | C16—C18 | 1.538 (8) |
C6—C6i | 1.335 (12) | C16—H16 | 1.0000 |
C6—H6 | 0.9500 | C17—H17A | 0.9800 |
C7—O1 | 1.329 (6) | C17—H17B | 0.9800 |
C7—C12 | 1.402 (7) | C17—H17C | 0.9800 |
C7—C8 | 1.414 (7) | C18—H18A | 0.9800 |
C8—C9 | 1.377 (9) | C18—H18B | 0.9800 |
C8—H8 | 0.9500 | C18—H18C | 0.9800 |
C9—C10 | 1.356 (10) | N1—Ru1 | 2.079 (4) |
C9—H9 | 0.9500 | N2—Ru1 | 2.072 (4) |
C10—C11 | 1.380 (9) | O1—Ru1 | 1.974 (3) |
C10—H10 | 0.9500 | F1A—P1 | 1.512 (12) |
C11—C12 | 1.418 (8) | F1B—P1 | 1.479 (14) |
C11—H11 | 0.9500 | F2—P1 | 1.544 (8) |
C12—C13 | 1.453 (7) | F3—P1 | 1.535 (8) |
N1—C1—C2 | 121.6 (5) | H17A—C17—H17B | 109.5 |
N1—C1—H1 | 119.2 | C16—C17—H17C | 109.5 |
C2—C1—H1 | 119.2 | H17A—C17—H17C | 109.5 |
C3—C2—C1 | 120.8 (5) | H17B—C17—H17C | 109.5 |
C3—C2—H2 | 119.6 | C16—C18—H18A | 109.5 |
C1—C2—H2 | 119.6 | C16—C18—H18B | 109.5 |
C2—C3—C4 | 120.0 (5) | H18A—C18—H18B | 109.5 |
C2—C3—H3 | 120.0 | C16—C18—H18C | 109.5 |
C4—C3—H3 | 120.0 | H18A—C18—H18C | 109.5 |
C5—C4—C6 | 119.3 (5) | H18B—C18—H18C | 109.5 |
C5—C4—C3 | 115.8 (5) | C1—N1—C5 | 118.0 (4) |
C6—C4—C3 | 124.9 (5) | C1—N1—Ru1 | 127.9 (4) |
C4—C5—N1 | 123.8 (4) | C5—N1—Ru1 | 114.1 (3) |
C4—C5—C5i | 119.8 (3) | C13—N2—C15 | 108.5 (4) |
N1—C5—C5i | 116.4 (2) | C13—N2—Ru1 | 125.1 (3) |
C6i—C6—C4 | 120.9 (3) | C15—N2—Ru1 | 126.4 (4) |
C6i—C6—H6 | 119.5 | C7—O1—Ru1 | 128.4 (3) |
C4—C6—H6 | 119.5 | C13—O2—C14 | 106.1 (4) |
O1—C7—C12 | 125.7 (4) | F1B—P1—F1Bii | 138 (2) |
O1—C7—C8 | 116.5 (5) | F1B—P1—F1Aii | 93.8 (14) |
C12—C7—C8 | 117.8 (5) | F1Bii—P1—F1Aii | 51.5 (10) |
C9—C8—C7 | 121.1 (6) | F1A—P1—F1Aii | 79.1 (18) |
C9—C8—H8 | 119.4 | F1B—P1—F3 | 76.9 (11) |
C7—C8—H8 | 119.4 | F1Bii—P1—F3 | 108.7 (11) |
C10—C9—C8 | 121.2 (6) | F1A—P1—F3 | 118.9 (9) |
C10—C9—H9 | 119.4 | F1Aii—P1—F3 | 73.6 (8) |
C8—C9—H9 | 119.4 | F1B—P1—F3ii | 108.7 (11) |
C9—C10—C11 | 119.6 (6) | F1Bii—P1—F3ii | 76.9 (11) |
C9—C10—H10 | 120.2 | F1A—P1—F3ii | 73.6 (8) |
C11—C10—H10 | 120.2 | F1Aii—P1—F3ii | 118.9 (9) |
C10—C11—C12 | 121.0 (7) | F3—P1—F3ii | 165.1 (9) |
C10—C11—H11 | 119.5 | F1B—P1—F2 | 75.9 (10) |
C12—C11—H11 | 119.5 | F1Bii—P1—F2 | 143.1 (12) |
C7—C12—C11 | 119.1 (5) | F1A—P1—F2 | 103.4 (10) |
C7—C12—C13 | 122.9 (5) | F1Aii—P1—F2 | 163.5 (9) |
C11—C12—C13 | 117.9 (5) | F3—P1—F2 | 91.3 (7) |
N2—C13—O2 | 116.7 (4) | F3ii—P1—F2 | 77.1 (5) |
N2—C13—C12 | 126.7 (5) | F1B—P1—F2ii | 143.1 (12) |
O2—C13—C12 | 116.6 (5) | F1Bii—P1—F2ii | 75.9 (10) |
O2—C14—C15 | 105.4 (4) | F1A—P1—F2ii | 163.5 (9) |
O2—C14—H14A | 110.7 | F1Aii—P1—F2ii | 103.4 (10) |
C15—C14—H14A | 110.7 | F3—P1—F2ii | 77.1 (5) |
O2—C14—H14B | 110.7 | F3ii—P1—F2ii | 91.3 (7) |
C15—C14—H14B | 110.7 | F2—P1—F2ii | 78.9 (8) |
H14A—C14—H14B | 108.8 | O1—Ru1—O1i | 97.4 (2) |
N2—C15—C16 | 111.3 (4) | O1—Ru1—N2 | 89.76 (15) |
N2—C15—C14 | 100.6 (4) | O1i—Ru1—N2 | 88.30 (15) |
C16—C15—C14 | 114.1 (5) | O1—Ru1—N2i | 88.30 (15) |
N2—C15—H15 | 110.2 | O1i—Ru1—N2i | 89.77 (15) |
C16—C15—H15 | 110.2 | N2—Ru1—N2i | 177.1 (2) |
C14—C15—H15 | 110.2 | O1—Ru1—N1 | 170.53 (15) |
C17—C16—C15 | 113.6 (5) | O1i—Ru1—N1 | 91.80 (15) |
C17—C16—C18 | 111.4 (5) | N2—Ru1—N1 | 92.57 (16) |
C15—C16—C18 | 109.9 (5) | N2i—Ru1—N1 | 89.70 (15) |
C17—C16—H16 | 107.2 | O1—Ru1—N1i | 91.80 (15) |
C15—C16—H16 | 107.2 | O1i—Ru1—N1i | 170.53 (15) |
C18—C16—H16 | 107.2 | N2—Ru1—N1i | 89.70 (15) |
C16—C17—H17A | 109.5 | N2i—Ru1—N1i | 92.56 (16) |
C16—C17—H17B | 109.5 | N1—Ru1—N1i | 79.0 (2) |
N1—C1—C2—C3 | 1.6 (10) | O2—C14—C15—N2 | −15.9 (6) |
C1—C2—C3—C4 | −2.9 (11) | O2—C14—C15—C16 | 103.4 (5) |
C2—C3—C4—C5 | 2.0 (9) | N2—C15—C16—C17 | 58.9 (7) |
C2—C3—C4—C6 | −177.6 (7) | C14—C15—C16—C17 | −54.2 (7) |
C6—C4—C5—N1 | 179.7 (5) | N2—C15—C16—C18 | −175.5 (6) |
C3—C4—C5—N1 | 0.1 (8) | C14—C15—C16—C18 | 71.4 (8) |
C6—C4—C5—C5i | −1.3 (9) | C2—C1—N1—C5 | 0.5 (8) |
C3—C4—C5—C5i | 179.1 (6) | C2—C1—N1—Ru1 | 179.8 (5) |
C5—C4—C6—C6i | 0.8 (11) | C4—C5—N1—C1 | −1.3 (7) |
C3—C4—C6—C6i | −179.6 (7) | C5i—C5—N1—C1 | 179.6 (5) |
O1—C7—C8—C9 | −176.8 (5) | C4—C5—N1—Ru1 | 179.2 (4) |
C12—C7—C8—C9 | 2.8 (8) | C5i—C5—N1—Ru1 | 0.2 (6) |
C7—C8—C9—C10 | −1.0 (10) | O2—C13—N2—C15 | −5.2 (6) |
C8—C9—C10—C11 | −1.2 (10) | C12—C13—N2—C15 | 173.8 (5) |
C9—C10—C11—C12 | 1.6 (10) | O2—C13—N2—Ru1 | 173.3 (3) |
O1—C7—C12—C11 | 177.1 (5) | C12—C13—N2—Ru1 | −7.7 (7) |
C8—C7—C12—C11 | −2.4 (7) | C16—C15—N2—C13 | −108.2 (5) |
O1—C7—C12—C13 | 1.0 (8) | C14—C15—N2—C13 | 13.0 (6) |
C8—C7—C12—C13 | −178.5 (5) | C16—C15—N2—Ru1 | 73.3 (6) |
C10—C11—C12—C7 | 0.3 (8) | C14—C15—N2—Ru1 | −165.4 (4) |
C10—C11—C12—C13 | 176.5 (5) | C12—C7—O1—Ru1 | 8.7 (7) |
C7—C12—C13—N2 | −1.2 (8) | C8—C7—O1—Ru1 | −171.7 (3) |
C11—C12—C13—N2 | −177.3 (5) | N2—C13—O2—C14 | −5.9 (6) |
C7—C12—C13—O2 | 177.9 (5) | C12—C13—O2—C14 | 175.0 (5) |
C11—C12—C13—O2 | 1.7 (7) | C15—C14—O2—C13 | 13.9 (6) |
Symmetry codes: (i) y, x, −z+1; (ii) −y+1, −x+1, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.95 | 2.59 | 3.102 (6) | 114 |
C16—H16···O1i | 1.00 | 2.53 | 3.224 (6) | 126 |
C17—H17A···F3iii | 0.98 | 2.52 | 3.464 (11) | 162 |
C18—H18A···F2 | 0.98 | 2.48 | 3.357 (12) | 149 |
Symmetry codes: (i) y, x, −z+1; (iii) x−1/2, −y+1/2, −z+7/4. |
Acknowledgements
We thank Dr B. Vatsha at the Department of Chemical Sciences, University of Johannesburg, for the opportunity provided towards the collection of the data.
Funding information
Funding for this research was provided by: National Research Foundation (grant No. 120842).
References
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Brunner, H., Nuber, B. & Prommesberger, M. (1998). Tetrahedron Asymmetry, 9, 3223–3229. Web of Science CSD CrossRef CAS Google Scholar
Davenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). Dalton Trans. 9, 1481–1492. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). Inorg. Chem. 49, 7692–7699. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gong, L., Mulcahy, S. P., Harms, K. & Meggers, E. (2009). J. Am. Chem. Soc. 131, 9602–9603. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gong, L., Wenzel, M. & Meggers, E. (2013). Acc. Chem. Res. 46, 2635–2644. Web of Science CrossRef CAS PubMed Google Scholar
Hayoz, P., von Zelewsky, A. & Stoeckli-Evans, H. (1993). J. Am. Chem. Soc. 115, 5111–5114. Google Scholar
Kelani, M. T., Muller, A. & Lammertsma, K. (2024). IUCrData, 9, x240720. Google Scholar
Knof, U. & von Zelewsky, A. (1999). Angew. Chem. Int. Ed. 38, 302–322. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.