metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Δ-Bis[(S)-2-(4-iso­propyl-4,5-di­hydro­oxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N′)ruthenium(III) hexa­fluorido­phosphate

crossmark logo

aDepartment of Chemical Sciences, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
*Correspondence e-mail: mansieurkelani@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 September 2024; accepted 12 September 2024; online 17 September 2024)

The title compound, [Ru(C12H14NO2)2(C12H8N2)]PF6 crystallizes in the tetra­gonal Sohnke space group P41212. The two bidentate chiral salicyloxazoline ligands and the phenanthroline co-ligand coordinate to the central RuIII atom through N,O and N,N atom pairs to form bite angles of 89.76 (15) and 79.0 (2)°, respectively. The octa­hedral coordination of the bidentate ligands leads to a propeller-like shape, which induces metal-centered chirality onto the complex, with a right-handed (Δ) absolute configuration [the Flack parameter value is −0.003 (14)]. Both the complex cation and the disordered PF6 counter-anion are located on twofold rotation axes. Apart from Coulombic forces, the crystal cohesion is ensured by non-classical C—H⋯O and C—H⋯F inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The syntheses of optically pure metal complexes are usually costly and sophisticated, especially with the use of traditional methods for the resolution of racemic mixtures. A straightforward alternative strategy, therefore, requires the coordination of pure chiral auxiliary ligands tailored for the selective synthesis of diastereomers, which are easily converted to the corresponding enanti­omerically pure complexes (Knof & von Zelewsky, 1999[Knof, U. & von Zelewsky, A. (1999). Angew. Chem. Int. Ed. 38, 302-322.]). Hayoz and co-workers were the first to report the diastereoselective synthesis of optically pure ruthenium polypyridyl complexes in the quest for generating compounds with metal-centered chirality, so-called chiral-at-metal complexes (Hayoz et al., 1993[Hayoz, P., von Zelewsky, A. & Stoeckli-Evans, H. (1993). J. Am. Chem. Soc. 115, 5111-5114.]). Such metal-centered chirality refers to the type of chirality induced at a central metal atom as a result of an helical octa­hedral coordination around a metal in bis-chelate or tris-chelate systems. In this context, optically pure salicyloxazoline is often used as an auxiliary ligand to implement and control the absolute configuration at central metal atoms during ligand exchange. In this case, the absolute configurations at the central metal could either be right-handed or left-handed twist systems, which are symbolized by Δ and Λ stereochemical descriptors, respectively (Gong et al., 2010[Gong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). Inorg. Chem. 49, 7692-7699.]). The salicyloxazoline ligand is often used in this manner because of its reversible coordination upon acid protonation of its phenolate group while leaving the stereochemistry of the metal complex intact (Gong et al., 2009[Gong, L., Mulcahy, S. P., Harms, K. & Meggers, E. (2009). J. Am. Chem. Soc. 131, 9602-9603.], 2010[Gong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). Inorg. Chem. 49, 7692-7699.], 2013[Gong, L., Wenzel, M. & Meggers, E. (2013). Acc. Chem. Res. 46, 2635-2644.]).

The complex cation of the title salt constitutes of two optically pure bidentate salicyloxazoline ligands and a phenanthroline co-ligand arranged within an octa­hedral coordination sphere around the central RuIII atom, which is located about a twofold rotation axis bis­ecting the phenantroline ligand (Fig. 1[link]). This right-handed twist of the ligands leads to a Δ stereochemical configuration of the complex; the correctness of the absolute configuration is indicated by a Flack parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) value of −0.003 (14). The bite angles, 89.76 (15)°, for the salicyloxazoline ligands are comparable with reported values, e.g. 86.68° (Brunner et al., 1998[Brunner, H., Nuber, B. & Prommesberger, M. (1998). Tetrahedron Asymmetry, 9, 3223-3229.]), 88.29° (Davenport et al., 2004[Davenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). Dalton Trans. 9, 1481-1492.]), 86.88° (Kelani et al., 2024[Kelani, M. T., Muller, A. & Lammertsma, K. (2024). IUCrData, 9, x240720.]), or 90.00 (Gong et al., 2010[Gong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). Inorg. Chem. 49, 7692-7699.]) while that for the phenanthroline ligand, 79.0 (2)°, is almost similar to that of 80.12° (Gong et al., 2010[Gong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). Inorg. Chem. 49, 7692-7699.]). The bond lengths of the RuIII atom with the ligating atoms of 1.974 (3), 2.079 (4) and 2.072 (4) Å to O1, N1(phenanthroline) and N2(salicyloxazoline) atoms, respectively, also agree well with reported values. The crystal packing (Fig. 2[link]) includes the disordered PF6 counter-anion (located about a twofold rotation axis). Non-classical inter­molecular inter­actions featuring C—H⋯O and C—H⋯F contacts (Table 1[link]) are present.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.59 3.102 (6) 114
C16—H16⋯O1i 1.00 2.53 3.224 (6) 126
C17—H17A⋯F3ii 0.98 2.52 3.464 (11) 162
C18—H18A⋯F2 0.98 2.48 3.357 (12) 149
Symmetry codes: (i) [y, x, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{7\over 4}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound drawn with displacement ellipsoids at the 50% probability level; hydrogen atoms and the PF6 counter-anion were removed for clarity. Non-labelled atoms are generated by a twofold rotation axis (symmetry operation: y, x, –z).
[Figure 2]
Figure 2
Crystal packing arrangement of the title compound in a view along the c axis. Non-classical hydrogen-bonding inter­actions are indicated by dotted lines.

Synthesis and crystallization

Di­chlorido-bis­(1,10-phenanthroline)ruthenium(II) (50.0 mg, 0.09 mmol, 1 eq) was added to (S)-isopropyl-2-(2-hy­droxy­phen­yl)oxazoline (38.5 mg, 0.2 mmol, 2 eq) in ethanol in the presence of K2CO3 (26.0 mg, 0.2 mmol, 2 eq). The reaction mixture was refluxed for 6 h under continuous stirring after which it was cooled to room temperature and then concentrated in vacuo under reduced pressure. The crude product was purified by column chromatography with silica gel using a solvent system of CH2Cl2:CH3OH:CH3CN = 9.7:0.2:0.1 v:v:v) to obtain a purple crystalline compound. Yield, 31 mg (46%, 0.04 mmol).

Refinement

Details of the data collection, solution and refinement are given in Table 2[link]. The disordered PF6 anion was treated as equally disordered around the twofold rotation axis and was kept stable with SADI, SIMU and DELU restraints in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The highest remaining maximum and minimum electron density are 1.32 and 0.76 Å away from F1A and Ru1, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Ru(C12H14NO2)2(C12H8N2)]PF6
Mr 834.73
Crystal system, space group Tetragonal, P41212
Temperature (K) 173
a, c (Å) 15.3094 (13), 15.315 (2)
V3) 3589.5 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.56
Crystal size (mm) 0.46 × 0.43 × 0.42
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.638, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 53896, 4516, 3564
Rint 0.067
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.04
No. of reflections 4516
No. of parameters 245
No. of restraints 26
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.41
Absolute structure Flack x determined using 1296 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.003 (14)
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al.., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Δ-Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexafluoridophosphate top
Crystal data top
[Ru(C12H14NO2)2(C12H8N2)]PF6Dx = 1.545 Mg m3
Mr = 834.73Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 8341 reflections
a = 15.3094 (13) Åθ = 2.3–20.4°
c = 15.315 (2) ŵ = 0.56 mm1
V = 3589.5 (8) Å3T = 173 K
Z = 4Cuboid, purple
F(000) = 17000.46 × 0.43 × 0.42 mm
Data collection top
Bruker APEXII CCD
diffractometer
4516 independent reflections
Radiation source: sealed-tube3564 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.067
φ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2020
Tmin = 0.638, Tmax = 0.746k = 2020
53896 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.7144P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4516 reflectionsΔρmax = 0.38 e Å3
245 parametersΔρmin = 0.41 e Å3
26 restraintsAbsolute structure: Flack x determined using 1296 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2882 (4)0.4278 (4)0.6429 (3)0.0615 (13)
H10.2379670.4002780.6667710.074*
C20.3215 (4)0.5005 (4)0.6832 (4)0.0760 (18)
H20.2949340.5215840.7351250.091*
C30.3917 (5)0.5426 (4)0.6499 (4)0.0828 (19)
H30.4125220.5944170.6768260.099*
C40.4345 (4)0.5090 (4)0.5742 (4)0.0615 (13)
C50.3979 (3)0.4353 (3)0.5381 (3)0.0463 (10)
C60.5100 (4)0.5455 (4)0.5356 (4)0.0723 (16)
H60.5358510.5959900.5607650.087*
C70.3015 (3)0.1129 (3)0.4108 (3)0.0539 (12)
C80.2786 (4)0.0607 (4)0.3381 (3)0.0678 (14)
H80.2388490.0829130.2959310.081*
C90.3130 (5)0.0217 (4)0.3273 (4)0.0815 (19)
H90.2958570.0557160.2783010.098*
C100.3710 (5)0.0552 (4)0.3853 (5)0.0852 (19)
H100.3932870.1125950.3775360.102*
C110.3975 (4)0.0054 (4)0.4556 (5)0.0759 (17)
H110.4392370.0284110.4953010.091*
C120.3633 (4)0.0795 (3)0.4695 (3)0.0592 (12)
C130.3904 (3)0.1261 (4)0.5476 (3)0.0553 (12)
C140.4704 (4)0.1478 (5)0.6678 (4)0.0838 (19)
H14A0.5297140.1717130.6582000.101*
H14B0.4685260.1195330.7259090.101*
C150.4011 (3)0.2208 (4)0.6615 (3)0.0618 (13)
H150.4300560.2793480.6621390.074*
C160.3308 (4)0.2163 (4)0.7321 (3)0.0730 (15)
H160.2854750.2609430.7170680.088*
C170.2847 (5)0.1280 (5)0.7371 (4)0.102 (2)
H17A0.2405480.1295600.7834170.152*
H17B0.2562910.1155750.6810640.152*
H17C0.3275290.0822580.7499040.152*
C180.3698 (6)0.2424 (7)0.8209 (4)0.122 (3)
H18A0.3988510.2992100.8155700.183*
H18B0.3230260.2463670.8643920.183*
H18C0.4123790.1982990.8392490.183*
N10.3248 (2)0.3946 (3)0.5709 (2)0.0483 (9)
N20.3638 (3)0.2026 (3)0.5728 (2)0.0523 (9)
O10.2614 (2)0.1896 (2)0.4175 (2)0.0570 (9)
O20.4479 (3)0.0854 (3)0.5994 (3)0.0767 (11)
F1A0.6349 (16)0.2780 (8)0.7374 (14)0.203 (8)0.5
F1B0.6026 (17)0.3041 (13)0.8114 (17)0.250 (11)0.5
F20.5257 (5)0.3866 (6)0.7660 (8)0.247 (5)
F30.6459 (7)0.4151 (7)0.8395 (6)0.241 (4)
P10.6246 (2)0.3754 (2)0.7500000.1405 (16)
Ru10.28566 (2)0.28566 (2)0.5000000.04461 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (3)0.084 (4)0.051 (2)0.001 (3)0.006 (2)0.025 (2)
C20.064 (3)0.093 (4)0.072 (3)0.001 (3)0.007 (3)0.046 (3)
C30.096 (5)0.072 (4)0.080 (4)0.000 (3)0.015 (4)0.036 (3)
C40.060 (3)0.062 (3)0.063 (3)0.004 (2)0.009 (3)0.013 (3)
C50.046 (2)0.048 (2)0.046 (2)0.0082 (19)0.0020 (19)0.0070 (19)
C60.067 (4)0.060 (3)0.090 (4)0.017 (3)0.005 (3)0.006 (3)
C70.063 (3)0.050 (3)0.049 (2)0.013 (2)0.009 (2)0.0008 (19)
C80.076 (4)0.068 (3)0.060 (3)0.015 (3)0.009 (3)0.015 (3)
C90.098 (5)0.065 (4)0.081 (4)0.015 (3)0.020 (4)0.025 (3)
C100.091 (5)0.059 (4)0.106 (5)0.001 (3)0.021 (4)0.018 (4)
C110.069 (4)0.060 (3)0.099 (4)0.001 (3)0.020 (3)0.003 (3)
C120.063 (3)0.056 (3)0.060 (3)0.006 (2)0.013 (2)0.005 (2)
C130.055 (3)0.057 (3)0.054 (3)0.001 (2)0.004 (2)0.004 (2)
C140.078 (4)0.108 (5)0.066 (3)0.011 (4)0.018 (3)0.017 (4)
C150.063 (3)0.073 (3)0.049 (2)0.003 (3)0.012 (2)0.005 (3)
C160.076 (3)0.098 (4)0.044 (3)0.001 (4)0.003 (2)0.001 (3)
C170.110 (5)0.124 (6)0.071 (4)0.029 (5)0.013 (4)0.019 (4)
C180.125 (6)0.195 (10)0.047 (3)0.025 (6)0.005 (4)0.020 (4)
N10.042 (2)0.061 (2)0.0424 (18)0.0039 (17)0.0001 (16)0.0117 (17)
N20.054 (2)0.064 (3)0.0390 (16)0.0075 (19)0.0008 (16)0.0044 (19)
O10.071 (2)0.0503 (19)0.0500 (17)0.0074 (16)0.0063 (16)0.0046 (14)
O20.082 (3)0.072 (3)0.075 (3)0.009 (2)0.015 (2)0.012 (2)
F1A0.29 (2)0.091 (7)0.225 (17)0.020 (10)0.067 (18)0.003 (11)
F1B0.24 (2)0.145 (16)0.36 (3)0.025 (16)0.01 (2)0.080 (16)
F20.149 (6)0.235 (9)0.357 (14)0.025 (6)0.022 (8)0.047 (11)
F30.268 (10)0.262 (11)0.194 (8)0.019 (9)0.078 (8)0.046 (8)
P10.1223 (17)0.1223 (17)0.177 (4)0.025 (2)0.051 (2)0.051 (2)
Ru10.04954 (19)0.04954 (19)0.0347 (2)0.0046 (2)0.00213 (16)0.00213 (16)
Geometric parameters (Å, º) top
C1—N11.337 (5)C13—N21.299 (7)
C1—C21.370 (8)C13—O21.338 (6)
C1—H10.9500C14—O21.458 (7)
C2—C31.353 (9)C14—C151.544 (8)
C2—H20.9500C14—H14A0.9900
C3—C41.426 (8)C14—H14B0.9900
C3—H30.9500C15—N21.499 (6)
C4—C51.375 (7)C15—C161.528 (7)
C4—C61.414 (8)C15—H151.0000
C5—N11.376 (6)C16—C171.527 (10)
C5—C5i1.421 (8)C16—C181.538 (8)
C6—C6i1.335 (12)C16—H161.0000
C6—H60.9500C17—H17A0.9800
C7—O11.329 (6)C17—H17B0.9800
C7—C121.402 (7)C17—H17C0.9800
C7—C81.414 (7)C18—H18A0.9800
C8—C91.377 (9)C18—H18B0.9800
C8—H80.9500C18—H18C0.9800
C9—C101.356 (10)N1—Ru12.079 (4)
C9—H90.9500N2—Ru12.072 (4)
C10—C111.380 (9)O1—Ru11.974 (3)
C10—H100.9500F1A—P11.512 (12)
C11—C121.418 (8)F1B—P11.479 (14)
C11—H110.9500F2—P11.544 (8)
C12—C131.453 (7)F3—P11.535 (8)
N1—C1—C2121.6 (5)H17A—C17—H17B109.5
N1—C1—H1119.2C16—C17—H17C109.5
C2—C1—H1119.2H17A—C17—H17C109.5
C3—C2—C1120.8 (5)H17B—C17—H17C109.5
C3—C2—H2119.6C16—C18—H18A109.5
C1—C2—H2119.6C16—C18—H18B109.5
C2—C3—C4120.0 (5)H18A—C18—H18B109.5
C2—C3—H3120.0C16—C18—H18C109.5
C4—C3—H3120.0H18A—C18—H18C109.5
C5—C4—C6119.3 (5)H18B—C18—H18C109.5
C5—C4—C3115.8 (5)C1—N1—C5118.0 (4)
C6—C4—C3124.9 (5)C1—N1—Ru1127.9 (4)
C4—C5—N1123.8 (4)C5—N1—Ru1114.1 (3)
C4—C5—C5i119.8 (3)C13—N2—C15108.5 (4)
N1—C5—C5i116.4 (2)C13—N2—Ru1125.1 (3)
C6i—C6—C4120.9 (3)C15—N2—Ru1126.4 (4)
C6i—C6—H6119.5C7—O1—Ru1128.4 (3)
C4—C6—H6119.5C13—O2—C14106.1 (4)
O1—C7—C12125.7 (4)F1B—P1—F1Bii138 (2)
O1—C7—C8116.5 (5)F1B—P1—F1Aii93.8 (14)
C12—C7—C8117.8 (5)F1Bii—P1—F1Aii51.5 (10)
C9—C8—C7121.1 (6)F1A—P1—F1Aii79.1 (18)
C9—C8—H8119.4F1B—P1—F376.9 (11)
C7—C8—H8119.4F1Bii—P1—F3108.7 (11)
C10—C9—C8121.2 (6)F1A—P1—F3118.9 (9)
C10—C9—H9119.4F1Aii—P1—F373.6 (8)
C8—C9—H9119.4F1B—P1—F3ii108.7 (11)
C9—C10—C11119.6 (6)F1Bii—P1—F3ii76.9 (11)
C9—C10—H10120.2F1A—P1—F3ii73.6 (8)
C11—C10—H10120.2F1Aii—P1—F3ii118.9 (9)
C10—C11—C12121.0 (7)F3—P1—F3ii165.1 (9)
C10—C11—H11119.5F1B—P1—F275.9 (10)
C12—C11—H11119.5F1Bii—P1—F2143.1 (12)
C7—C12—C11119.1 (5)F1A—P1—F2103.4 (10)
C7—C12—C13122.9 (5)F1Aii—P1—F2163.5 (9)
C11—C12—C13117.9 (5)F3—P1—F291.3 (7)
N2—C13—O2116.7 (4)F3ii—P1—F277.1 (5)
N2—C13—C12126.7 (5)F1B—P1—F2ii143.1 (12)
O2—C13—C12116.6 (5)F1Bii—P1—F2ii75.9 (10)
O2—C14—C15105.4 (4)F1A—P1—F2ii163.5 (9)
O2—C14—H14A110.7F1Aii—P1—F2ii103.4 (10)
C15—C14—H14A110.7F3—P1—F2ii77.1 (5)
O2—C14—H14B110.7F3ii—P1—F2ii91.3 (7)
C15—C14—H14B110.7F2—P1—F2ii78.9 (8)
H14A—C14—H14B108.8O1—Ru1—O1i97.4 (2)
N2—C15—C16111.3 (4)O1—Ru1—N289.76 (15)
N2—C15—C14100.6 (4)O1i—Ru1—N288.30 (15)
C16—C15—C14114.1 (5)O1—Ru1—N2i88.30 (15)
N2—C15—H15110.2O1i—Ru1—N2i89.77 (15)
C16—C15—H15110.2N2—Ru1—N2i177.1 (2)
C14—C15—H15110.2O1—Ru1—N1170.53 (15)
C17—C16—C15113.6 (5)O1i—Ru1—N191.80 (15)
C17—C16—C18111.4 (5)N2—Ru1—N192.57 (16)
C15—C16—C18109.9 (5)N2i—Ru1—N189.70 (15)
C17—C16—H16107.2O1—Ru1—N1i91.80 (15)
C15—C16—H16107.2O1i—Ru1—N1i170.53 (15)
C18—C16—H16107.2N2—Ru1—N1i89.70 (15)
C16—C17—H17A109.5N2i—Ru1—N1i92.56 (16)
C16—C17—H17B109.5N1—Ru1—N1i79.0 (2)
N1—C1—C2—C31.6 (10)O2—C14—C15—N215.9 (6)
C1—C2—C3—C42.9 (11)O2—C14—C15—C16103.4 (5)
C2—C3—C4—C52.0 (9)N2—C15—C16—C1758.9 (7)
C2—C3—C4—C6177.6 (7)C14—C15—C16—C1754.2 (7)
C6—C4—C5—N1179.7 (5)N2—C15—C16—C18175.5 (6)
C3—C4—C5—N10.1 (8)C14—C15—C16—C1871.4 (8)
C6—C4—C5—C5i1.3 (9)C2—C1—N1—C50.5 (8)
C3—C4—C5—C5i179.1 (6)C2—C1—N1—Ru1179.8 (5)
C5—C4—C6—C6i0.8 (11)C4—C5—N1—C11.3 (7)
C3—C4—C6—C6i179.6 (7)C5i—C5—N1—C1179.6 (5)
O1—C7—C8—C9176.8 (5)C4—C5—N1—Ru1179.2 (4)
C12—C7—C8—C92.8 (8)C5i—C5—N1—Ru10.2 (6)
C7—C8—C9—C101.0 (10)O2—C13—N2—C155.2 (6)
C8—C9—C10—C111.2 (10)C12—C13—N2—C15173.8 (5)
C9—C10—C11—C121.6 (10)O2—C13—N2—Ru1173.3 (3)
O1—C7—C12—C11177.1 (5)C12—C13—N2—Ru17.7 (7)
C8—C7—C12—C112.4 (7)C16—C15—N2—C13108.2 (5)
O1—C7—C12—C131.0 (8)C14—C15—N2—C1313.0 (6)
C8—C7—C12—C13178.5 (5)C16—C15—N2—Ru173.3 (6)
C10—C11—C12—C70.3 (8)C14—C15—N2—Ru1165.4 (4)
C10—C11—C12—C13176.5 (5)C12—C7—O1—Ru18.7 (7)
C7—C12—C13—N21.2 (8)C8—C7—O1—Ru1171.7 (3)
C11—C12—C13—N2177.3 (5)N2—C13—O2—C145.9 (6)
C7—C12—C13—O2177.9 (5)C12—C13—O2—C14175.0 (5)
C11—C12—C13—O21.7 (7)C15—C14—O2—C1313.9 (6)
Symmetry codes: (i) y, x, z+1; (ii) y+1, x+1, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.593.102 (6)114
C16—H16···O1i1.002.533.224 (6)126
C17—H17A···F3iii0.982.523.464 (11)162
C18—H18A···F20.982.483.357 (12)149
Symmetry codes: (i) y, x, z+1; (iii) x1/2, y+1/2, z+7/4.
 

Acknowledgements

We thank Dr B. Vatsha at the Department of Chemical Sciences, University of Johannesburg, for the opportunity provided towards the collection of the data.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 120842).

References

First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunner, H., Nuber, B. & Prommesberger, M. (1998). Tetrahedron Asymmetry, 9, 3223–3229.  Web of Science CSD CrossRef CAS Google Scholar
First citationDavenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). Dalton Trans. 9, 1481–1492.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). Inorg. Chem. 49, 7692–7699.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGong, L., Mulcahy, S. P., Harms, K. & Meggers, E. (2009). J. Am. Chem. Soc. 131, 9602–9603.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGong, L., Wenzel, M. & Meggers, E. (2013). Acc. Chem. Res. 46, 2635–2644.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHayoz, P., von Zelewsky, A. & Stoeckli-Evans, H. (1993). J. Am. Chem. Soc. 115, 5111–5114.  Google Scholar
First citationKelani, M. T., Muller, A. & Lammertsma, K. (2024). IUCrData, 9, x240720.  Google Scholar
First citationKnof, U. & von Zelewsky, A. (1999). Angew. Chem. Int. Ed. 38, 302–322.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146