

ISSN 2414-3146

Received 5 September 2024 Accepted 12 September 2024

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; absolute configuration; ruthenium; chiral-at-metal complex.

CCDC reference: 2383614

Structural data: full structural data are available from iucrdata.iucr.org

Δ -Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato- $\kappa^2 N, O^1$](1,10-phenanthroline- $\kappa^2 N, N'$)ruthenium(III) hexafluoridophosphate

Monsuru T. Kelani,* Alfred Muller and Koop Lammertsma

Department of Chemical Sciences, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa. *Correspondence e-mail: mansieurkelani@gmail.com

The title compound, $[Ru(C_{12}H_{14}NO_2)_2(C_{12}H_8N_2)]PF_6$ crystallizes in the tetragonal Sohnke space group $P4_12_12$. The two bidentate chiral salicyloxazoline ligands and the phenanthroline co-ligand coordinate to the central Ru^{III} atom through N,O and N,N atom pairs to form bite angles of 89.76 (15) and 79.0 (2)°, respectively. The octahedral coordination of the bidentate ligands leads to a propeller-like shape, which induces metal-centered chirality onto the complex, with a right-handed (Δ) absolute configuration [the Flack parameter value is -0.003 (14)]. Both the complex cation and the disordered PF₆⁻ counter-anion are located on twofold rotation axes. Apart from Coulombic forces, the crystal cohesion is ensured by non-classical C-H···O and C-H···F interactions.

Structure description

The syntheses of optically pure metal complexes are usually costly and sophisticated, especially with the use of traditional methods for the resolution of racemic mixtures. A straightforward alternative strategy, therefore, requires the coordination of pure chiral auxiliary ligands tailored for the selective synthesis of diastereomers, which are easily converted to the corresponding enantiomerically pure complexes (Knof & von Zelewsky, 1999). Hayoz and co-workers were the first to report the diastereoselective synthesis of optically pure ruthenium polypyridyl complexes in the quest for generating compounds with metal-centered chirality, so-called chiral-at-metal complexes (Hayoz *et al.*, 1993). Such metal-centered chirality refers to the type of chirality induced at a central metal atom as a result of an helical octahedral coordination around a metal in bis-chelate or tris-chelate systems. In this context, optically pure salicyloxazoline is often used as an auxiliary ligand to implement and control the absolute configuration at central metal atoms during ligand exchange. In this case, the absolute configurations at the central metal metal could either be right-handed or left-handed twist systems, which are symbolized by

Та	ble	1						
Hy	drog	gen-bo	ond geo	metry	(Å, [°]	ິ).		
D	ττ	4		D	TT	TT	4	D

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1-H1\cdots O1^i$	0.95	2.59	3.102 (6)	114
$C16-H16\cdots O1^{i}$	1.00	2.53	3.224 (6)	126
$C17 - H17A \cdots F3^{ii}$	0.98	2.52	3.464 (11)	162
$C18-H18A\cdots F2$	0.98	2.48	3.357 (12)	149

Symmetry codes: (i) y, x, -z + 1; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{7}{4}$.

 Δ and Λ stereochemical descriptors, respectively (Gong *et al.*, 2010). The salicyloxazoline ligand is often used in this manner because of its reversible coordination upon acid protonation of its phenolate group while leaving the stereochemistry of the metal complex intact (Gong *et al.*, 2009, 2010, 2013).

The complex cation of the title salt constitutes of two optically pure bidentate salicyloxazoline ligands and a phenanthroline co-ligand arranged within an octahedral coordination sphere around the central Ru^{III} atom, which is located about a twofold rotation axis bisecting the phenantroline ligand (Fig. 1). This right-handed twist of the ligands leads to a Δ stereochemical configuration of the complex; the correctness of the absolute configuration is indicated by a Flack parameter (Parsons *et al.*, 2013) value of -0.003 (14). The bite angles, $89.76 (15)^{\circ}$, for the salicyloxazoline ligands are comparable with reported values, e.g. 86.68° (Brunner et al., 1998), 88.29° (Davenport et al., 2004), 86.88° (Kelani et al., 2024), or 90.00 (Gong et al., 2010) while that for the phenanthroline ligand, 79.0 (2) $^{\circ}$, is almost similar to that of 80.12 $^{\circ}$ (Gong et al., 2010). The bond lengths of the Ru^{III} atom with the ligating atoms of 1.974 (3), 2.079 (4) and 2.072 (4) Å to O1, N1(phenanthroline) and N2(salicyloxazoline) atoms, respectively, also agree well with reported values. The crystal packing

Figure 1

The molecular structure of the title compound drawn with displacement ellipsoids at the 50% probability level; hydrogen atoms and the PF_6^- counter-anion were removed for clarity. Non-labelled atoms are generated by a twofold rotation axis (symmetry operation: *y*, *x*, *-z*).

Synthesis and crystallization

Dichlorido-bis(1,10-phenanthroline)ruthenium(II) (50.0 mg, 0.09 mmol, 1 eq) was added to (*S*)-isopropyl-2-(2-hydroxy-phenyl)oxazoline (38.5 mg, 0.2 mmol, 2 eq) in ethanol in the presence of K_2CO_3 (26.0 mg, 0.2 mmol, 2 eq). The reaction mixture was refluxed for 6 h under continuous stirring after which it was cooled to room temperature and then concentrated *in vacuo* under reduced pressure. The crude product was purified by column chromatography with silica gel using a solvent system of CH₂Cl₂:CH₃OH:CH₃CN = 9.7:0.2:0.1 *v*:*v*:*v*) to obtain a purple crystalline compound. Yield, 31 mg (46%, 0.04 mmol).

Refinement

Details of the data collection, solution and refinement are given in Table 2. The disordered PF_6^- anion was treated as equally disordered around the twofold rotation axis and was kept stable with SADI, SIMU and DELU restraints in *SHELXL* (Sheldrick, 2015*b*). The highest remaining maximum and minimum electron density are 1.32 and 0.76 Å away from F1A and Ru1, respectively.

Figure 2

Crystal packing arrangement of the title compound in a view along the c axis. Non-classical hydrogen-bonding interactions are indicated by dotted lines.

Acknowledgements

We thank Dr B. Vatsha at the Department of Chemical Sciences, University of Johannesburg, for the opportunity provided towards the collection of the data.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 120842).

References

- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Brunner, H., Nuber, B. & Prommesberger, M. (1998). Tetrahedron Asymmetry, 9, 3223–3229.
- Davenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). *Dalton Trans.* 9, 1481–1492.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). *Inorg. Chem.* 49, 7692–7699.
- Gong, L., Mulcahy, S. P., Harms, K. & Meggers, E. (2009). J. Am. Chem. Soc. 131, 9602–9603.
- Gong, L., Wenzel, M. & Meggers, E. (2013). Acc. Chem. Res. 46, 2635–2644.
- Hayoz, P., von Zelewsky, A. & Stoeckli-Evans, H. (1993). J. Am. Chem. Soc. 115, 5111–5114.
- Kelani, M. T., Muller, A. & Lammertsma, K. (2024). *IUCrData*, 9, x240720.
- Knof, U. & von Zelewsky, A. (1999). Angew. Chem. Int. Ed. 38, 302–322.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

Table 2

Experimental details.

Crystal data	
Chemical formula	$[Ru(C_{12}H_{14}NO_2)_2(C_{12}H_8N_2)]PF_6$
Mr	834.73
Crystal system, space group	Tetragonal, P4 ₁ 2 ₁ 2
Femperature (K)	173
ı, c (Å)	15.3094 (13), 15.315 (2)
7 (Å ³)	3589.5 (8)
Ζ	4
Radiation type	Μο Κα
$\iota \text{ (mm}^{-1}\text{)}$	0.56
Crystal size (mm)	$0.46 \times 0.43 \times 0.42$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.638, 0.746
No. of measured, independent and	53896, 4516, 3564
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.067
$\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.669
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.107, 1.04
No. of reflections	4516
No. of parameters	245
No. of restraints	26
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.38, -0.41
Absolute structure	Flack x determined using 1296
	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.003 (14)
1	

Computer programs: *APEX2* and *SAINT* (Bruker, 2010), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *Mercury* (Macrae *et al.*, 2020), *publCIF* (Westrip, 2010) and *WinGX* (Farrugia, 2012).

Sheldrick, G. M. (2015*a*). *Acta Cryst.* **A71**, 3–8. Sheldrick, G. M. (2015*b*). *Acta Cryst.* **C71**, 3–8. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

full crystallographic data

IUCrData (2024). **9**, x240893 [https://doi.org/10.1107/S2414314624008939]

Δ-Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato- $\kappa^2 N$,O¹](1,10phenanthroline- $\kappa^2 N$,N')ruthenium(III) hexafluoridophosphate

Monsuru T. Kelani, Alfred Muller and Koop Lammertsma

 $\Delta - Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl) phenolato-\kappa^2 N, O^1](1,10-phenanthroline-\kappa^2 N, N') ruthenium(III) hexafluoridophosphate$

Crystal data

 $[\operatorname{Ru}(\operatorname{C}_{12}\operatorname{H}_{14}\operatorname{NO}_{2})_{2}(\operatorname{C}_{12}\operatorname{H}_{8}\operatorname{N}_{2})]\operatorname{PF}_{6}$ $M_{r} = 834.73$ Tetragonal, $P4_{1}2_{1}2$ a = 15.3094 (13) Å c = 15.315 (2) Å $V = 3589.5 (8) \text{ Å}^{3}$ Z = 4F(000) = 1700

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed-tube Triumph monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.638, T_{\max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.107$ S = 1.044516 reflections 245 parameters 26 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $D_x = 1.545 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8341 reflections $\theta = 2.3-20.4^{\circ}$ $\mu = 0.56 \text{ mm}^{-1}$ T = 173 KCuboid, purple $0.46 \times 0.43 \times 0.42 \text{ mm}$

53896 measured reflections 4516 independent reflections 3564 reflections with $I > 2\sigma(I)$ $R_{int} = 0.067$ $\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -20 \rightarrow 20$ $k = -20 \rightarrow 20$ $l = -20 \rightarrow 20$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0587P)^2 + 0.7144P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.38 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.41 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 1296 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.003 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.2882 (4)	0.4278 (4)	0.6429 (3)	0.0615 (13)	
H1	0.237967	0.400278	0.666771	0.074*	
C2	0.3215 (4)	0.5005 (4)	0.6832 (4)	0.0760 (18)	
H2	0.294934	0.521584	0.735125	0.091*	
C3	0.3917 (5)	0.5426 (4)	0.6499 (4)	0.0828 (19)	
Н3	0.412522	0.594417	0.676826	0.099*	
C4	0.4345 (4)	0.5090 (4)	0.5742 (4)	0.0615 (13)	
C5	0.3979 (3)	0.4353 (3)	0.5381 (3)	0.0463 (10)	
C6	0.5100 (4)	0.5455 (4)	0.5356 (4)	0.0723 (16)	
H6	0.535851	0.595990	0.560765	0.087*	
C7	0.3015 (3)	0.1129 (3)	0.4108 (3)	0.0539 (12)	
C8	0.2786 (4)	0.0607 (4)	0.3381 (3)	0.0678 (14)	
H8	0.238849	0.082913	0.295931	0.081*	
C9	0.3130 (5)	-0.0217 (4)	0.3273 (4)	0.0815 (19)	
Н9	0.295857	-0.055716	0.278301	0.098*	
C10	0.3710 (5)	-0.0552 (4)	0.3853 (5)	0.0852 (19)	
H10	0.393287	-0.112595	0.377536	0.102*	
C11	0.3975 (4)	-0.0054 (4)	0.4556 (5)	0.0759 (17)	
H11	0.439237	-0.028411	0.495301	0.091*	
C12	0.3633 (4)	0.0795 (3)	0.4695 (3)	0.0592 (12)	
C13	0.3904 (3)	0.1261 (4)	0.5476 (3)	0.0553 (12)	
C14	0.4704 (4)	0.1478 (5)	0.6678 (4)	0.0838 (19)	
H14A	0.529714	0.171713	0.658200	0.101*	
H14B	0.468526	0.119533	0.725909	0.101*	
C15	0.4011 (3)	0.2208 (4)	0.6615 (3)	0.0618 (13)	
H15	0.430056	0.279348	0.662139	0.074*	
C16	0.3308 (4)	0.2163 (4)	0.7321 (3)	0.0730 (15)	
H16	0.285475	0.260943	0.717068	0.088*	
C17	0.2847 (5)	0.1280 (5)	0.7371 (4)	0.102 (2)	
H17A	0.240548	0.129560	0.783417	0.152*	
H17B	0.256291	0.115575	0.681064	0.152*	
H17C	0.327529	0.082258	0.749904	0.152*	
C18	0.3698 (6)	0.2424 (7)	0.8209 (4)	0.122 (3)	
H18A	0.398851	0.299210	0.815570	0.183*	
H18B	0.323026	0.246367	0.864392	0.183*	
H18C	0.412379	0.198299	0.839249	0.183*	
N1	0.3248 (2)	0.3946 (3)	0.5709 (2)	0.0483 (9)	
N2	0.3638 (3)	0.2026 (3)	0.5728 (2)	0.0523 (9)	
01	0.2614 (2)	0.1896 (2)	0.4175 (2)	0.0570 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

O2	0.4479 (3)	0.0854 (3)	0.5994 (3)	0.0767 (11)	
F1A	0.6349 (16)	0.2780 (8)	0.7374 (14)	0.203 (8)	0.5
F1B	0.6026 (17)	0.3041 (13)	0.8114 (17)	0.250 (11)	0.5
F2	0.5257 (5)	0.3866 (6)	0.7660 (8)	0.247 (5)	
F3	0.6459 (7)	0.4151 (7)	0.8395 (6)	0.241 (4)	
P1	0.6246 (2)	0.3754 (2)	0.750000	0.1405 (16)	
Ru1	0.28566 (2)	0.28566 (2)	0.500000	0.04461 (15)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.049 (3)	0.084 (4)	0.051 (2)	0.001 (3)	0.006 (2)	-0.025 (2)
C2	0.064 (3)	0.093 (4)	0.072 (3)	0.001 (3)	0.007 (3)	-0.046 (3)
C3	0.096 (5)	0.072 (4)	0.080 (4)	0.000 (3)	-0.015 (4)	-0.036 (3)
C4	0.060 (3)	0.062 (3)	0.063 (3)	-0.004 (2)	-0.009 (3)	-0.013 (3)
C5	0.046 (2)	0.048 (2)	0.046 (2)	0.0082 (19)	-0.0020 (19)	-0.0070 (19)
C6	0.067 (4)	0.060 (3)	0.090 (4)	-0.017 (3)	-0.005 (3)	-0.006 (3)
C7	0.063 (3)	0.050 (3)	0.049 (2)	-0.013 (2)	0.009 (2)	-0.0008 (19)
C8	0.076 (4)	0.068 (3)	0.060 (3)	-0.015 (3)	0.009 (3)	-0.015 (3)
C9	0.098 (5)	0.065 (4)	0.081 (4)	-0.015 (3)	0.020 (4)	-0.025 (3)
C10	0.091 (5)	0.059 (4)	0.106 (5)	-0.001 (3)	0.021 (4)	-0.018 (4)
C11	0.069 (4)	0.060 (3)	0.099 (4)	0.001 (3)	0.020 (3)	-0.003 (3)
C12	0.063 (3)	0.056 (3)	0.060 (3)	-0.006 (2)	0.013 (2)	0.005 (2)
C13	0.055 (3)	0.057 (3)	0.054 (3)	-0.001 (2)	0.004 (2)	0.004 (2)
C14	0.078 (4)	0.108 (5)	0.066 (3)	0.011 (4)	-0.018 (3)	0.017 (4)
C15	0.063 (3)	0.073 (3)	0.049 (2)	-0.003 (3)	-0.012 (2)	0.005 (3)
C16	0.076 (3)	0.098 (4)	0.044 (3)	-0.001 (4)	-0.003 (2)	0.001 (3)
C17	0.110 (5)	0.124 (6)	0.071 (4)	-0.029 (5)	0.013 (4)	0.019 (4)
C18	0.125 (6)	0.195 (10)	0.047 (3)	-0.025 (6)	-0.005 (4)	-0.020 (4)
N1	0.042 (2)	0.061 (2)	0.0424 (18)	0.0039 (17)	-0.0001 (16)	-0.0117 (17)
N2	0.054 (2)	0.064 (3)	0.0390 (16)	-0.0075 (19)	-0.0008 (16)	0.0044 (19)
01	0.071 (2)	0.0503 (19)	0.0500 (17)	-0.0074 (16)	-0.0063 (16)	-0.0046 (14)
O2	0.082 (3)	0.072 (3)	0.075 (3)	0.009 (2)	-0.015 (2)	0.012 (2)
F1A	0.29 (2)	0.091 (7)	0.225 (17)	0.020 (10)	-0.067 (18)	-0.003 (11)
F1B	0.24 (2)	0.145 (16)	0.36 (3)	-0.025 (16)	0.01 (2)	0.080 (16)
F2	0.149 (6)	0.235 (9)	0.357 (14)	-0.025 (6)	-0.022 (8)	-0.047 (11)
F3	0.268 (10)	0.262 (11)	0.194 (8)	-0.019 (9)	-0.078 (8)	-0.046 (8)
P1	0.1223 (17)	0.1223 (17)	0.177 (4)	-0.025 (2)	-0.051 (2)	-0.051 (2)
Ru1	0.04954 (19)	0.04954 (19)	0.0347 (2)	-0.0046 (2)	0.00213 (16)	-0.00213 (16)

Geometric parameters (Å, °)

C1—N1	1.337 (5)	C13—N2	1.299 (7)
C1—C2	1.370 (8)	C13—O2	1.338 (6)
C1—H1	0.9500	C14—O2	1.458 (7)
C2—C3	1.353 (9)	C14—C15	1.544 (8)
С2—Н2	0.9500	C14—H14A	0.9900
C3—C4	1.426 (8)	C14—H14B	0.9900

С3—Н3	0.9500	C15—N2	1.499 (6)
C4—C5	1.375 (7)	C15—C16	1.528 (7)
C4—C6	1.414 (8)	С15—Н15	1.0000
C5—N1	1.376 (6)	C16—C17	1.527 (10)
C5-C5 ⁱ	1.421 (8)	C16—C18	1.538 (8)
C6—C6 ⁱ	1.335 (12)	С16—Н16	1.0000
С6—Н6	0.9500	С17—Н17А	0.9800
C7—O1	1.329 (6)	С17—Н17В	0.9800
C7—C12	1.402 (7)	C17—H17C	0.9800
C7—C8	1,414 (7)	C18—H18A	0.9800
C8—C9	1.377 (9)	C18—H18B	0.9800
C8—H8	0.9500	C18—H18C	0.9800
C9—C10	1 356 (10)	N1—Ru1	2,079 (4)
C9—H9	0.9500	N2—Ru1	2.072(4)
C10-C11	1 380 (9)	Ω_1 —Rul	1.974(3)
C10—H10	0.9500	F1A—P1	1.571(3)
C_{11} C_{12}	1 418 (8)	F1B—P1	1.312(12) 1 479(14)
C11—H11	0.9500	F2P1	1.179 (11)
C12 - C13	1 453 (7)	F3P1	1.535 (8)
012 013	1.455 (7)	15 11	1.555 (0)
N1—C1—C2	121.6 (5)	H17A—C17—H17B	109.5
N1—C1—H1	119.2	С16—С17—Н17С	109.5
C2—C1—H1	119.2	H17A—C17—H17C	109.5
C3—C2—C1	120.8 (5)	H17B—C17—H17C	109.5
C3—C2—H2	119.6	C16—C18—H18A	109.5
С1—С2—Н2	119.6	C16—C18—H18B	109.5
C2—C3—C4	120.0 (5)	H18A—C18—H18B	109.5
С2—С3—Н3	120.0	C16—C18—H18C	109.5
С4—С3—Н3	120.0	H18A—C18—H18C	109.5
C5—C4—C6	119.3 (5)	H18B—C18—H18C	109.5
C5—C4—C3	115.8 (5)	C1—N1—C5	118.0 (4)
C6—C4—C3	124.9 (5)	C1—N1—Ru1	127.9 (4)
C4—C5—N1	123.8 (4)	C5—N1—Ru1	114.1 (3)
C4—C5—C5 ⁱ	119.8 (3)	C13—N2—C15	108.5 (4)
N1-C5-C5 ⁱ	116.4 (2)	C13—N2—Ru1	125.1 (3)
C6 ⁱ —C6—C4	120.9 (3)	C15—N2—Ru1	126.4 (4)
C6 ⁱ —C6—H6	119.5	C7—O1—Ru1	128.4 (3)
С4—С6—Н6	119.5	C13—O2—C14	106.1 (4)
O1—C7—C12	125.7 (4)	F1B—P1—F1B ⁱⁱ	138 (2)
O1—C7—C8	116.5 (5)	F1B—P1—F1A ⁱⁱ	93.8 (14)
C12—C7—C8	117.8 (5)	$F1B^{ii}$ — $P1$ — $F1A^{ii}$	51.5 (10)
C9—C8—C7	121.1 (6)	F1A—P1—F1A ⁱⁱ	79.1 (18)
С9—С8—Н8	119.4	F1B—P1—F3	76.9 (11)
С7—С8—Н8	119.4	F1B ⁱⁱ —P1—F3	108.7 (11)
C10—C9—C8	121.2 (6)	F1A—P1—F3	118.9 (9)
С10—С9—Н9	119.4	F1A ⁱⁱ —P1—F3	73.6 (8)
С8—С9—Н9	119.4	F1B—P1—F3 ⁱⁱ	108.7 (11)
C9—C10—C11	119.6 (6)	F1B ⁱⁱ —P1—F3 ⁱⁱ	76.9 (11)

С9—С10—Н10	120.2	F1A—P1—F3 ⁱⁱ	73.6 (8)
C11—C10—H10	120.2	$F1A^{ii}$ — $P1$ — $F3^{ii}$	118.9 (9)
C10-C11-C12	121.0 (7)	F3—P1—F3 ⁱⁱ	165.1 (9)
C10-C11-H11	119.5	F1B—P1—F2	75.9 (10)
C12—C11—H11	119.5	F1B ⁱⁱ —P1—F2	143.1 (12)
C7—C12—C11	119.1 (5)	F1A—P1—F2	103.4 (10)
C7—C12—C13	122.9 (5)	$F1A^{ii}$ — $P1$ — $F2$	163.5 (9)
C11—C12—C13	117.9 (5)	F3—P1—F2	91.3 (7)
N2—C13—O2	116.7 (4)	F3 ⁱⁱ —P1—F2	77.1 (5)
N2—C13—C12	126.7 (5)	F1B—P1—F2 ⁱⁱ	143.1 (12)
O2—C13—C12	116.6 (5)	$F1B^{ii}$ — $P1$ — $F2^{ii}$	75.9 (10)
O2—C14—C15	105.4 (4)	F1A—P1—F2 ⁱⁱ	163.5 (9)
O2—C14—H14A	110.7	$F1A^{ii}$ — $P1$ — $F2^{ii}$	103.4 (10)
C15—C14—H14A	110.7	F3—P1—F2 ⁱⁱ	77.1 (5)
O2—C14—H14B	110.7	$F3^{ii}$ —P1—F2 ⁱⁱ	91.3 (7)
C15—C14—H14B	110.7	F2—P1—F2 ⁱⁱ	78.9 (8)
H14A—C14—H14B	108.8	$O1$ —Ru1— $O1^i$	97.4 (2)
N2-C15-C16	111.3 (4)	O1—Ru1—N2	89.76 (15)
N2-C15-C14	100.6 (4)	$O1^{i}$ Ru1 N2	88.30 (15)
C_{16} C_{15} C_{14}	114 1 (5)	O1—Ru1—N2 ⁱ	88 30 (15)
N2-C15-H15	110.2	$O1^{i}$ Ru1 N2 ⁱ	89.77 (15)
C16—C15—H15	110.2	$N2$ — $Ru1$ — $N2^{i}$	1771(2)
C14—C15—H15	110.2	Ω_1 Ru1 N1	170.53(15)
C17 - C16 - C15	113.6 (5)	$O1^{i}$ Ru1 N1	91 80 (15)
C17 - C16 - C18	113.0(5) 111.4(5)	N2 = Ru1 = N1	92 57 (16)
C_{15} C_{16} C_{18}	1099(5)	$N2^{i}$ Ru1 N1	89 70 (15)
C17 - C16 - H16	107.2	$\Omega_1 = Ru_1 = N_1^{i}$	91.80 (15)
C_{15} C_{16} H_{16}	107.2	$O1^{i}$ Ru1 N1 ⁱ	170 53 (15)
C18 - C16 - H16	107.2	$N2_Ru1_N1^i$	89 70 (15)
$C_{16} = C_{17} = H_{17A}$	107.2	$N2^{i}$ $Ru1$ $N1^{i}$	02.56 (15)
C16 C17 H17B	109.5	$\frac{1}{1} \frac{1}{1} \frac{1}$	70 0 (2)
сто—ст/—пт/В	109.5	MI-KuI-MI	79.0 (2)
N1—C1—C2—C3	1.6 (10)	O2—C14—C15—N2	-15.9 (6)
C1-C2-C3-C4	-2.9(11)	02-C14-C15-C16	103.4 (5)
$C_2 - C_3 - C_4 - C_5$	2.0 (9)	N2-C15-C16-C17	58.9 (7)
$C_2 - C_3 - C_4 - C_6$	-177.6(7)	C_{14} C_{15} C_{16} C_{17}	-54.2(7)
C6-C4-C5-N1	179.7 (5)	N_{2} C15 C16 C18	-175.5(6)
$C_{3}-C_{4}-C_{5}-N_{1}$	0.1.(8)	C_{14} C_{15} C_{16} C_{18}	71 4 (8)
$C6-C4-C5-C5^{i}$	-13(9)	$C_{$	0.5(8)
C_{3} C_{4} C_{5} C_{5}^{i}	179 1 (6)	C_2 C_1 N_1 R_{11}	179 8 (5)
$C_{5} - C_{4} - C_{6} - C_{6}^{i}$	0.8(11)	C4-C5-N1-C1	-1.3(7)
C_{3} C_{4} C_{6} C_{6}^{i}	-1796(7)	$C_{1}^{i} = C_{2}^{i} = N_{1}^{i} = C_{1}^{i}$	1.5(7)
01 - 07 - 08 - 09	-176.8(5)	C4-C5-N1-Ru1	179.0(3)
C12-C7-C8-C9	2 8 (8)	C_{5}^{i} C_{5}^{i} N_{1} R_{11}	0.2(6)
C7 - C8 - C9 - C10	-10(10)	02-C13-N2-C15	-52(0)
C_{8} C_{9} C_{10} C_{11}	-1.2(10)	$C_1^2 = C_1^2 = C_1^2 = C_1^2$	173.8(5)
$C_{0} = C_{10} = C_{10} = C_{11}$	1.2 (10)	$O_{12} = O_{13} = O_{12} = O_{13} = O$	173 3 (2)
C_{7} C_{10} C_{11} C_{12} C_{11}	1.0(10) 177.1(5)	02 - 013 - 112 - Ku1	(3)
$U_1 - U_1 - U_1 - U_1 - U_1$	1//.1 (3)	U12-U13-N2-KUI	-/./(/)

C8—C7—C12—C11	-2.4 (7)	C16—C15—N2—C13	-108.2 (5)
O1—C7—C12—C13	1.0 (8)	C14—C15—N2—C13	13.0 (6)
C8—C7—C12—C13	-178.5 (5)	C16—C15—N2—Ru1	73.3 (6)
C10-C11-C12-C7	0.3 (8)	C14—C15—N2—Ru1	-165.4 (4)
C10-C11-C12-C13	176.5 (5)	C12—C7—O1—Ru1	8.7 (7)
C7—C12—C13—N2	-1.2 (8)	C8—C7—O1—Ru1	-171.7 (3)
C11—C12—C13—N2	-177.3 (5)	N2-C13-O2-C14	-5.9 (6)
C7—C12—C13—O2	177.9 (5)	C12—C13—O2—C14	175.0 (5)
C11—C12—C13—O2	1.7 (7)	C15—C14—O2—C13	13.9 (6)

Symmetry codes: (i) y, x, -z+1; (ii) -y+1, -x+1, -z+3/2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A	
C1—H1···O1 ⁱ	0.95	2.59	3.102 (6)	114	
C16—H16…O1 ⁱ	1.00	2.53	3.224 (6)	126	
C17—H17A…F3 ⁱⁱⁱ	0.98	2.52	3.464 (11)	162	
C18—H18A…F2	0.98	2.48	3.357 (12)	149	

Symmetry codes: (i) *y*, *x*, -*z*+1; (iii) *x*-1/2, -*y*+1/2, -*z*+7/4.