metal-organic compounds
Dichloridotetrakis(3-methoxyaniline)nickel(II)
aCarlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA, and bDepartment of Chemistry, University of Virginia, 409 McCormack Rd., Charlottesville, VA 22904, USA
*Correspondence e-mail: mturnbull@clarku.edu
The reaction of nickel(II) chloride with 3-methoxyaniline yielded dichloridotetrakis(3-methoxyaniline)nickel(II), [NiCl2(C7H9NO)4], as yellow crystals. The NiII ion is pseudo-octahedral with the chloride ions trans to each other. The four 3-methoxyaniline ligands differ primarily due to different conformations about the Ni—N bond, which also affect the hydrogen bonding. Intermolecular N—H⋯ Cl hydrogen bonds and short Cl⋯Cl contacts between molecules link them into chains parallel to the b axis.
CCDC reference: 2376104
Structure description
The structures of binary transition-metal halide complexes of aniline are varied and have been known for nearly two decades, since the report of CoCl2(aniline)2 by Burrow et al. (1997). Structures for compounds of the formula MX2(aniline)2, where M is a transition metal, are known for trans-square planar (SP) Pd (Chen et al., 2002) and Cu (Low et al., 2013), and tetrahedral (Td) Zn (Khan et al., 2010; Ejaz et al., 2009; Rademeyer et al., 2004) and Cd (Costin-Hogan et al., 2008). Structures of first row transition-metal (FTM) complexes with the same general formula, FTMX2(sub-aniline)2 are known for substituents such as o-methyl (SP: Daniliuc et al., 2023), p-methyl (Td: Chellali et al., 2019), p-ethyl (Td: Govindaraj et al., 2015; Td: Harmouzi et al., 2017), p-acetyl (Td and SP: Macek et al., 2023; SP, Nemec et al., 2020), p-bromo (Td: Subashini et al., 2012a; Td, Li: 2023), p-chloro (Td: Chellali et al., 2019), p-fluoro (Td: Subashini et al., 2012b), o-methoxy, m-methoxy and p-methoxy (Td: Kupko et al., 2020; Td: Amani, 2018) and p-carboxylic acid (Td: Rademeyer et al., 2010; SP: Guedes et al., 2011). Only slightly less common, but particularly favored by NiII, are those structures of the formula FTMX2(sub-aniline)2(solvent)2, which include solvents such as water (Macek et al., 2023; Meehan et al., 2021) methanol (Meehan et al., 2021), ethanol (Meehan et al., 2021; Clegg & Martin, 2007) and acetonitrile (Fawcett et al., 2005); all are trans-pseudooctahedral (Oh). A smaller number of structures have been reported with aniline and substituted aniline ligands of the formula FTMX2(sub-aniline)4, which include the trans-Oh complexes NiCl2(p-methylaniline)4 and NiBr2(p-methylaniline)4 (Meehan et al., 2021) and NiI2(p-methylaniline)4 (Dhital et al., 2020), again favored by six-coordinate nickel(II) complexes. In the course of our investigations of complexes of substituted aniline ligands, we have encountered one more such compound and here report the synthesis and structure of NiCl2(3-methoxyaniline)4.
The molecule is pseudo-octahedral with trans-chloride ions and all atoms lie on general crystallographic positions (Fig. 1). The Cl1—Ni1—Cl2 bond angle is nearly linear [179.8 (2)°]. The Cl—Ni—N angles range from 85.45 (5) to 93.82 (5)° while the cis N—Ni—N angles are similar in the range 84.3 (7) to 94.75 (7)° (Table 1). Taking the NiN4 atoms as the equatorial plane (mean deviation of constituent atoms = 0.0141 Å), the Ni ion lies 0 0029 Å out of the plane. One trans-pair of aniline ligands lie with their C—N bonds oriented nearly in that plane with angles of the C—N vector 2.6 (1)° (C11—N11) or 5.3 (1)° (C21—N21) out of the plane. Conversely, the alternate pair of aniline ligands have their C—N vectors tilted significantly out of the plane at 49.0 (1)° (C31—N31) and 44.0 (1)° (C41—N41). As expected, the aromatic rings are almost planar (mean deviation by ring: N11, 0.0115 Å; N21, 0.0212 Å; N31, 0.0028 Å; N41, 0.0222 Å). The methoxy groups lie very nearly in their respective ring planes as based on the torsion angles [torsion angle Cn7—On3—Cn3—Cn2: n = 1, −10.9 (3)°; 2, −7.8 (3)°; 3, −1.4 (3)°; 4, 179.32 (19)°]. The N41 ring is again unique; the conformations of the methoxy groups of the other three 3-methoxyaniline molecules all show the methoxy group directed toward the amino substituent, while for the N41 ring, it is rotated ∼180° and lies anti to the amino substituent.
|
It is also noteworthy that the conformations of the anisidine rings are such that three of the rings have their methoxy substituents tipped toward, and above, the Cl2 side of the NiN4 plane. The O33—C33 methoxy group is also tipped in that direction, but due to the orientation of the N31—C31 bond, the methoxy group itself lies on the opposite side of the NiN4 plane.
In the crystal, molecules are linked into chains via weak N—H⋯Cl hydrogen bonds (Table 2), which results in short contacts between inversion-related chloride ions parallel to the b axis [dCl1⋯Cl1A = 3.725 (2) Å, angleNi1—Cl1⋯Cl1A = 92.4 (1)°; dCl2—Cl2B = 3.721 (2) Å, angleNi1—Cl2⋯Cl2B = 89.3 (1)°; symmetry codes: (A) = 1 − x, 1 − y, 1 − z; (B) = 1 − x, −y, 1 − z] (Fig. 2). The chains are well separated in both the b- and c-axis directions by the bulk of the 3-methoxyaniline molecules.
Synthesis and crystallization
Synthesis: 0.5035 g of 3-methoxyaniline were dissolved in 18 ml of EtOH, creating a red solution. NiCl2 hexahydrate was dissolved in 25 ml of EtOH, creating a green solution. Both solutions were heated until they began to boil, at which point the methoxyaniline solution was poured into the nickel chloride solution, resulting in a peach-colored solution that quickly became cloudy. The mixture was repeatedly decanted to remove the majority of the precipitate over the course of two hours and then allowed to cool. The next day, a green powdery precipitate was collected using vacuum filtration and washed using DI water. The filtrate was collected and allowed to evaporate slowly. The next day, small dark-yellow crystals were observed and collected by vacuum filtration, 0.002 g (0.2%).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3Structural data
CCDC reference: 2376104
[NiCl2(C7H9NO)4] | Z = 2 |
Mr = 622.22 | F(000) = 652 |
Triclinic, P1 | Dx = 1.437 Mg m−3 |
a = 11.4514 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.1629 (5) Å | Cell parameters from 5693 reflections |
c = 12.6920 (5) Å | θ = 2.9–27.2° |
α = 67.9946 (13)° | µ = 0.90 mm−1 |
β = 67.3255 (14)° | T = 100 K |
γ = 65.8759 (14)° | Plate, yellow |
V = 1438.34 (11) Å3 | 0.09 × 0.06 × 0.04 mm |
Bruker APEXII CCD diffractometer | 4852 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.076 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.3°, θmin = 2.0° |
Tmin = 0.714, Tmax = 0.746 | h = −15→15 |
42960 measured reflections | k = −16→16 |
7138 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: mixed |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0334P)2 + 0.4355P] where P = (Fo2 + 2Fc2)/3 |
7138 reflections | (Δ/σ)max = 0.001 |
380 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data collection for compound 1 was carried out with a Bruker APEX4 v2022.10–1 CCD diffractometer employing Mo—Kα radiation (λ = 0.71073 Å). The data were collected and reduced using Bruker SMART and SAINT+ software (Bruker, 2014). Absorption corrections were performed using SADABS (Krause, 2015). The structure was solved using SHELXS2014 (Sheldrick, 2008) and refined using SHELXL2018 (Sheldrick, 2015). Hydrogen atoms bonded to carbon atoms were placed geometrically and refined with fixed isotropic thermal parameters, Uiso(H) = 1.2 (C). Hydrogen atoms bonded to nitrogen atoms were located in the difference map and their positions refined with fixed isotropic thermal parameters, Uiso(H) = 1.2 (N) (dN—H = 0.81 (2)–0.91 (2) Å). Final data collection and refinement parameters may be found in Table 2. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.50342 (3) | 0.25347 (2) | 0.48264 (2) | 0.01306 (8) | |
Cl1 | 0.64202 (5) | 0.35611 (5) | 0.47889 (5) | 0.01674 (12) | |
Cl2 | 0.36209 (5) | 0.14962 (5) | 0.48636 (5) | 0.01653 (12) | |
N11 | 0.3352 (2) | 0.36558 (18) | 0.58739 (17) | 0.0166 (4) | |
H11A | 0.275 (2) | 0.378 (2) | 0.558 (2) | 0.020* | |
H11B | 0.352 (2) | 0.431 (2) | 0.573 (2) | 0.020* | |
C11 | 0.2928 (2) | 0.31967 (19) | 0.71270 (19) | 0.0157 (4) | |
C12 | 0.2248 (2) | 0.2323 (2) | 0.75867 (19) | 0.0164 (5) | |
H12 | 0.205531 | 0.205855 | 0.707310 | 0.020* | |
O13 | 0.11618 (18) | 0.09999 (16) | 0.93113 (14) | 0.0279 (4) | |
C13 | 0.1853 (2) | 0.1843 (2) | 0.8798 (2) | 0.0195 (5) | |
C14 | 0.2155 (2) | 0.2202 (2) | 0.9554 (2) | 0.0222 (5) | |
H14 | 0.190108 | 0.185492 | 1.038361 | 0.027* | |
C15 | 0.2830 (2) | 0.3071 (2) | 0.9086 (2) | 0.0223 (5) | |
H15 | 0.303439 | 0.332402 | 0.960012 | 0.027* | |
C16 | 0.3215 (2) | 0.3580 (2) | 0.7873 (2) | 0.0185 (5) | |
H16 | 0.366913 | 0.418434 | 0.755974 | 0.022* | |
C17 | 0.0651 (3) | 0.0796 (2) | 0.8560 (2) | 0.0306 (6) | |
H17A | 0.006179 | 0.158736 | 0.820813 | 0.037* | |
H17B | 0.014986 | 0.020045 | 0.902455 | 0.037* | |
H17C | 0.139042 | 0.046029 | 0.793178 | 0.037* | |
N21 | 0.6746 (2) | 0.14469 (17) | 0.37458 (16) | 0.0158 (4) | |
H21A | 0.664 (2) | 0.072 (2) | 0.397 (2) | 0.019* | |
H21B | 0.741 (2) | 0.143 (2) | 0.391 (2) | 0.019* | |
C21 | 0.6950 (2) | 0.1932 (2) | 0.24955 (18) | 0.0162 (5) | |
O33 | 1.00929 (15) | −0.14771 (14) | 0.62401 (13) | 0.0208 (4) | |
C22 | 0.6279 (2) | 0.1668 (2) | 0.19530 (19) | 0.0170 (5) | |
H22 | 0.575639 | 0.112201 | 0.239635 | 0.020* | |
O23 | 0.57495 (17) | 0.20291 (15) | 0.01482 (13) | 0.0227 (4) | |
C23 | 0.6384 (2) | 0.2214 (2) | 0.07549 (19) | 0.0185 (5) | |
C24 | 0.7149 (3) | 0.3015 (2) | 0.0103 (2) | 0.0261 (6) | |
H24 | 0.721742 | 0.338922 | −0.071467 | 0.031* | |
C25 | 0.7802 (3) | 0.3257 (2) | 0.0657 (2) | 0.0287 (6) | |
H25 | 0.832512 | 0.380328 | 0.021309 | 0.034* | |
C26 | 0.7717 (2) | 0.2719 (2) | 0.1858 (2) | 0.0226 (5) | |
H26 | 0.817848 | 0.289221 | 0.222808 | 0.027* | |
C27 | 0.5077 (3) | 0.1107 (2) | 0.0754 (2) | 0.0247 (5) | |
H27A | 0.569940 | 0.031131 | 0.105624 | 0.030* | |
H27B | 0.473733 | 0.100612 | 0.020716 | 0.030* | |
H27C | 0.433351 | 0.137241 | 0.141548 | 0.030* | |
N31 | 0.55035 (19) | 0.10066 (17) | 0.63226 (16) | 0.0147 (4) | |
H31A | 0.475 (2) | 0.121 (2) | 0.691 (2) | 0.018* | |
H31B | 0.551 (2) | 0.040 (2) | 0.614 (2) | 0.018* | |
C31 | 0.6663 (2) | 0.06435 (19) | 0.67155 (18) | 0.0146 (4) | |
C32 | 0.7799 (2) | −0.02535 (19) | 0.62731 (18) | 0.0152 (4) | |
H32 | 0.780233 | −0.061587 | 0.572592 | 0.018* | |
C33 | 0.8928 (2) | −0.0614 (2) | 0.66390 (19) | 0.0165 (5) | |
C34 | 0.8918 (2) | −0.0100 (2) | 0.74531 (19) | 0.0200 (5) | |
H34 | 0.968644 | −0.035787 | 0.771305 | 0.024* | |
C35 | 0.7780 (2) | 0.0787 (2) | 0.78804 (19) | 0.0205 (5) | |
H35 | 0.777267 | 0.114153 | 0.843589 | 0.025* | |
C36 | 0.6646 (2) | 0.1173 (2) | 0.75138 (19) | 0.0187 (5) | |
H36 | 0.587098 | 0.179170 | 0.780764 | 0.022* | |
C37 | 1.0107 (2) | −0.2039 (2) | 0.5425 (2) | 0.0223 (5) | |
H37A | 0.943022 | −0.246875 | 0.579432 | 0.027* | |
H37B | 1.098606 | −0.264165 | 0.520807 | 0.027* | |
H37C | 0.991446 | −0.139306 | 0.471444 | 0.027* | |
N41 | 0.4506 (2) | 0.41029 (18) | 0.33230 (17) | 0.0174 (4) | |
H41A | 0.464 (2) | 0.465 (2) | 0.343 (2) | 0.021* | |
H41B | 0.509 (2) | 0.388 (2) | 0.273 (2) | 0.021* | |
C41 | 0.3218 (2) | 0.4570 (2) | 0.31188 (19) | 0.0158 (5) | |
C42 | 0.2933 (2) | 0.4009 (2) | 0.25224 (18) | 0.0166 (5) | |
H42 | 0.360547 | 0.334924 | 0.219965 | 0.020* | |
O43 | 0.14760 (16) | 0.38059 (15) | 0.17817 (14) | 0.0234 (4) | |
C43 | 0.1662 (2) | 0.4410 (2) | 0.23955 (19) | 0.0175 (5) | |
C44 | 0.0670 (2) | 0.5362 (2) | 0.2874 (2) | 0.0232 (5) | |
H44 | −0.020672 | 0.562393 | 0.280350 | 0.028* | |
C45 | 0.0980 (3) | 0.5922 (2) | 0.3455 (2) | 0.0285 (6) | |
H45 | 0.030717 | 0.658162 | 0.377741 | 0.034* | |
C46 | 0.2242 (2) | 0.5547 (2) | 0.3578 (2) | 0.0221 (5) | |
H46 | 0.244053 | 0.595015 | 0.397112 | 0.027* | |
C47 | 0.0172 (2) | 0.4192 (2) | 0.1650 (2) | 0.0251 (5) | |
H47A | −0.046398 | 0.405454 | 0.243101 | 0.030* | |
H47B | 0.016330 | 0.370547 | 0.118882 | 0.030* | |
H47C | −0.007743 | 0.507929 | 0.123847 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01355 (15) | 0.01235 (14) | 0.01499 (15) | −0.00477 (11) | −0.00524 (11) | −0.00311 (10) |
Cl1 | 0.0156 (3) | 0.0136 (3) | 0.0248 (3) | −0.0050 (2) | −0.0089 (2) | −0.0049 (2) |
Cl2 | 0.0178 (3) | 0.0147 (3) | 0.0210 (3) | −0.0067 (2) | −0.0081 (2) | −0.0040 (2) |
N11 | 0.0163 (10) | 0.0139 (9) | 0.0203 (10) | −0.0064 (8) | −0.0050 (8) | −0.0033 (7) |
C11 | 0.0107 (11) | 0.0146 (11) | 0.0188 (11) | −0.0008 (9) | −0.0029 (9) | −0.0057 (8) |
C12 | 0.0137 (11) | 0.0171 (11) | 0.0196 (11) | −0.0042 (9) | −0.0056 (9) | −0.0056 (8) |
O13 | 0.0374 (11) | 0.0331 (10) | 0.0220 (9) | −0.0243 (9) | −0.0084 (8) | −0.0012 (7) |
C13 | 0.0187 (12) | 0.0155 (11) | 0.0240 (12) | −0.0070 (9) | −0.0049 (10) | −0.0040 (9) |
C14 | 0.0241 (13) | 0.0240 (12) | 0.0173 (12) | −0.0087 (10) | −0.0059 (10) | −0.0024 (9) |
C15 | 0.0220 (13) | 0.0238 (12) | 0.0242 (13) | −0.0052 (10) | −0.0089 (10) | −0.0089 (10) |
C16 | 0.0166 (12) | 0.0169 (11) | 0.0239 (12) | −0.0070 (9) | −0.0058 (10) | −0.0049 (9) |
C17 | 0.0397 (17) | 0.0384 (15) | 0.0250 (13) | −0.0279 (13) | −0.0076 (12) | −0.0037 (11) |
N21 | 0.0173 (10) | 0.0148 (10) | 0.0178 (10) | −0.0072 (8) | −0.0061 (8) | −0.0029 (7) |
C21 | 0.0142 (11) | 0.0167 (11) | 0.0163 (11) | −0.0029 (9) | −0.0023 (9) | −0.0067 (8) |
O33 | 0.0160 (9) | 0.0248 (9) | 0.0243 (9) | −0.0022 (7) | −0.0067 (7) | −0.0124 (7) |
C22 | 0.0178 (12) | 0.0150 (11) | 0.0179 (11) | −0.0064 (9) | −0.0029 (9) | −0.0047 (8) |
O23 | 0.0293 (10) | 0.0268 (9) | 0.0178 (8) | −0.0128 (8) | −0.0097 (7) | −0.0036 (7) |
C23 | 0.0187 (13) | 0.0201 (12) | 0.0184 (12) | −0.0051 (10) | −0.0046 (10) | −0.0083 (9) |
C24 | 0.0325 (15) | 0.0320 (14) | 0.0154 (12) | −0.0174 (12) | −0.0047 (10) | −0.0015 (10) |
C25 | 0.0338 (16) | 0.0341 (15) | 0.0227 (13) | −0.0236 (12) | −0.0036 (11) | −0.0017 (11) |
C26 | 0.0224 (13) | 0.0291 (13) | 0.0226 (12) | −0.0140 (11) | −0.0073 (10) | −0.0054 (10) |
C27 | 0.0318 (15) | 0.0255 (13) | 0.0250 (13) | −0.0136 (11) | −0.0137 (11) | −0.0038 (10) |
N31 | 0.0132 (10) | 0.0129 (9) | 0.0184 (10) | −0.0037 (8) | −0.0042 (8) | −0.0048 (7) |
C31 | 0.0160 (11) | 0.0138 (11) | 0.0138 (10) | −0.0069 (9) | −0.0052 (9) | 0.0002 (8) |
C32 | 0.0178 (12) | 0.0150 (11) | 0.0143 (11) | −0.0057 (9) | −0.0047 (9) | −0.0043 (8) |
C33 | 0.0152 (12) | 0.0156 (11) | 0.0170 (11) | −0.0047 (9) | −0.0037 (9) | −0.0034 (8) |
C34 | 0.0181 (12) | 0.0254 (12) | 0.0192 (12) | −0.0070 (10) | −0.0080 (9) | −0.0053 (9) |
C35 | 0.0253 (13) | 0.0244 (12) | 0.0179 (12) | −0.0086 (10) | −0.0073 (10) | −0.0094 (9) |
C36 | 0.0187 (12) | 0.0180 (11) | 0.0181 (11) | −0.0027 (9) | −0.0047 (9) | −0.0069 (9) |
C37 | 0.0167 (12) | 0.0255 (13) | 0.0268 (13) | −0.0012 (10) | −0.0053 (10) | −0.0155 (10) |
N41 | 0.0183 (11) | 0.0167 (10) | 0.0197 (10) | −0.0073 (8) | −0.0075 (8) | −0.0029 (8) |
C41 | 0.0142 (11) | 0.0150 (11) | 0.0172 (11) | −0.0058 (9) | −0.0063 (9) | 0.0003 (8) |
C42 | 0.0165 (12) | 0.0162 (11) | 0.0163 (11) | −0.0040 (9) | −0.0045 (9) | −0.0045 (8) |
O43 | 0.0202 (9) | 0.0271 (9) | 0.0312 (9) | −0.0043 (7) | −0.0129 (7) | −0.0136 (7) |
C43 | 0.0224 (13) | 0.0173 (11) | 0.0165 (11) | −0.0080 (10) | −0.0092 (9) | −0.0023 (8) |
C44 | 0.0177 (13) | 0.0260 (13) | 0.0269 (13) | −0.0004 (10) | −0.0112 (10) | −0.0098 (10) |
C45 | 0.0256 (14) | 0.0267 (13) | 0.0359 (15) | 0.0053 (11) | −0.0149 (12) | −0.0190 (11) |
C46 | 0.0247 (13) | 0.0210 (12) | 0.0268 (13) | −0.0021 (10) | −0.0153 (11) | −0.0095 (10) |
C47 | 0.0238 (14) | 0.0313 (14) | 0.0282 (13) | −0.0106 (11) | −0.0132 (11) | −0.0074 (10) |
Ni1—N11 | 2.1388 (19) | C25—H25 | 0.9500 |
Ni1—N21 | 2.1544 (19) | C26—H26 | 0.9500 |
Ni1—N31 | 2.1621 (18) | C27—H27A | 0.9800 |
Ni1—N41 | 2.2056 (18) | C27—H27B | 0.9800 |
Ni1—Cl1 | 2.3658 (6) | C27—H27C | 0.9800 |
Ni1—Cl2 | 2.4051 (6) | N31—C31 | 1.440 (3) |
N11—C11 | 1.428 (3) | N31—H31A | 0.91 (2) |
N11—H11A | 0.85 (2) | N31—H31B | 0.85 (2) |
N11—H11B | 0.83 (2) | C31—C36 | 1.381 (3) |
C11—C16 | 1.385 (3) | C31—C32 | 1.391 (3) |
C11—C12 | 1.392 (3) | C32—C33 | 1.388 (3) |
C12—C13 | 1.384 (3) | C32—H32 | 0.9500 |
C12—H12 | 0.9500 | C33—C34 | 1.388 (3) |
O13—C13 | 1.367 (3) | C34—C35 | 1.379 (3) |
O13—C17 | 1.428 (3) | C34—H34 | 0.9500 |
C13—C14 | 1.387 (3) | C35—C36 | 1.388 (3) |
C14—C15 | 1.382 (3) | C35—H35 | 0.9500 |
C14—H14 | 0.9500 | C36—H36 | 0.9500 |
C15—C16 | 1.390 (3) | C37—H37A | 0.9800 |
C15—H15 | 0.9500 | C37—H37B | 0.9800 |
C16—H16 | 0.9500 | C37—H37C | 0.9800 |
C17—H17A | 0.9800 | N41—C41 | 1.436 (3) |
C17—H17B | 0.9800 | N41—H41A | 0.81 (2) |
C17—H17C | 0.9800 | N41—H41B | 0.83 (2) |
N21—C21 | 1.430 (3) | C41—C42 | 1.381 (3) |
N21—H21A | 0.86 (2) | C41—C46 | 1.390 (3) |
N21—H21B | 0.85 (2) | C42—C43 | 1.387 (3) |
C21—C26 | 1.379 (3) | C42—H42 | 0.9500 |
C21—C22 | 1.393 (3) | O43—C43 | 1.370 (3) |
O33—C33 | 1.368 (3) | O43—C47 | 1.428 (3) |
O33—C37 | 1.431 (3) | C43—C44 | 1.385 (3) |
C22—C23 | 1.391 (3) | C44—C45 | 1.383 (3) |
C22—H22 | 0.9500 | C44—H44 | 0.9500 |
O23—C23 | 1.366 (3) | C45—C46 | 1.380 (3) |
O23—C27 | 1.430 (3) | C45—H45 | 0.9500 |
C23—C24 | 1.391 (3) | C46—H46 | 0.9500 |
C24—C25 | 1.371 (3) | C47—H47A | 0.9800 |
C24—H24 | 0.9500 | C47—H47B | 0.9800 |
C25—C26 | 1.397 (3) | C47—H47C | 0.9800 |
N11—Ni1—N21 | 178.52 (8) | C21—C26—H26 | 120.6 |
N11—Ni1—N31 | 94.62 (7) | C25—C26—H26 | 120.6 |
N21—Ni1—N31 | 86.39 (7) | O23—C27—H27A | 109.5 |
N11—Ni1—N41 | 84.25 (7) | O23—C27—H27B | 109.5 |
N21—Ni1—N41 | 94.75 (7) | H27A—C27—H27B | 109.5 |
N31—Ni1—N41 | 178.66 (8) | O23—C27—H27C | 109.5 |
N11—Ni1—Cl1 | 90.80 (6) | H27A—C27—H27C | 109.5 |
N21—Ni1—Cl1 | 88.04 (6) | H27B—C27—H27C | 109.5 |
N31—Ni1—Cl1 | 94.66 (5) | C31—N31—Ni1 | 125.09 (14) |
N41—Ni1—Cl1 | 86.07 (5) | C31—N31—H31A | 110.5 (15) |
N11—Ni1—Cl2 | 89.10 (6) | Ni1—N31—H31A | 100.9 (14) |
N21—Ni1—Cl2 | 92.06 (6) | C31—N31—H31B | 109.2 (16) |
N31—Ni1—Cl2 | 85.45 (5) | Ni1—N31—H31B | 101.4 (16) |
N41—Ni1—Cl2 | 93.82 (5) | H31A—N31—H31B | 109 (2) |
Cl1—Ni1—Cl2 | 179.86 (2) | C36—C31—C32 | 120.8 (2) |
C11—N11—Ni1 | 120.77 (14) | C36—C31—N31 | 120.7 (2) |
C11—N11—H11A | 109.6 (16) | C32—C31—N31 | 118.46 (19) |
Ni1—N11—H11A | 100.8 (16) | C33—C32—C31 | 119.3 (2) |
C11—N11—H11B | 107.7 (16) | C33—C32—H32 | 120.3 |
Ni1—N11—H11B | 106.1 (17) | C31—C32—H32 | 120.3 |
H11A—N11—H11B | 112 (2) | O33—C33—C32 | 123.3 (2) |
C16—C11—C12 | 120.4 (2) | O33—C33—C34 | 116.24 (19) |
C16—C11—N11 | 121.1 (2) | C32—C33—C34 | 120.4 (2) |
C12—C11—N11 | 118.4 (2) | C35—C34—C33 | 119.3 (2) |
C13—C12—C11 | 119.5 (2) | C35—C34—H34 | 120.4 |
C13—C12—H12 | 120.3 | C33—C34—H34 | 120.4 |
C11—C12—H12 | 120.3 | C34—C35—C36 | 121.2 (2) |
C13—O13—C17 | 116.54 (18) | C34—C35—H35 | 119.4 |
O13—C13—C12 | 122.6 (2) | C36—C35—H35 | 119.4 |
O13—C13—C14 | 116.7 (2) | C31—C36—C35 | 119.0 (2) |
C12—C13—C14 | 120.7 (2) | C31—C36—H36 | 120.5 |
C15—C14—C13 | 119.2 (2) | C35—C36—H36 | 120.5 |
C15—C14—H14 | 120.4 | O33—C37—H37A | 109.5 |
C13—C14—H14 | 120.4 | O33—C37—H37B | 109.5 |
C14—C15—C16 | 121.0 (2) | H37A—C37—H37B | 109.5 |
C14—C15—H15 | 119.5 | O33—C37—H37C | 109.5 |
C16—C15—H15 | 119.5 | H37A—C37—H37C | 109.5 |
C11—C16—C15 | 119.2 (2) | H37B—C37—H37C | 109.5 |
C11—C16—H16 | 120.4 | C41—N41—Ni1 | 123.17 (14) |
C15—C16—H16 | 120.4 | C41—N41—H41A | 109.1 (18) |
O13—C17—H17A | 109.5 | Ni1—N41—H41A | 101.2 (17) |
O13—C17—H17B | 109.5 | C41—N41—H41B | 109.4 (17) |
H17A—C17—H17B | 109.5 | Ni1—N41—H41B | 104.0 (17) |
O13—C17—H17C | 109.5 | H41A—N41—H41B | 109 (2) |
H17A—C17—H17C | 109.5 | C42—C41—C46 | 120.3 (2) |
H17B—C17—H17C | 109.5 | C42—C41—N41 | 120.1 (2) |
C21—N21—Ni1 | 116.21 (14) | C46—C41—N41 | 119.6 (2) |
C21—N21—H21A | 109.8 (15) | C41—C42—C43 | 119.9 (2) |
Ni1—N21—H21A | 105.2 (16) | C41—C42—H42 | 120.1 |
C21—N21—H21B | 107.8 (16) | C43—C42—H42 | 120.1 |
Ni1—N21—H21B | 104.7 (16) | C43—O43—C47 | 116.84 (18) |
H21A—N21—H21B | 113 (2) | O43—C43—C44 | 123.7 (2) |
C26—C21—C22 | 120.7 (2) | O43—C43—C42 | 115.7 (2) |
C26—C21—N21 | 120.4 (2) | C44—C43—C42 | 120.6 (2) |
C22—C21—N21 | 118.6 (2) | C45—C44—C43 | 118.7 (2) |
C33—O33—C37 | 116.88 (17) | C45—C44—H44 | 120.7 |
C23—C22—C21 | 119.3 (2) | C43—C44—H44 | 120.7 |
C23—C22—H22 | 120.4 | C46—C45—C44 | 121.7 (2) |
C21—C22—H22 | 120.4 | C46—C45—H45 | 119.2 |
C23—O23—C27 | 117.27 (17) | C44—C45—H45 | 119.2 |
O23—C23—C24 | 115.8 (2) | C45—C46—C41 | 119.0 (2) |
O23—C23—C22 | 123.7 (2) | C45—C46—H46 | 120.5 |
C24—C23—C22 | 120.5 (2) | C41—C46—H46 | 120.5 |
C25—C24—C23 | 119.1 (2) | O43—C47—H47A | 109.5 |
C25—C24—H24 | 120.5 | O43—C47—H47B | 109.5 |
C23—C24—H24 | 120.5 | H47A—C47—H47B | 109.5 |
C24—C25—C26 | 121.6 (2) | O43—C47—H47C | 109.5 |
C24—C25—H25 | 119.2 | H47A—C47—H47C | 109.5 |
C26—C25—H25 | 119.2 | H47B—C47—H47C | 109.5 |
C21—C26—C25 | 118.8 (2) | ||
Ni1—N11—C11—C16 | 102.6 (2) | Ni1—N31—C31—C36 | 88.5 (2) |
Ni1—N11—C11—C12 | −75.6 (2) | Ni1—N31—C31—C32 | −91.6 (2) |
C16—C11—C12—C13 | 0.3 (3) | C36—C31—C32—C33 | −0.2 (3) |
N11—C11—C12—C13 | 178.5 (2) | N31—C31—C32—C33 | 179.85 (19) |
C17—O13—C13—C12 | −10.9 (3) | C37—O33—C33—C32 | −1.4 (3) |
C17—O13—C13—C14 | 169.4 (2) | C37—O33—C33—C34 | 178.35 (19) |
C11—C12—C13—O13 | 178.8 (2) | C31—C32—C33—O33 | −179.19 (19) |
C11—C12—C13—C14 | −1.5 (3) | C31—C32—C33—C34 | 1.1 (3) |
O13—C13—C14—C15 | −178.7 (2) | O33—C33—C34—C35 | 179.2 (2) |
C12—C13—C14—C15 | 1.5 (4) | C32—C33—C34—C35 | −1.0 (3) |
C13—C14—C15—C16 | −0.4 (4) | C33—C34—C35—C36 | 0.2 (3) |
C12—C11—C16—C15 | 0.8 (3) | C32—C31—C36—C35 | −0.6 (3) |
N11—C11—C16—C15 | −177.4 (2) | N31—C31—C36—C35 | 179.3 (2) |
C14—C15—C16—C11 | −0.8 (4) | C34—C35—C36—C31 | 0.7 (3) |
Ni1—N21—C21—C26 | 90.7 (2) | Ni1—N41—C41—C42 | −84.4 (2) |
Ni1—N21—C21—C22 | −84.6 (2) | Ni1—N41—C41—C46 | 92.3 (2) |
C26—C21—C22—C23 | −0.3 (3) | C46—C41—C42—C43 | −0.9 (3) |
N21—C21—C22—C23 | 174.9 (2) | N41—C41—C42—C43 | 175.75 (19) |
C27—O23—C23—C24 | 173.2 (2) | C47—O43—C43—C44 | −0.5 (3) |
C27—O23—C23—C22 | −7.8 (3) | C47—O43—C43—C42 | 179.32 (19) |
C21—C22—C23—O23 | −179.01 (19) | C41—C42—C43—O43 | 179.42 (19) |
C21—C22—C23—C24 | 0.0 (3) | C41—C42—C43—C44 | −0.7 (3) |
O23—C23—C24—C25 | 179.2 (2) | O43—C43—C44—C45 | −178.6 (2) |
C22—C23—C24—C25 | 0.2 (4) | C42—C43—C44—C45 | 1.5 (3) |
C23—C24—C25—C26 | 0.0 (4) | C43—C44—C45—C46 | −0.7 (4) |
C22—C21—C26—C25 | 0.5 (3) | C44—C45—C46—C41 | −0.9 (4) |
N21—C21—C26—C25 | −174.7 (2) | C42—C41—C46—C45 | 1.7 (3) |
C24—C25—C26—C21 | −0.3 (4) | N41—C41—C46—C45 | −175.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11B···Cl1i | 0.83 (2) | 2.44 (3) | 3.264 (2) | 168 (2) |
N21—H21A···Cl2ii | 0.86 (2) | 2.62 (2) | 3.468 (2) | 166 (2) |
N31—H31B···Cl2ii | 0.85 (2) | 2.69 (2) | 3.509 (2) | 160 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
Acknowledgements
BAM is grateful for financial support from the Bernard and Vera Kopelman Fund. Author contributions: BAM (synthesis, characterization), DAD (X-ray data), MMT (concept, writing)
Funding information
Funding for this research was provided by: NSF grant No. CHE-2018870.
References
Amani, V. (2018). J. Mol. Struct. 1155, 477–483. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burrow, R. A., Hörner, M., Lang, L. S., Neves, A. & Vencato, I. (1997). Z. Kristallogr. New Cryst. Struct. 212, 41–42. CAS Google Scholar
Chellali, J. E., Keely, C., Bell, G., Dimanno, K. L., Tran, T., Landee, C. P., Dickie, D. A., Rademeyer, M., Turnbull, M. M. & Xiao, F. (2019). Polyhedron, 168, 1–10. Web of Science CSD CrossRef CAS Google Scholar
Chen, Y.-B., Li, Z.-J., Qin, Y.-Y., Kang, Y., Wu, L. & Yao, Y.-G. (2002). Jiegou Huaxue, 21, 530–2. CAS Google Scholar
Clegg, W. & Martin, N. C. (2007). Acta Cryst. E63, m856. Web of Science CSD CrossRef IUCr Journals Google Scholar
Costin-Hogan, C. E., Chen, C.-L., Hughes, E., Pickett, A., Valencia, R., Rath, N. P. & Beatty, A. M. (2008). CrystEngComm, 10, 1910–1915. Web of Science CSD CrossRef CAS Google Scholar
Daniliuc, C. G., Kotov, V., Frohlich, R. & Erker, G. (2023). CSD Communication (CCDC 2308702). CCDC, Cambridge, England. Google Scholar
Dhital, R. N., Sen, A., Sato, T., Hu, H., Ishii, R., Hashizume, D., Takaya, H., Uozumi, Y. & Yamada, Y. M. A. (2020). Org. Lett. 22, 4797–4801. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ejaz, Sahin, O. & Khan, I. U. (2009). Acta Cryst. E65, m1457. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fawcett, J., Sicilia, F. & Solan, G. A. (2005). Acta Cryst. E61, m1256–m1257. Web of Science CSD CrossRef IUCr Journals Google Scholar
Govindaraj, J., Thirumurugan, S., Reddy, D. S., Anbalagan, K. & SubbiahPandi, A. (2015). Acta Cryst. E71, m21–m22. CSD CrossRef IUCr Journals Google Scholar
Guedes, G. P., Farias, F. F., Novak, M. A., Machado, A. & Vaz, F. L. (2011). Inorg. Chim. Acta, 378, 134–139. Web of Science CSD CrossRef CAS Google Scholar
Harmouzi, A., Daro, N., Guionneau, P., Belaaraj, A. & Khechoubi, E. M. (2017). J. Cryst. Growth, 472, 64–70. Web of Science CSD CrossRef CAS Google Scholar
Khan, I. U., Ejaz, Şahin, O. & Büyükgüngör, O. (2010). Acta Cryst. E66, m492. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kupko, N., Meehan, K. L., Witkos, F. E., Hutcheson, H., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M. & Xiao, F. (2020). Polyhedron, 187, 1146801-13. Web of Science CSD CrossRef Google Scholar
Li, X. (2023). CSD Communication (CCDC 2223797). CCDC, Cambridge, England. Google Scholar
Löw, S., Becker, J., Würtele, C., Miska, A., Kleeberg, C., Behrens, U., Walter, O. & Schindler, S. (2013). Chem. A Eur. J. 19, 5342–5351. Google Scholar
Macek, L., Bellamy, J. C., Faber, K., Milson, C. R., Landee, C. P., Dickie, D. A. & Turnbull, M. M. (2023). Polyhedron, 229, 1162141-1162145. Web of Science CSD CrossRef Google Scholar
Meehan, K. L., Fontaine, D. F. A., Richardson, A. D., Fowles, S. M., Mukda, B., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M., Jiang, S. & Xiao, F. (2021). Polyhedron, 200, 1150941. Web of Science CSD CrossRef Google Scholar
Nemec, V., Lisac, K., Liovic, M., Brekalo, I. & Cincic, D. (2020). Materials 13, 2385. Web of Science CSD CrossRef PubMed Google Scholar
Rademeyer, M. (2004). Acta Cryst. E60, m871–m872. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rademeyer, M., Overbeek, G. E. & Liles, D. C. (2010). Acta Cryst. E66, m1634. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012a). Acta Cryst. E68, m1152. CSD CrossRef IUCr Journals Google Scholar
Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012b). CSD Communication (CCDC 894045). CCDC, Cambridge, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.