metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­chlorido­tetra­kis­(3-meth­­oxy­aniline)nickel(II)

crossmark logo

aCarlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA, and bDepartment of Chemistry, University of Virginia, 409 McCormack Rd., Charlottesville, VA 22904, USA
*Correspondence e-mail: mturnbull@clarku.edu

Edited by M. Zeller, Purdue University, USA (Received 30 July 2024; accepted 6 August 2024; online 13 August 2024)

The reaction of nickel(II) chloride with 3-meth­oxy­aniline yielded di­chlorido­tetra­kis­(3-meth­oxy­aniline)nickel(II), [NiCl2(C7H9NO)4], as yellow crystals. The NiII ion is pseudo-octa­hedral with the chloride ions trans to each other. The four 3-meth­oxy­aniline ligands differ primarily due to different conformations about the Ni—N bond, which also affect the hydrogen bonding. Inter­molecular N—H⋯ Cl hydrogen bonds and short Cl⋯Cl contacts between mol­ecules link them into chains parallel to the b axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The structures of binary transition-metal halide complexes of aniline are varied and have been known for nearly two decades, since the report of CoCl2(aniline)2 by Burrow et al. (1997[Burrow, R. A., Hörner, M., Lang, L. S., Neves, A. & Vencato, I. (1997). Z. Kristallogr. New Cryst. Struct. 212, 41-42.]). Structures for compounds of the formula MX2(aniline)2, where M is a transition metal, are known for trans-square planar (SP) Pd (Chen et al., 2002[Chen, Y.-B., Li, Z.-J., Qin, Y.-Y., Kang, Y., Wu, L. & Yao, Y.-G. (2002). Jiegou Huaxue, 21, 530-2.]) and Cu (Low et al., 2013[Löw, S., Becker, J., Würtele, C., Miska, A., Kleeberg, C., Behrens, U., Walter, O. & Schindler, S. (2013). Chem. A Eur. J. 19, 5342-5351.]), and tetra­hedral (Td) Zn (Khan et al., 2010[Khan, I. U., Ejaz, Şahin, O. & Büyükgüngör, O. (2010). Acta Cryst. E66, m492.]; Ejaz et al., 2009[Ejaz, Sahin, O. & Khan, I. U. (2009). Acta Cryst. E65, m1457.]; Rademeyer et al., 2004[Rademeyer, M. (2004). Acta Cryst. E60, m871-m872.]) and Cd (Costin-Hogan et al., 2008[Costin-Hogan, C. E., Chen, C.-L., Hughes, E., Pickett, A., Valencia, R., Rath, N. P. & Beatty, A. M. (2008). CrystEngComm, 10, 1910-1915.]). Structures of first row transition-metal (FTM) complexes with the same general formula, FTMX2(sub-aniline)2 are known for substit­uents such as o-methyl (SP: Daniliuc et al., 2023[Daniliuc, C. G., Kotov, V., Frohlich, R. & Erker, G. (2023). CSD Communication (CCDC 2308702). CCDC, Cambridge, England.]), p-methyl (Td: Chellali et al., 2019[Chellali, J. E., Keely, C., Bell, G., Dimanno, K. L., Tran, T., Landee, C. P., Dickie, D. A., Rademeyer, M., Turnbull, M. M. & Xiao, F. (2019). Polyhedron, 168, 1-10.]), p-ethyl (Td: Govindaraj et al., 2015[Govindaraj, J., Thirumurugan, S., Reddy, D. S., Anbalagan, K. & SubbiahPandi, A. (2015). Acta Cryst. E71, m21-m22.]; Td: Harmouzi et al., 2017[Harmouzi, A., Daro, N., Guionneau, P., Belaaraj, A. & Khechoubi, E. M. (2017). J. Cryst. Growth, 472, 64-70.]), p-acetyl (Td and SP: Macek et al., 2023[Macek, L., Bellamy, J. C., Faber, K., Milson, C. R., Landee, C. P., Dickie, D. A. & Turnbull, M. M. (2023). Polyhedron, 229, 1162141-1162145.]; SP, Nemec et al., 2020[Nemec, V., Lisac, K., Liovic, M., Brekalo, I. & Cincic, D. (2020). Materials 13, 2385.]), p-bromo (Td: Subashini et al., 2012a[Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012a). Acta Cryst. E68, m1152.]; Td, Li: 2023[Li, X. (2023). CSD Communication (CCDC 2223797). CCDC, Cambridge, England.]), p-chloro (Td: Chellali et al., 2019[Chellali, J. E., Keely, C., Bell, G., Dimanno, K. L., Tran, T., Landee, C. P., Dickie, D. A., Rademeyer, M., Turnbull, M. M. & Xiao, F. (2019). Polyhedron, 168, 1-10.]), p-fluoro (Td: Subashini et al., 2012b[Subashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012b). CSD Communication (CCDC 894045). CCDC, Cambridge, England.]), o-meth­oxy, m-meth­oxy and p-meth­oxy (Td: Kupko et al., 2020[Kupko, N., Meehan, K. L., Witkos, F. E., Hutcheson, H., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M. & Xiao, F. (2020). Polyhedron, 187, 1146801-13.]; Td: Amani, 2018[Amani, V. (2018). J. Mol. Struct. 1155, 477-483.]) and p-carb­oxy­lic acid (Td: Rademeyer et al., 2010[Rademeyer, M., Overbeek, G. E. & Liles, D. C. (2010). Acta Cryst. E66, m1634.]; SP: Guedes et al., 2011[Guedes, G. P., Farias, F. F., Novak, M. A., Machado, A. & Vaz, F. L. (2011). Inorg. Chim. Acta, 378, 134-139.]). Only slightly less common, but particularly favored by NiII, are those structures of the formula FTMX2(sub-aniline)2(solvent)2, which include solvents such as water (Macek et al., 2023[Macek, L., Bellamy, J. C., Faber, K., Milson, C. R., Landee, C. P., Dickie, D. A. & Turnbull, M. M. (2023). Polyhedron, 229, 1162141-1162145.]; Meehan et al., 2021[Meehan, K. L., Fontaine, D. F. A., Richardson, A. D., Fowles, S. M., Mukda, B., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M., Jiang, S. & Xiao, F. (2021). Polyhedron, 200, 1150941.]) methanol (Meehan et al., 2021[Meehan, K. L., Fontaine, D. F. A., Richardson, A. D., Fowles, S. M., Mukda, B., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M., Jiang, S. & Xiao, F. (2021). Polyhedron, 200, 1150941.]), ethanol (Meehan et al., 2021[Meehan, K. L., Fontaine, D. F. A., Richardson, A. D., Fowles, S. M., Mukda, B., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M., Jiang, S. & Xiao, F. (2021). Polyhedron, 200, 1150941.]; Clegg & Martin, 2007[Clegg, W. & Martin, N. C. (2007). Acta Cryst. E63, m856.]) and aceto­nitrile (Fawcett et al., 2005[Fawcett, J., Sicilia, F. & Solan, G. A. (2005). Acta Cryst. E61, m1256-m1257.]); all are trans-pseudo­octa­hedral (Oh). A smaller number of structures have been reported with aniline and substituted aniline ligands of the formula FTMX2(sub-aniline)4, which include the trans-Oh complexes NiCl2(p-methyl­aniline)4 and NiBr2(p-methyl­aniline)4 (Meehan et al., 2021[Meehan, K. L., Fontaine, D. F. A., Richardson, A. D., Fowles, S. M., Mukda, B., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M., Jiang, S. & Xiao, F. (2021). Polyhedron, 200, 1150941.]) and NiI2(p-methyl­aniline)4 (Dhital et al., 2020[Dhital, R. N., Sen, A., Sato, T., Hu, H., Ishii, R., Hashizume, D., Takaya, H., Uozumi, Y. & Yamada, Y. M. A. (2020). Org. Lett. 22, 4797-4801.]), again favored by six-coordinate nickel(II) complexes. In the course of our investigations of complexes of substituted aniline ligands, we have encountered one more such compound and here report the synthesis and structure of NiCl2(3-meth­oxy­aniline)4.

The mol­ecule is pseudo-octa­hedral with trans-chloride ions and all atoms lie on general crystallographic positions (Fig. 1[link]). The Cl1—Ni1—Cl2 bond angle is nearly linear [179.8 (2)°]. The Cl—Ni—N angles range from 85.45 (5) to 93.82 (5)° while the cis N—Ni—N angles are similar in the range 84.3 (7) to 94.75 (7)° (Table 1[link]). Taking the NiN4 atoms as the equatorial plane (mean deviation of constituent atoms = 0.0141 Å), the Ni ion lies 0 0029 Å out of the plane. One trans-pair of aniline ligands lie with their C—N bonds oriented nearly in that plane with angles of the C—N vector 2.6 (1)° (C11—N11) or 5.3 (1)° (C21—N21) out of the plane. Conversely, the alternate pair of aniline ligands have their C—N vectors tilted significantly out of the plane at 49.0 (1)° (C31—N31) and 44.0 (1)° (C41—N41). As expected, the aromatic rings are almost planar (mean deviation by ring: N11, 0.0115 Å; N21, 0.0212 Å; N31, 0.0028 Å; N41, 0.0222 Å). The meth­oxy groups lie very nearly in their respective ring planes as based on the torsion angles [torsion angle Cn7—On3—Cn3—Cn2: n = 1, −10.9 (3)°; 2, −7.8 (3)°; 3, −1.4 (3)°; 4, 179.32 (19)°]. The N41 ring is again unique; the conformations of the meth­oxy groups of the other three 3-meth­oxy­aniline mol­ecules all show the meth­oxy group directed toward the amino substituent, while for the N41 ring, it is rotated ∼180° and lies anti to the amino substituent.

Table 1
Selected geometric parameters (Å, °)

Ni1—N11 2.1388 (19) Ni1—N41 2.2056 (18)
Ni1—N21 2.1544 (19) Ni1—Cl1 2.3658 (6)
Ni1—N31 2.1621 (18) Ni1—Cl2 2.4051 (6)
       
N11—Ni1—N21 178.52 (8) N11—Ni1—Cl2 89.10 (6)
N11—Ni1—N31 94.62 (7) N21—Ni1—Cl2 92.06 (6)
N21—Ni1—N31 86.39 (7) N31—Ni1—Cl2 85.45 (5)
N11—Ni1—N41 84.25 (7) N41—Ni1—Cl2 93.82 (5)
N21—Ni1—N41 94.75 (7) Cl1—Ni1—Cl2 179.86 (2)
N31—Ni1—N41 178.66 (8) C11—N11—Ni1 120.77 (14)
N11—Ni1—Cl1 90.80 (6) C21—N21—Ni1 116.21 (14)
N21—Ni1—Cl1 88.04 (6) C31—N31—Ni1 125.09 (14)
N31—Ni1—Cl1 94.66 (5) C41—N41—Ni1 123.17 (14)
N41—Ni1—Cl1 86.07 (5)    
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary size. Only those hydrogen atoms whose positions were refined are labeled.

It is also noteworthy that the conformations of the anisidine rings are such that three of the rings have their meth­oxy substituents tipped toward, and above, the Cl2 side of the NiN4 plane. The O33—C33 meth­oxy group is also tipped in that direction, but due to the orientation of the N31—C31 bond, the meth­oxy group itself lies on the opposite side of the NiN4 plane.

In the crystal, mol­ecules are linked into chains via weak N—H⋯Cl hydrogen bonds (Table 2[link]), which results in short contacts between inversion-related chloride ions parallel to the b axis [dCl1⋯Cl1A = 3.725 (2) Å, angleNi1—Cl1⋯Cl1A = 92.4 (1)°; dCl2—Cl2B = 3.721 (2) Å, angleNi1—Cl2⋯Cl2B = 89.3 (1)°; symmetry codes: (A) = 1 − x, 1 − y, 1 − z; (B) = 1 − x, −y, 1 − z] (Fig. 2[link]). The chains are well separated in both the b- and c-axis directions by the bulk of the 3-meth­oxy­aniline mol­ecules.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11B⋯Cl1i 0.83 (2) 2.44 (3) 3.264 (2) 168 (2)
N21—H21A⋯Cl2ii 0.86 (2) 2.62 (2) 3.468 (2) 166 (2)
N31—H31B⋯Cl2ii 0.85 (2) 2.69 (2) 3.509 (2) 160 (2)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y, -z+1].
[Figure 2]
Figure 2
Chain formation via hydrogen bonding (b axis horizontal).

Synthesis and crystallization

Synthesis: 0.5035 g of 3-meth­oxy­aniline were dissolved in 18 ml of EtOH, creating a red solution. NiCl2 hexa­hydrate was dissolved in 25 ml of EtOH, creating a green solution. Both solutions were heated until they began to boil, at which point the meth­oxy­aniline solution was poured into the nickel chloride solution, resulting in a peach-colored solution that quickly became cloudy. The mixture was repeatedly deca­nted to remove the majority of the precipitate over the course of two hours and then allowed to cool. The next day, a green powdery precipitate was collected using vacuum filtration and washed using DI water. The filtrate was collected and allowed to evaporate slowly. The next day, small dark-yellow crystals were observed and collected by vacuum filtration, 0.002 g (0.2%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [NiCl2(C7H9NO)4]
Mr 622.22
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.4514 (5), 12.1629 (5), 12.6920 (5)
α, β, γ (°) 67.9946 (13), 67.3255 (14), 65.8759 (14)
V3) 1438.34 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.90
Crystal size (mm) 0.09 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.714, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 42960, 7138, 4852
Rint 0.076
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.01
No. of reflections 7138
No. of parameters 380
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.32
Computer programs: APEX4 andSAINT (Bruker, 2022[Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 and XP (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Dichloridotetrakis(3-methoxyaniline)nickel(II) top
Crystal data top
[NiCl2(C7H9NO)4]Z = 2
Mr = 622.22F(000) = 652
Triclinic, P1Dx = 1.437 Mg m3
a = 11.4514 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1629 (5) ÅCell parameters from 5693 reflections
c = 12.6920 (5) Åθ = 2.9–27.2°
α = 67.9946 (13)°µ = 0.90 mm1
β = 67.3255 (14)°T = 100 K
γ = 65.8759 (14)°Plate, yellow
V = 1438.34 (11) Å30.09 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
4852 reflections with I > 2σ(I)
φ and ω scansRint = 0.076
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.0°
Tmin = 0.714, Tmax = 0.746h = 1515
42960 measured reflectionsk = 1616
7138 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.4355P]
where P = (Fo2 + 2Fc2)/3
7138 reflections(Δ/σ)max = 0.001
380 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data collection for compound 1 was carried out with a Bruker APEX4 v2022.10–1 CCD diffractometer employing Mo—Kα radiation (λ = 0.71073 Å). The data were collected and reduced using Bruker SMART and SAINT+ software (Bruker, 2014). Absorption corrections were performed using SADABS (Krause, 2015). The structure was solved using SHELXS2014 (Sheldrick, 2008) and refined using SHELXL2018 (Sheldrick, 2015). Hydrogen atoms bonded to carbon atoms were placed geometrically and refined with fixed isotropic thermal parameters, Uiso(H) = 1.2 (C). Hydrogen atoms bonded to nitrogen atoms were located in the difference map and their positions refined with fixed isotropic thermal parameters, Uiso(H) = 1.2 (N) (dN—H = 0.81 (2)–0.91 (2) Å). Final data collection and refinement parameters may be found in Table 2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50342 (3)0.25347 (2)0.48264 (2)0.01306 (8)
Cl10.64202 (5)0.35611 (5)0.47889 (5)0.01674 (12)
Cl20.36209 (5)0.14962 (5)0.48636 (5)0.01653 (12)
N110.3352 (2)0.36558 (18)0.58739 (17)0.0166 (4)
H11A0.275 (2)0.378 (2)0.558 (2)0.020*
H11B0.352 (2)0.431 (2)0.573 (2)0.020*
C110.2928 (2)0.31967 (19)0.71270 (19)0.0157 (4)
C120.2248 (2)0.2323 (2)0.75867 (19)0.0164 (5)
H120.2055310.2058550.7073100.020*
O130.11618 (18)0.09999 (16)0.93113 (14)0.0279 (4)
C130.1853 (2)0.1843 (2)0.8798 (2)0.0195 (5)
C140.2155 (2)0.2202 (2)0.9554 (2)0.0222 (5)
H140.1901080.1854921.0383610.027*
C150.2830 (2)0.3071 (2)0.9086 (2)0.0223 (5)
H150.3034390.3324020.9600120.027*
C160.3215 (2)0.3580 (2)0.7873 (2)0.0185 (5)
H160.3669130.4184340.7559740.022*
C170.0651 (3)0.0796 (2)0.8560 (2)0.0306 (6)
H17A0.0061790.1587360.8208130.037*
H17B0.0149860.0200450.9024550.037*
H17C0.1390420.0460290.7931780.037*
N210.6746 (2)0.14469 (17)0.37458 (16)0.0158 (4)
H21A0.664 (2)0.072 (2)0.397 (2)0.019*
H21B0.741 (2)0.143 (2)0.391 (2)0.019*
C210.6950 (2)0.1932 (2)0.24955 (18)0.0162 (5)
O331.00929 (15)0.14771 (14)0.62401 (13)0.0208 (4)
C220.6279 (2)0.1668 (2)0.19530 (19)0.0170 (5)
H220.5756390.1122010.2396350.020*
O230.57495 (17)0.20291 (15)0.01482 (13)0.0227 (4)
C230.6384 (2)0.2214 (2)0.07549 (19)0.0185 (5)
C240.7149 (3)0.3015 (2)0.0103 (2)0.0261 (6)
H240.7217420.3389220.0714670.031*
C250.7802 (3)0.3257 (2)0.0657 (2)0.0287 (6)
H250.8325120.3803280.0213090.034*
C260.7717 (2)0.2719 (2)0.1858 (2)0.0226 (5)
H260.8178480.2892210.2228080.027*
C270.5077 (3)0.1107 (2)0.0754 (2)0.0247 (5)
H27A0.5699400.0311310.1056240.030*
H27B0.4737330.1006120.0207160.030*
H27C0.4333510.1372410.1415480.030*
N310.55035 (19)0.10066 (17)0.63226 (16)0.0147 (4)
H31A0.475 (2)0.121 (2)0.691 (2)0.018*
H31B0.551 (2)0.040 (2)0.614 (2)0.018*
C310.6663 (2)0.06435 (19)0.67155 (18)0.0146 (4)
C320.7799 (2)0.02535 (19)0.62731 (18)0.0152 (4)
H320.7802330.0615870.5725920.018*
C330.8928 (2)0.0614 (2)0.66390 (19)0.0165 (5)
C340.8918 (2)0.0100 (2)0.74531 (19)0.0200 (5)
H340.9686440.0357870.7713050.024*
C350.7780 (2)0.0787 (2)0.78804 (19)0.0205 (5)
H350.7772670.1141530.8435890.025*
C360.6646 (2)0.1173 (2)0.75138 (19)0.0187 (5)
H360.5870980.1791700.7807640.022*
C371.0107 (2)0.2039 (2)0.5425 (2)0.0223 (5)
H37A0.9430220.2468750.5794320.027*
H37B1.0986060.2641650.5208070.027*
H37C0.9914460.1393060.4714440.027*
N410.4506 (2)0.41029 (18)0.33230 (17)0.0174 (4)
H41A0.464 (2)0.465 (2)0.343 (2)0.021*
H41B0.509 (2)0.388 (2)0.273 (2)0.021*
C410.3218 (2)0.4570 (2)0.31188 (19)0.0158 (5)
C420.2933 (2)0.4009 (2)0.25224 (18)0.0166 (5)
H420.3605470.3349240.2199650.020*
O430.14760 (16)0.38059 (15)0.17817 (14)0.0234 (4)
C430.1662 (2)0.4410 (2)0.23955 (19)0.0175 (5)
C440.0670 (2)0.5362 (2)0.2874 (2)0.0232 (5)
H440.0206720.5623930.2803500.028*
C450.0980 (3)0.5922 (2)0.3455 (2)0.0285 (6)
H450.0307170.6581620.3777410.034*
C460.2242 (2)0.5547 (2)0.3578 (2)0.0221 (5)
H460.2440530.5950150.3971120.027*
C470.0172 (2)0.4192 (2)0.1650 (2)0.0251 (5)
H47A0.0463980.4054540.2431010.030*
H47B0.0163300.3705470.1188820.030*
H47C0.0077430.5079290.1238470.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01355 (15)0.01235 (14)0.01499 (15)0.00477 (11)0.00524 (11)0.00311 (10)
Cl10.0156 (3)0.0136 (3)0.0248 (3)0.0050 (2)0.0089 (2)0.0049 (2)
Cl20.0178 (3)0.0147 (3)0.0210 (3)0.0067 (2)0.0081 (2)0.0040 (2)
N110.0163 (10)0.0139 (9)0.0203 (10)0.0064 (8)0.0050 (8)0.0033 (7)
C110.0107 (11)0.0146 (11)0.0188 (11)0.0008 (9)0.0029 (9)0.0057 (8)
C120.0137 (11)0.0171 (11)0.0196 (11)0.0042 (9)0.0056 (9)0.0056 (8)
O130.0374 (11)0.0331 (10)0.0220 (9)0.0243 (9)0.0084 (8)0.0012 (7)
C130.0187 (12)0.0155 (11)0.0240 (12)0.0070 (9)0.0049 (10)0.0040 (9)
C140.0241 (13)0.0240 (12)0.0173 (12)0.0087 (10)0.0059 (10)0.0024 (9)
C150.0220 (13)0.0238 (12)0.0242 (13)0.0052 (10)0.0089 (10)0.0089 (10)
C160.0166 (12)0.0169 (11)0.0239 (12)0.0070 (9)0.0058 (10)0.0049 (9)
C170.0397 (17)0.0384 (15)0.0250 (13)0.0279 (13)0.0076 (12)0.0037 (11)
N210.0173 (10)0.0148 (10)0.0178 (10)0.0072 (8)0.0061 (8)0.0029 (7)
C210.0142 (11)0.0167 (11)0.0163 (11)0.0029 (9)0.0023 (9)0.0067 (8)
O330.0160 (9)0.0248 (9)0.0243 (9)0.0022 (7)0.0067 (7)0.0124 (7)
C220.0178 (12)0.0150 (11)0.0179 (11)0.0064 (9)0.0029 (9)0.0047 (8)
O230.0293 (10)0.0268 (9)0.0178 (8)0.0128 (8)0.0097 (7)0.0036 (7)
C230.0187 (13)0.0201 (12)0.0184 (12)0.0051 (10)0.0046 (10)0.0083 (9)
C240.0325 (15)0.0320 (14)0.0154 (12)0.0174 (12)0.0047 (10)0.0015 (10)
C250.0338 (16)0.0341 (15)0.0227 (13)0.0236 (12)0.0036 (11)0.0017 (11)
C260.0224 (13)0.0291 (13)0.0226 (12)0.0140 (11)0.0073 (10)0.0054 (10)
C270.0318 (15)0.0255 (13)0.0250 (13)0.0136 (11)0.0137 (11)0.0038 (10)
N310.0132 (10)0.0129 (9)0.0184 (10)0.0037 (8)0.0042 (8)0.0048 (7)
C310.0160 (11)0.0138 (11)0.0138 (10)0.0069 (9)0.0052 (9)0.0002 (8)
C320.0178 (12)0.0150 (11)0.0143 (11)0.0057 (9)0.0047 (9)0.0043 (8)
C330.0152 (12)0.0156 (11)0.0170 (11)0.0047 (9)0.0037 (9)0.0034 (8)
C340.0181 (12)0.0254 (12)0.0192 (12)0.0070 (10)0.0080 (9)0.0053 (9)
C350.0253 (13)0.0244 (12)0.0179 (12)0.0086 (10)0.0073 (10)0.0094 (9)
C360.0187 (12)0.0180 (11)0.0181 (11)0.0027 (9)0.0047 (9)0.0069 (9)
C370.0167 (12)0.0255 (13)0.0268 (13)0.0012 (10)0.0053 (10)0.0155 (10)
N410.0183 (11)0.0167 (10)0.0197 (10)0.0073 (8)0.0075 (8)0.0029 (8)
C410.0142 (11)0.0150 (11)0.0172 (11)0.0058 (9)0.0063 (9)0.0003 (8)
C420.0165 (12)0.0162 (11)0.0163 (11)0.0040 (9)0.0045 (9)0.0045 (8)
O430.0202 (9)0.0271 (9)0.0312 (9)0.0043 (7)0.0129 (7)0.0136 (7)
C430.0224 (13)0.0173 (11)0.0165 (11)0.0080 (10)0.0092 (9)0.0023 (8)
C440.0177 (13)0.0260 (13)0.0269 (13)0.0004 (10)0.0112 (10)0.0098 (10)
C450.0256 (14)0.0267 (13)0.0359 (15)0.0053 (11)0.0149 (12)0.0190 (11)
C460.0247 (13)0.0210 (12)0.0268 (13)0.0021 (10)0.0153 (11)0.0095 (10)
C470.0238 (14)0.0313 (14)0.0282 (13)0.0106 (11)0.0132 (11)0.0074 (10)
Geometric parameters (Å, º) top
Ni1—N112.1388 (19)C25—H250.9500
Ni1—N212.1544 (19)C26—H260.9500
Ni1—N312.1621 (18)C27—H27A0.9800
Ni1—N412.2056 (18)C27—H27B0.9800
Ni1—Cl12.3658 (6)C27—H27C0.9800
Ni1—Cl22.4051 (6)N31—C311.440 (3)
N11—C111.428 (3)N31—H31A0.91 (2)
N11—H11A0.85 (2)N31—H31B0.85 (2)
N11—H11B0.83 (2)C31—C361.381 (3)
C11—C161.385 (3)C31—C321.391 (3)
C11—C121.392 (3)C32—C331.388 (3)
C12—C131.384 (3)C32—H320.9500
C12—H120.9500C33—C341.388 (3)
O13—C131.367 (3)C34—C351.379 (3)
O13—C171.428 (3)C34—H340.9500
C13—C141.387 (3)C35—C361.388 (3)
C14—C151.382 (3)C35—H350.9500
C14—H140.9500C36—H360.9500
C15—C161.390 (3)C37—H37A0.9800
C15—H150.9500C37—H37B0.9800
C16—H160.9500C37—H37C0.9800
C17—H17A0.9800N41—C411.436 (3)
C17—H17B0.9800N41—H41A0.81 (2)
C17—H17C0.9800N41—H41B0.83 (2)
N21—C211.430 (3)C41—C421.381 (3)
N21—H21A0.86 (2)C41—C461.390 (3)
N21—H21B0.85 (2)C42—C431.387 (3)
C21—C261.379 (3)C42—H420.9500
C21—C221.393 (3)O43—C431.370 (3)
O33—C331.368 (3)O43—C471.428 (3)
O33—C371.431 (3)C43—C441.385 (3)
C22—C231.391 (3)C44—C451.383 (3)
C22—H220.9500C44—H440.9500
O23—C231.366 (3)C45—C461.380 (3)
O23—C271.430 (3)C45—H450.9500
C23—C241.391 (3)C46—H460.9500
C24—C251.371 (3)C47—H47A0.9800
C24—H240.9500C47—H47B0.9800
C25—C261.397 (3)C47—H47C0.9800
N11—Ni1—N21178.52 (8)C21—C26—H26120.6
N11—Ni1—N3194.62 (7)C25—C26—H26120.6
N21—Ni1—N3186.39 (7)O23—C27—H27A109.5
N11—Ni1—N4184.25 (7)O23—C27—H27B109.5
N21—Ni1—N4194.75 (7)H27A—C27—H27B109.5
N31—Ni1—N41178.66 (8)O23—C27—H27C109.5
N11—Ni1—Cl190.80 (6)H27A—C27—H27C109.5
N21—Ni1—Cl188.04 (6)H27B—C27—H27C109.5
N31—Ni1—Cl194.66 (5)C31—N31—Ni1125.09 (14)
N41—Ni1—Cl186.07 (5)C31—N31—H31A110.5 (15)
N11—Ni1—Cl289.10 (6)Ni1—N31—H31A100.9 (14)
N21—Ni1—Cl292.06 (6)C31—N31—H31B109.2 (16)
N31—Ni1—Cl285.45 (5)Ni1—N31—H31B101.4 (16)
N41—Ni1—Cl293.82 (5)H31A—N31—H31B109 (2)
Cl1—Ni1—Cl2179.86 (2)C36—C31—C32120.8 (2)
C11—N11—Ni1120.77 (14)C36—C31—N31120.7 (2)
C11—N11—H11A109.6 (16)C32—C31—N31118.46 (19)
Ni1—N11—H11A100.8 (16)C33—C32—C31119.3 (2)
C11—N11—H11B107.7 (16)C33—C32—H32120.3
Ni1—N11—H11B106.1 (17)C31—C32—H32120.3
H11A—N11—H11B112 (2)O33—C33—C32123.3 (2)
C16—C11—C12120.4 (2)O33—C33—C34116.24 (19)
C16—C11—N11121.1 (2)C32—C33—C34120.4 (2)
C12—C11—N11118.4 (2)C35—C34—C33119.3 (2)
C13—C12—C11119.5 (2)C35—C34—H34120.4
C13—C12—H12120.3C33—C34—H34120.4
C11—C12—H12120.3C34—C35—C36121.2 (2)
C13—O13—C17116.54 (18)C34—C35—H35119.4
O13—C13—C12122.6 (2)C36—C35—H35119.4
O13—C13—C14116.7 (2)C31—C36—C35119.0 (2)
C12—C13—C14120.7 (2)C31—C36—H36120.5
C15—C14—C13119.2 (2)C35—C36—H36120.5
C15—C14—H14120.4O33—C37—H37A109.5
C13—C14—H14120.4O33—C37—H37B109.5
C14—C15—C16121.0 (2)H37A—C37—H37B109.5
C14—C15—H15119.5O33—C37—H37C109.5
C16—C15—H15119.5H37A—C37—H37C109.5
C11—C16—C15119.2 (2)H37B—C37—H37C109.5
C11—C16—H16120.4C41—N41—Ni1123.17 (14)
C15—C16—H16120.4C41—N41—H41A109.1 (18)
O13—C17—H17A109.5Ni1—N41—H41A101.2 (17)
O13—C17—H17B109.5C41—N41—H41B109.4 (17)
H17A—C17—H17B109.5Ni1—N41—H41B104.0 (17)
O13—C17—H17C109.5H41A—N41—H41B109 (2)
H17A—C17—H17C109.5C42—C41—C46120.3 (2)
H17B—C17—H17C109.5C42—C41—N41120.1 (2)
C21—N21—Ni1116.21 (14)C46—C41—N41119.6 (2)
C21—N21—H21A109.8 (15)C41—C42—C43119.9 (2)
Ni1—N21—H21A105.2 (16)C41—C42—H42120.1
C21—N21—H21B107.8 (16)C43—C42—H42120.1
Ni1—N21—H21B104.7 (16)C43—O43—C47116.84 (18)
H21A—N21—H21B113 (2)O43—C43—C44123.7 (2)
C26—C21—C22120.7 (2)O43—C43—C42115.7 (2)
C26—C21—N21120.4 (2)C44—C43—C42120.6 (2)
C22—C21—N21118.6 (2)C45—C44—C43118.7 (2)
C33—O33—C37116.88 (17)C45—C44—H44120.7
C23—C22—C21119.3 (2)C43—C44—H44120.7
C23—C22—H22120.4C46—C45—C44121.7 (2)
C21—C22—H22120.4C46—C45—H45119.2
C23—O23—C27117.27 (17)C44—C45—H45119.2
O23—C23—C24115.8 (2)C45—C46—C41119.0 (2)
O23—C23—C22123.7 (2)C45—C46—H46120.5
C24—C23—C22120.5 (2)C41—C46—H46120.5
C25—C24—C23119.1 (2)O43—C47—H47A109.5
C25—C24—H24120.5O43—C47—H47B109.5
C23—C24—H24120.5H47A—C47—H47B109.5
C24—C25—C26121.6 (2)O43—C47—H47C109.5
C24—C25—H25119.2H47A—C47—H47C109.5
C26—C25—H25119.2H47B—C47—H47C109.5
C21—C26—C25118.8 (2)
Ni1—N11—C11—C16102.6 (2)Ni1—N31—C31—C3688.5 (2)
Ni1—N11—C11—C1275.6 (2)Ni1—N31—C31—C3291.6 (2)
C16—C11—C12—C130.3 (3)C36—C31—C32—C330.2 (3)
N11—C11—C12—C13178.5 (2)N31—C31—C32—C33179.85 (19)
C17—O13—C13—C1210.9 (3)C37—O33—C33—C321.4 (3)
C17—O13—C13—C14169.4 (2)C37—O33—C33—C34178.35 (19)
C11—C12—C13—O13178.8 (2)C31—C32—C33—O33179.19 (19)
C11—C12—C13—C141.5 (3)C31—C32—C33—C341.1 (3)
O13—C13—C14—C15178.7 (2)O33—C33—C34—C35179.2 (2)
C12—C13—C14—C151.5 (4)C32—C33—C34—C351.0 (3)
C13—C14—C15—C160.4 (4)C33—C34—C35—C360.2 (3)
C12—C11—C16—C150.8 (3)C32—C31—C36—C350.6 (3)
N11—C11—C16—C15177.4 (2)N31—C31—C36—C35179.3 (2)
C14—C15—C16—C110.8 (4)C34—C35—C36—C310.7 (3)
Ni1—N21—C21—C2690.7 (2)Ni1—N41—C41—C4284.4 (2)
Ni1—N21—C21—C2284.6 (2)Ni1—N41—C41—C4692.3 (2)
C26—C21—C22—C230.3 (3)C46—C41—C42—C430.9 (3)
N21—C21—C22—C23174.9 (2)N41—C41—C42—C43175.75 (19)
C27—O23—C23—C24173.2 (2)C47—O43—C43—C440.5 (3)
C27—O23—C23—C227.8 (3)C47—O43—C43—C42179.32 (19)
C21—C22—C23—O23179.01 (19)C41—C42—C43—O43179.42 (19)
C21—C22—C23—C240.0 (3)C41—C42—C43—C440.7 (3)
O23—C23—C24—C25179.2 (2)O43—C43—C44—C45178.6 (2)
C22—C23—C24—C250.2 (4)C42—C43—C44—C451.5 (3)
C23—C24—C25—C260.0 (4)C43—C44—C45—C460.7 (4)
C22—C21—C26—C250.5 (3)C44—C45—C46—C410.9 (4)
N21—C21—C26—C25174.7 (2)C42—C41—C46—C451.7 (3)
C24—C25—C26—C210.3 (4)N41—C41—C46—C45175.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···Cl1i0.83 (2)2.44 (3)3.264 (2)168 (2)
N21—H21A···Cl2ii0.86 (2)2.62 (2)3.468 (2)166 (2)
N31—H31B···Cl2ii0.85 (2)2.69 (2)3.509 (2)160 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

BAM is grateful for financial support from the Bernard and Vera Kopelman Fund. Author contributions: BAM (synthesis, characterization), DAD (X-ray data), MMT (concept, writing)

Funding information

Funding for this research was provided by: NSF grant No. CHE-2018870.

References

First citationAmani, V. (2018). J. Mol. Struct. 1155, 477–483.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrow, R. A., Hörner, M., Lang, L. S., Neves, A. & Vencato, I. (1997). Z. Kristallogr. New Cryst. Struct. 212, 41–42.  CAS Google Scholar
First citationChellali, J. E., Keely, C., Bell, G., Dimanno, K. L., Tran, T., Landee, C. P., Dickie, D. A., Rademeyer, M., Turnbull, M. M. & Xiao, F. (2019). Polyhedron, 168, 1–10.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Y.-B., Li, Z.-J., Qin, Y.-Y., Kang, Y., Wu, L. & Yao, Y.-G. (2002). Jiegou Huaxue, 21, 530–2.  CAS Google Scholar
First citationClegg, W. & Martin, N. C. (2007). Acta Cryst. E63, m856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCostin-Hogan, C. E., Chen, C.-L., Hughes, E., Pickett, A., Valencia, R., Rath, N. P. & Beatty, A. M. (2008). CrystEngComm, 10, 1910–1915.  Web of Science CSD CrossRef CAS Google Scholar
First citationDaniliuc, C. G., Kotov, V., Frohlich, R. & Erker, G. (2023). CSD Communication (CCDC 2308702). CCDC, Cambridge, England.  Google Scholar
First citationDhital, R. N., Sen, A., Sato, T., Hu, H., Ishii, R., Hashizume, D., Takaya, H., Uozumi, Y. & Yamada, Y. M. A. (2020). Org. Lett. 22, 4797–4801.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEjaz, Sahin, O. & Khan, I. U. (2009). Acta Cryst. E65, m1457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFawcett, J., Sicilia, F. & Solan, G. A. (2005). Acta Cryst. E61, m1256–m1257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGovindaraj, J., Thirumurugan, S., Reddy, D. S., Anbalagan, K. & SubbiahPandi, A. (2015). Acta Cryst. E71, m21–m22.  CSD CrossRef IUCr Journals Google Scholar
First citationGuedes, G. P., Farias, F. F., Novak, M. A., Machado, A. & Vaz, F. L. (2011). Inorg. Chim. Acta, 378, 134–139.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarmouzi, A., Daro, N., Guionneau, P., Belaaraj, A. & Khechoubi, E. M. (2017). J. Cryst. Growth, 472, 64–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, I. U., Ejaz, Şahin, O. & Büyükgüngör, O. (2010). Acta Cryst. E66, m492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKupko, N., Meehan, K. L., Witkos, F. E., Hutcheson, H., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M. & Xiao, F. (2020). Polyhedron, 187, 1146801-13.  Web of Science CSD CrossRef Google Scholar
First citationLi, X. (2023). CSD Communication (CCDC 2223797). CCDC, Cambridge, England.  Google Scholar
First citationLöw, S., Becker, J., Würtele, C., Miska, A., Kleeberg, C., Behrens, U., Walter, O. & Schindler, S. (2013). Chem. A Eur. J. 19, 5342–5351.  Google Scholar
First citationMacek, L., Bellamy, J. C., Faber, K., Milson, C. R., Landee, C. P., Dickie, D. A. & Turnbull, M. M. (2023). Polyhedron, 229, 1162141-1162145.  Web of Science CSD CrossRef Google Scholar
First citationMeehan, K. L., Fontaine, D. F. A., Richardson, A. D., Fowles, S. M., Mukda, B., Monroe, J. C., Landee, C. P., Dickie, D. A., Turnbull, M. M., Jiang, S. & Xiao, F. (2021). Polyhedron, 200, 1150941.  Web of Science CSD CrossRef Google Scholar
First citationNemec, V., Lisac, K., Liovic, M., Brekalo, I. & Cincic, D. (2020). Materials 13, 2385.  Web of Science CSD CrossRef PubMed Google Scholar
First citationRademeyer, M. (2004). Acta Cryst. E60, m871–m872.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRademeyer, M., Overbeek, G. E. & Liles, D. C. (2010). Acta Cryst. E66, m1634.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012a). Acta Cryst. E68, m1152.  CSD CrossRef IUCr Journals Google Scholar
First citationSubashini, A., Ramamurthi, K. & Stoeckli-Evans, H. (2012b). CSD Communication (CCDC 894045). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146