metal-organic compounds
Bis(2-carboxyquinolinium) hexachloridostannate(IV) dihydrate
aEnvironmental Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria, bEcole Nationale Polytechnique de Constantine (ENPC), Laboratoire de Technologie des Matériaux Avancés, Algeria, and cLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Monreal, H4B 1R6 QC, Canada
*Correspondence e-mail: mbenhamada@hotmail.fr
In the hydrated title salt, (C10H8NO2)2[SnCl6]·2H2O, the tin(IV) atom is located about a center of inversion. In the the organic cation, the octahedral inorganic anion and the water molecule of crystallization interact through O—H⋯O, N—H⋯O and O—H⋯Cl hydrogen bonds, supplemented by weak π–π stacking between neighboring cations, and C—Cl⋯π interactions.
Keywords: crystal structure; [SnCl6]2– anion; hydrogen-bonding; π–π stacking.
CCDC reference: 2378953
Structure description
determination of the title compound, (I), was undertaken as part of studies of organic–inorganic hybrid materials, which may exhibit various interesting physical properties such as dielectric characteristics (HajlaouiThe 6]2– anion (the whole anion being completed by inversion symmetry), one 2-carboxyquinolinium cation, and a water molecule of crystallization (Fig. 1).
of (I) comprises half of an octahedral [SnClThe SnIV atom is coordinated by six chlorine atoms, forming a slightly distorted octahedron. The lengths of the Sn—Cl bonds in the hexachloridostannate(IV) anion range from 2.4180 (3) to 2.4406 (3) Å and the Cl—Sn—Cl bond angles deviate only by approximately 1° from ideal values, similar to those reported in the literature (Ghallab et al., 2020; Rademeyer, 2004; Billing et al., 2007).
In the 2-carboxyquinolinium cation, the C—C bond lengths range from 1.364 (2) to 1.5029 (15) Å and the C—N bond lengths are 1.3282 (14) and 1.3649 (17) Å; the angles vary between 115.14 (10) (N1—C2—C1) and 126.71 (11)° (O1—C—O2). These values are similar compared with related cations with protonated aromatic N atoms (Gelmboldt et al., 2007; Smith et al., 2004, 2008). The cation in (I) is not planar, as indicated by a dihedral angle between the quinoline ring and the carboxy group of 11.61 (9)°.
Apart from Coulombic forces, the cohesion in the , Fig. 2). There are also π–π stacking interactions between neighboring cations [3.7898 (8) Å, slippage 1.678 Å; Fig. 3a] and Cl⋯π interactions [3.5633 (6) Å; Fig. 3b].
is ensured by classical hydrogen bonds between the carboxyl group as donor and the water molecule as acceptor groups, and by interactions between the protonated quinoline N atom and the non-protonated O atom of the carboxyl group of a neighboring molecule. Further interactions involve the water molecule and the hexachloridostannate anion (Table 1Synthesis and crystallization
Tin(II) chloride dihydrate (SnCl2·2H2O) was mixed with quinaldic acid (C10H7NO2) in a 1:2 molar ratio, along with a few drops of hydrochloric acid in distilled water. The mixture was refluxed for one h at 343 K. After two weeks of slow solvent evaporation at room temperature, colorless single crystals suitable for X-ray analysis were obtained.
Refinement
Crystal data, data collection, and structure . The H atom bound to the N atom was refined freely. 14 reflections were omitted from the because they were obstructed from the beam stop.
details are summarized in Table 2Structural data
CCDC reference: 2378953
https://doi.org/10.1107/S2414314624008265/wm4218sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624008265/wm4218Isup4.hkl
(C10H8NO2)[SnCl6]·2H2O | Z = 1 |
Mr = 715.77 | F(000) = 354 |
Triclinic, P1 | Dx = 1.794 Mg m−3 |
a = 8.3220 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2704 (4) Å | Cell parameters from 9611 reflections |
c = 9.4248 (4) Å | θ = 3.7–48.2° |
α = 108.101 (2)° | µ = 1.61 mm−1 |
β = 99.515 (2)° | T = 296 K |
γ = 99.749 (2)° | Plate, yellow |
V = 662.46 (5) Å3 | 0.10 × 0.09 × 0.08 mm |
Bruker APEXII CCD diffractometer | 3199 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.015 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.3°, θmin = 4.8° |
Tmin = 0.851, Tmax = 0.879 | h = −11→11 |
19467 measured reflections | k = −12→12 |
3262 independent reflections | l = −12→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.013 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.033 | w = 1/[σ2(Fo2) + (0.013P)2 + 0.3169P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3262 reflections | Δρmax = 0.41 e Å−3 |
168 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.000000 | 0.000000 | 0.000000 | 0.01307 (3) | |
Cl1 | 0.12549 (3) | 0.26567 (3) | 0.17700 (3) | 0.01985 (6) | |
Cl2 | −0.27553 (3) | 0.05974 (3) | −0.01450 (3) | 0.02261 (6) | |
Cl3 | −0.03577 (4) | −0.08014 (3) | 0.21592 (3) | 0.02122 (6) | |
O2 | 0.82893 (11) | 0.48826 (10) | 0.04894 (9) | 0.02362 (17) | |
O1 | 0.70770 (11) | 0.47285 (12) | 0.24138 (10) | 0.02734 (19) | |
H1 | 0.625567 | 0.421382 | 0.171718 | 0.041* | |
O3 | 0.44565 (12) | 0.30407 (12) | 0.03220 (12) | 0.0316 (2) | |
H3A | 0.358189 | 0.328438 | 0.058776 | 0.047* | |
H3B | 0.438485 | 0.207555 | 0.016123 | 0.047* | |
N1 | 1.12611 (12) | 0.62982 (11) | 0.25392 (11) | 0.01629 (17) | |
C2 | 0.98812 (14) | 0.60663 (12) | 0.30529 (12) | 0.0171 (2) | |
C1 | 0.83151 (14) | 0.51554 (13) | 0.18355 (13) | 0.0183 (2) | |
C3 | 0.99422 (16) | 0.66408 (14) | 0.46178 (13) | 0.0213 (2) | |
H3 | 0.897184 | 0.649793 | 0.497561 | 0.026* | |
C6 | 1.28072 (14) | 0.70531 (13) | 0.34788 (13) | 0.0181 (2) | |
C9 | 1.59120 (17) | 0.85434 (15) | 0.54706 (16) | 0.0299 (3) | |
H9 | 1.696466 | 0.902964 | 0.612341 | 0.036* | |
C8 | 1.57523 (16) | 0.79829 (15) | 0.38631 (16) | 0.0277 (3) | |
H8 | 1.670263 | 0.812255 | 0.347661 | 0.033* | |
C7 | 1.42258 (15) | 0.72382 (14) | 0.28635 (14) | 0.0230 (2) | |
H7 | 1.413118 | 0.686630 | 0.180899 | 0.028* | |
C5 | 1.29308 (15) | 0.76284 (13) | 0.50879 (13) | 0.0208 (2) | |
C10 | 1.45388 (17) | 0.83779 (15) | 0.60721 (14) | 0.0274 (3) | |
H10 | 1.465775 | 0.875747 | 0.712974 | 0.033* | |
C4 | 1.14626 (16) | 0.74234 (14) | 0.56255 (13) | 0.0230 (2) | |
H4 | 1.151849 | 0.782030 | 0.667260 | 0.028* | |
H1A | 1.119 (2) | 0.5947 (19) | 0.160 (2) | 0.026 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.01189 (5) | 0.01279 (5) | 0.01377 (5) | 0.00232 (3) | 0.00262 (3) | 0.00407 (4) |
Cl1 | 0.02182 (13) | 0.01429 (11) | 0.01922 (12) | 0.00029 (9) | 0.00555 (10) | 0.00173 (9) |
Cl2 | 0.01509 (12) | 0.02717 (14) | 0.02324 (13) | 0.00878 (10) | 0.00250 (10) | 0.00457 (11) |
Cl3 | 0.02591 (13) | 0.02106 (13) | 0.01886 (12) | 0.00433 (10) | 0.00618 (10) | 0.01006 (10) |
O2 | 0.0205 (4) | 0.0291 (4) | 0.0164 (4) | 0.0005 (3) | 0.0033 (3) | 0.0045 (3) |
O1 | 0.0201 (4) | 0.0358 (5) | 0.0226 (4) | −0.0002 (4) | 0.0071 (3) | 0.0077 (4) |
O3 | 0.0207 (4) | 0.0325 (5) | 0.0368 (5) | −0.0007 (4) | 0.0106 (4) | 0.0069 (4) |
N1 | 0.0185 (4) | 0.0158 (4) | 0.0123 (4) | 0.0036 (3) | 0.0020 (3) | 0.0028 (3) |
C2 | 0.0197 (5) | 0.0152 (5) | 0.0164 (5) | 0.0049 (4) | 0.0035 (4) | 0.0053 (4) |
C1 | 0.0182 (5) | 0.0175 (5) | 0.0187 (5) | 0.0047 (4) | 0.0046 (4) | 0.0051 (4) |
C3 | 0.0257 (6) | 0.0217 (5) | 0.0175 (5) | 0.0074 (4) | 0.0075 (4) | 0.0063 (4) |
C6 | 0.0196 (5) | 0.0150 (5) | 0.0167 (5) | 0.0038 (4) | 0.0005 (4) | 0.0037 (4) |
C9 | 0.0239 (6) | 0.0260 (6) | 0.0301 (6) | 0.0012 (5) | −0.0089 (5) | 0.0069 (5) |
C8 | 0.0201 (6) | 0.0267 (6) | 0.0330 (7) | 0.0044 (5) | 0.0023 (5) | 0.0084 (5) |
C7 | 0.0210 (6) | 0.0235 (6) | 0.0213 (5) | 0.0036 (4) | 0.0029 (4) | 0.0051 (5) |
C5 | 0.0258 (6) | 0.0164 (5) | 0.0164 (5) | 0.0044 (4) | −0.0003 (4) | 0.0037 (4) |
C10 | 0.0310 (7) | 0.0246 (6) | 0.0188 (5) | 0.0035 (5) | −0.0053 (5) | 0.0042 (5) |
C4 | 0.0326 (6) | 0.0216 (5) | 0.0132 (5) | 0.0078 (5) | 0.0035 (4) | 0.0039 (4) |
Sn1—Cl3 | 2.4180 (3) | C2—C1 | 1.5029 (15) |
Sn1—Cl3i | 2.4180 (3) | C3—C4 | 1.3758 (17) |
Sn1—Cl1 | 2.4370 (3) | C3—H3 | 0.9300 |
Sn1—Cl1i | 2.4370 (3) | C6—C7 | 1.4067 (17) |
Sn1—Cl2i | 2.4406 (3) | C6—C5 | 1.4220 (15) |
Sn1—Cl2 | 2.4406 (3) | C9—C10 | 1.364 (2) |
O2—C1 | 1.2099 (14) | C9—C8 | 1.4155 (19) |
O1—C1 | 1.3026 (14) | C9—H9 | 0.9300 |
O1—H1 | 0.8200 | C8—C7 | 1.3715 (17) |
O3—H3A | 0.8511 | C8—H8 | 0.9300 |
O3—H3B | 0.8496 | C7—H7 | 0.9300 |
N1—C2 | 1.3282 (14) | C5—C4 | 1.4041 (18) |
N1—C6 | 1.3649 (14) | C5—C10 | 1.4171 (17) |
N1—H1A | 0.832 (17) | C10—H10 | 0.9300 |
C2—C3 | 1.3927 (15) | C4—H4 | 0.9300 |
Cl3—Sn1—Cl3i | 179.999 (12) | O1—C1—C2 | 112.24 (10) |
Cl3—Sn1—Cl1 | 89.336 (10) | C4—C3—C2 | 118.86 (11) |
Cl3i—Sn1—Cl1 | 90.665 (10) | C4—C3—H3 | 120.6 |
Cl3—Sn1—Cl1i | 90.663 (10) | C2—C3—H3 | 120.6 |
Cl3i—Sn1—Cl1i | 89.336 (10) | N1—C6—C7 | 120.61 (10) |
Cl1—Sn1—Cl1i | 180.0 | N1—C6—C5 | 117.83 (10) |
Cl3—Sn1—Cl2i | 91.121 (10) | C7—C6—C5 | 121.56 (11) |
Cl3i—Sn1—Cl2i | 88.879 (10) | C10—C9—C8 | 120.70 (12) |
Cl1—Sn1—Cl2i | 90.704 (10) | C10—C9—H9 | 119.6 |
Cl1i—Sn1—Cl2i | 89.295 (10) | C8—C9—H9 | 119.6 |
Cl3—Sn1—Cl2 | 88.879 (10) | C7—C8—C9 | 121.41 (12) |
Cl3i—Sn1—Cl2 | 91.121 (10) | C7—C8—H8 | 119.3 |
Cl1—Sn1—Cl2 | 89.295 (10) | C9—C8—H8 | 119.3 |
Cl1i—Sn1—Cl2 | 90.706 (10) | C8—C7—C6 | 118.11 (11) |
Cl2i—Sn1—Cl2 | 180.0 | C8—C7—H7 | 120.9 |
C1—O1—H1 | 109.5 | C6—C7—H7 | 120.9 |
H3A—O3—H3B | 109.4 | C4—C5—C10 | 123.20 (11) |
C2—N1—C6 | 123.38 (10) | C4—C5—C6 | 118.68 (11) |
C2—N1—H1A | 118.5 (11) | C10—C5—C6 | 118.11 (11) |
C6—N1—H1A | 118.2 (11) | C9—C10—C5 | 120.10 (12) |
N1—C2—C3 | 120.58 (10) | C9—C10—H10 | 120.0 |
N1—C2—C1 | 115.14 (10) | C5—C10—H10 | 120.0 |
C3—C2—C1 | 124.29 (10) | C3—C4—C5 | 120.63 (11) |
O2—C1—O1 | 126.71 (11) | C3—C4—H4 | 119.7 |
O2—C1—C2 | 121.05 (10) | C5—C4—H4 | 119.7 |
C6—N1—C2—C3 | 1.99 (16) | N1—C6—C7—C8 | −178.90 (11) |
C6—N1—C2—C1 | −177.71 (10) | C5—C6—C7—C8 | 0.58 (18) |
N1—C2—C1—O2 | −11.11 (16) | N1—C6—C5—C4 | −1.35 (16) |
C3—C2—C1—O2 | 169.20 (11) | C7—C6—C5—C4 | 179.15 (11) |
N1—C2—C1—O1 | 168.63 (10) | N1—C6—C5—C10 | 178.41 (10) |
C3—C2—C1—O1 | −11.06 (16) | C7—C6—C5—C10 | −1.09 (17) |
N1—C2—C3—C4 | −1.40 (17) | C8—C9—C10—C5 | 0.5 (2) |
C1—C2—C3—C4 | 178.27 (11) | C4—C5—C10—C9 | −179.70 (12) |
C2—N1—C6—C7 | 178.92 (11) | C6—C5—C10—C9 | 0.55 (18) |
C2—N1—C6—C5 | −0.58 (16) | C2—C3—C4—C5 | −0.54 (18) |
C10—C9—C8—C7 | −1.0 (2) | C10—C5—C4—C3 | −177.86 (12) |
C9—C8—C7—C6 | 0.47 (19) | C6—C5—C4—C3 | 1.89 (17) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3 | 0.82 | 1.75 | 2.5684 (14) | 176 |
N1—H1A···O2ii | 0.832 (17) | 2.028 (17) | 2.8348 (13) | 163.4 (15) |
O3—H3A···Cl1 | 0.85 | 2.46 | 3.2048 (11) | 146 |
O3—H3B···Cl2i | 0.85 | 2.61 | 3.3708 (11) | 150 |
C3—H3···Cl1iii | 0.93 | 2.97 | 3.6014 (12) | 127 |
C7—H7···O2ii | 0.93 | 2.58 | 3.2850 (15) | 133 |
C7—H7···O3ii | 0.93 | 2.51 | 3.3144 (16) | 146 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+2, −y+1, −z; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
Thanks are due to DRSDT-Algeria.
References
Billing, D. G., Lemmerer, A. & Rademeyer, M. (2007). Acta Cryst. C63, m101–m104. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gelmboldt, V. O., Ganin, E. V. & Domasevitch, K. V. (2007). Acta Cryst. C63, o530–o534. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ghallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279–1283. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hajlaoui, S., Chaabane, I., Oueslati, A. & Guidara, K. (2013). Solid State Sci. 25, 134–142. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Rademeyer, M. (2004). Acta Cryst. C60, m55–m56. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2008). Acta Cryst. C64, o180–o183. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.