metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(2-carb­­oxy­quinolinium) hexa­chlorido­stan­nate(IV) dihydrate

crossmark logo

aEnvironmental Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria, bEcole Nationale Polytechnique de Constantine (ENPC), Laboratoire de Technologie des Matériaux Avancés, Algeria, and cLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Monreal, H4B 1R6 QC, Canada
*Correspondence e-mail: mbenhamada@hotmail.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 July 2024; accepted 21 August 2024; online 30 August 2024)

In the hydrated title salt, (C10H8NO2)2[SnCl6]·2H2O, the tin(IV) atom is located about a center of inversion. In the crystal structure, the organic cation, the octa­hedral inorganic anion and the water mol­ecule of crystallization inter­act through O—H⋯O, N—H⋯O and O—H⋯Cl hydrogen bonds, supplemented by weak ππ stacking between neighboring cations, and C—Cl⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The crystal structure determination of the title compound, (I), was undertaken as part of studies of organic–inorganic hybrid materials, which may exhibit various inter­esting physical properties such as dielectric characteristics (Hajlaoui et al., 2013[Hajlaoui, S., Chaabane, I., Oueslati, A. & Guidara, K. (2013). Solid State Sci. 25, 134-142.]).

The asymmetric unit of (I) comprises half of an octa­hedral [SnCl6]2– anion (the whole anion being completed by inversion symmetry), one 2-carb­oxy­quinolinium cation, and a water mol­ecule of crystallization (Fig. 1[link]).

[Figure 1]
Figure 1
View of the mol­ecular entities in (I) with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. [Symmetry code: (i) −x, −y, −z].

The SnIV atom is coordinated by six chlorine atoms, forming a slightly distorted octa­hedron. The lengths of the Sn—Cl bonds in the hexa­chlorido­stannate(IV) anion range from 2.4180 (3) to 2.4406 (3) Å and the Cl—Sn—Cl bond angles deviate only by approximately 1° from ideal values, similar to those reported in the literature (Ghallab et al., 2020[Ghallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279-1283.]; Rademeyer, 2004[Rademeyer, M. (2004). Acta Cryst. C60, m55-m56.]; Billing et al., 2007[Billing, D. G., Lemmerer, A. & Rademeyer, M. (2007). Acta Cryst. C63, m101-m104.]).

In the 2-carb­oxy­quinolinium cation, the C—C bond lengths range from 1.364 (2) to 1.5029 (15) Å and the C—N bond lengths are 1.3282 (14) and 1.3649 (17) Å; the angles vary between 115.14 (10) (N1—C2—C1) and 126.71 (11)° (O1—C—O2). These values are similar compared with related cations with protonated aromatic N atoms (Gelmboldt et al., 2007[Gelmboldt, V. O., Ganin, E. V. & Domasevitch, K. V. (2007). Acta Cryst. C63, o530-o534.]; Smith et al., 2004[Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575-o581.], 2008[Smith, G., Wermuth, U. D. & White, J. M. (2008). Acta Cryst. C64, o180-o183.]). The cation in (I) is not planar, as indicated by a dihedral angle between the quinoline ring and the carb­oxy group of 11.61 (9)°.

Apart from Coulombic forces, the cohesion in the crystal structure is ensured by classical hydrogen bonds between the carboxyl group as donor and the water mol­ecule as acceptor groups, and by inter­actions between the protonated quinoline N atom and the non-protonated O atom of the carboxyl group of a neighboring mol­ecule. Further inter­actions involve the water mol­ecule and the hexa­chlorido­stannate anion (Table 1[link], Fig. 2[link]). There are also ππ stacking inter­actions between neighboring cations [3.7898 (8) Å, slippage 1.678 Å; Fig. 3[link]a] and Cl⋯π inter­actions [3.5633 (6) Å; Fig. 3[link]b].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.82 1.75 2.5684 (14) 176
N1—H1A⋯O2i 0.832 (17) 2.028 (17) 2.8348 (13) 163.4 (15)
O3—H3A⋯Cl1 0.85 2.46 3.2048 (11) 146
O3—H3B⋯Cl2ii 0.85 2.61 3.3708 (11) 150
Symmetry codes: (i) [-x+2, -y+1, -z]; (ii) [-x, -y, -z].
[Figure 2]
Figure 2
O—H⋯O, N—H⋯O and O—H⋯Cl hydrogen-bonding inter­actions in the crystal structure of (I) indicated by dashed lines. Symmetry codes refer to Table 1[link].
[Figure 3]
Figure 3
(a) ππ stacking inter­actions and (b) Cl⋯π inter­actions in the crystal structure of (I).

Synthesis and crystallization

Tin(II) chloride dihydrate (SnCl2·2H2O) was mixed with quinaldic acid (C10H7NO2) in a 1:2 molar ratio, along with a few drops of hydro­chloric acid in distilled water. The mixture was refluxed for one h at 343 K. After two weeks of slow solvent evaporation at room temperature, colorless single crystals suitable for X-ray analysis were obtained.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. The H atom bound to the N atom was refined freely. 14 reflections were omitted from the refinement because they were obstructed from the beam stop.

Table 2
Experimental details

Crystal data
Chemical formula (C10H8NO2)[SnCl6]·2H2O
Mr 715.77
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.3220 (4), 9.2704 (4), 9.4248 (4)
α, β, γ (°) 108.101 (2), 99.515 (2), 99.749 (2)
V3) 662.46 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.61
Crystal size (mm) 0.10 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.851, 0.879
No. of measured, independent and observed [I > 2σ(I)] reflections 19467, 3262, 3199
Rint 0.015
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.033, 1.08
No. of reflections 3262
No. of parameters 168
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Bis(2-carboxyquinolinium) hexachloridostannate(IV) dihydrate top
Crystal data top
(C10H8NO2)[SnCl6]·2H2OZ = 1
Mr = 715.77F(000) = 354
Triclinic, P1Dx = 1.794 Mg m3
a = 8.3220 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2704 (4) ÅCell parameters from 9611 reflections
c = 9.4248 (4) Åθ = 3.7–48.2°
α = 108.101 (2)°µ = 1.61 mm1
β = 99.515 (2)°T = 296 K
γ = 99.749 (2)°Plate, yellow
V = 662.46 (5) Å30.10 × 0.09 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3199 reflections with I > 2σ(I)
φ and ω scansRint = 0.015
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 4.8°
Tmin = 0.851, Tmax = 0.879h = 1111
19467 measured reflectionsk = 1212
3262 independent reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.013H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.033 w = 1/[σ2(Fo2) + (0.013P)2 + 0.3169P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3262 reflectionsΔρmax = 0.41 e Å3
168 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.0000000.0000000.0000000.01307 (3)
Cl10.12549 (3)0.26567 (3)0.17700 (3)0.01985 (6)
Cl20.27553 (3)0.05974 (3)0.01450 (3)0.02261 (6)
Cl30.03577 (4)0.08014 (3)0.21592 (3)0.02122 (6)
O20.82893 (11)0.48826 (10)0.04894 (9)0.02362 (17)
O10.70770 (11)0.47285 (12)0.24138 (10)0.02734 (19)
H10.6255670.4213820.1717180.041*
O30.44565 (12)0.30407 (12)0.03220 (12)0.0316 (2)
H3A0.3581890.3284380.0587760.047*
H3B0.4384850.2075550.0161230.047*
N11.12611 (12)0.62982 (11)0.25392 (11)0.01629 (17)
C20.98812 (14)0.60663 (12)0.30529 (12)0.0171 (2)
C10.83151 (14)0.51554 (13)0.18355 (13)0.0183 (2)
C30.99422 (16)0.66408 (14)0.46178 (13)0.0213 (2)
H30.8971840.6497930.4975610.026*
C61.28072 (14)0.70531 (13)0.34788 (13)0.0181 (2)
C91.59120 (17)0.85434 (15)0.54706 (16)0.0299 (3)
H91.6964660.9029640.6123410.036*
C81.57523 (16)0.79829 (15)0.38631 (16)0.0277 (3)
H81.6702630.8122550.3476610.033*
C71.42258 (15)0.72382 (14)0.28635 (14)0.0230 (2)
H71.4131180.6866300.1808990.028*
C51.29308 (15)0.76284 (13)0.50879 (13)0.0208 (2)
C101.45388 (17)0.83779 (15)0.60721 (14)0.0274 (3)
H101.4657750.8757470.7129740.033*
C41.14626 (16)0.74234 (14)0.56255 (13)0.0230 (2)
H41.1518490.7820300.6672600.028*
H1A1.119 (2)0.5947 (19)0.160 (2)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01189 (5)0.01279 (5)0.01377 (5)0.00232 (3)0.00262 (3)0.00407 (4)
Cl10.02182 (13)0.01429 (11)0.01922 (12)0.00029 (9)0.00555 (10)0.00173 (9)
Cl20.01509 (12)0.02717 (14)0.02324 (13)0.00878 (10)0.00250 (10)0.00457 (11)
Cl30.02591 (13)0.02106 (13)0.01886 (12)0.00433 (10)0.00618 (10)0.01006 (10)
O20.0205 (4)0.0291 (4)0.0164 (4)0.0005 (3)0.0033 (3)0.0045 (3)
O10.0201 (4)0.0358 (5)0.0226 (4)0.0002 (4)0.0071 (3)0.0077 (4)
O30.0207 (4)0.0325 (5)0.0368 (5)0.0007 (4)0.0106 (4)0.0069 (4)
N10.0185 (4)0.0158 (4)0.0123 (4)0.0036 (3)0.0020 (3)0.0028 (3)
C20.0197 (5)0.0152 (5)0.0164 (5)0.0049 (4)0.0035 (4)0.0053 (4)
C10.0182 (5)0.0175 (5)0.0187 (5)0.0047 (4)0.0046 (4)0.0051 (4)
C30.0257 (6)0.0217 (5)0.0175 (5)0.0074 (4)0.0075 (4)0.0063 (4)
C60.0196 (5)0.0150 (5)0.0167 (5)0.0038 (4)0.0005 (4)0.0037 (4)
C90.0239 (6)0.0260 (6)0.0301 (6)0.0012 (5)0.0089 (5)0.0069 (5)
C80.0201 (6)0.0267 (6)0.0330 (7)0.0044 (5)0.0023 (5)0.0084 (5)
C70.0210 (6)0.0235 (6)0.0213 (5)0.0036 (4)0.0029 (4)0.0051 (5)
C50.0258 (6)0.0164 (5)0.0164 (5)0.0044 (4)0.0003 (4)0.0037 (4)
C100.0310 (7)0.0246 (6)0.0188 (5)0.0035 (5)0.0053 (5)0.0042 (5)
C40.0326 (6)0.0216 (5)0.0132 (5)0.0078 (5)0.0035 (4)0.0039 (4)
Geometric parameters (Å, º) top
Sn1—Cl32.4180 (3)C2—C11.5029 (15)
Sn1—Cl3i2.4180 (3)C3—C41.3758 (17)
Sn1—Cl12.4370 (3)C3—H30.9300
Sn1—Cl1i2.4370 (3)C6—C71.4067 (17)
Sn1—Cl2i2.4406 (3)C6—C51.4220 (15)
Sn1—Cl22.4406 (3)C9—C101.364 (2)
O2—C11.2099 (14)C9—C81.4155 (19)
O1—C11.3026 (14)C9—H90.9300
O1—H10.8200C8—C71.3715 (17)
O3—H3A0.8511C8—H80.9300
O3—H3B0.8496C7—H70.9300
N1—C21.3282 (14)C5—C41.4041 (18)
N1—C61.3649 (14)C5—C101.4171 (17)
N1—H1A0.832 (17)C10—H100.9300
C2—C31.3927 (15)C4—H40.9300
Cl3—Sn1—Cl3i179.999 (12)O1—C1—C2112.24 (10)
Cl3—Sn1—Cl189.336 (10)C4—C3—C2118.86 (11)
Cl3i—Sn1—Cl190.665 (10)C4—C3—H3120.6
Cl3—Sn1—Cl1i90.663 (10)C2—C3—H3120.6
Cl3i—Sn1—Cl1i89.336 (10)N1—C6—C7120.61 (10)
Cl1—Sn1—Cl1i180.0N1—C6—C5117.83 (10)
Cl3—Sn1—Cl2i91.121 (10)C7—C6—C5121.56 (11)
Cl3i—Sn1—Cl2i88.879 (10)C10—C9—C8120.70 (12)
Cl1—Sn1—Cl2i90.704 (10)C10—C9—H9119.6
Cl1i—Sn1—Cl2i89.295 (10)C8—C9—H9119.6
Cl3—Sn1—Cl288.879 (10)C7—C8—C9121.41 (12)
Cl3i—Sn1—Cl291.121 (10)C7—C8—H8119.3
Cl1—Sn1—Cl289.295 (10)C9—C8—H8119.3
Cl1i—Sn1—Cl290.706 (10)C8—C7—C6118.11 (11)
Cl2i—Sn1—Cl2180.0C8—C7—H7120.9
C1—O1—H1109.5C6—C7—H7120.9
H3A—O3—H3B109.4C4—C5—C10123.20 (11)
C2—N1—C6123.38 (10)C4—C5—C6118.68 (11)
C2—N1—H1A118.5 (11)C10—C5—C6118.11 (11)
C6—N1—H1A118.2 (11)C9—C10—C5120.10 (12)
N1—C2—C3120.58 (10)C9—C10—H10120.0
N1—C2—C1115.14 (10)C5—C10—H10120.0
C3—C2—C1124.29 (10)C3—C4—C5120.63 (11)
O2—C1—O1126.71 (11)C3—C4—H4119.7
O2—C1—C2121.05 (10)C5—C4—H4119.7
C6—N1—C2—C31.99 (16)N1—C6—C7—C8178.90 (11)
C6—N1—C2—C1177.71 (10)C5—C6—C7—C80.58 (18)
N1—C2—C1—O211.11 (16)N1—C6—C5—C41.35 (16)
C3—C2—C1—O2169.20 (11)C7—C6—C5—C4179.15 (11)
N1—C2—C1—O1168.63 (10)N1—C6—C5—C10178.41 (10)
C3—C2—C1—O111.06 (16)C7—C6—C5—C101.09 (17)
N1—C2—C3—C41.40 (17)C8—C9—C10—C50.5 (2)
C1—C2—C3—C4178.27 (11)C4—C5—C10—C9179.70 (12)
C2—N1—C6—C7178.92 (11)C6—C5—C10—C90.55 (18)
C2—N1—C6—C50.58 (16)C2—C3—C4—C50.54 (18)
C10—C9—C8—C71.0 (2)C10—C5—C4—C3177.86 (12)
C9—C8—C7—C60.47 (19)C6—C5—C4—C31.89 (17)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.821.752.5684 (14)176
N1—H1A···O2ii0.832 (17)2.028 (17)2.8348 (13)163.4 (15)
O3—H3A···Cl10.852.463.2048 (11)146
O3—H3B···Cl2i0.852.613.3708 (11)150
C3—H3···Cl1iii0.932.973.6014 (12)127
C7—H7···O2ii0.932.583.2850 (15)133
C7—H7···O3ii0.932.513.3144 (16)146
Symmetry codes: (i) x, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

Thanks are due to DRSDT-Algeria.

References

First citationBilling, D. G., Lemmerer, A. & Rademeyer, M. (2007). Acta Cryst. C63, m101–m104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGelmboldt, V. O., Ganin, E. V. & Domasevitch, K. V. (2007). Acta Cryst. C63, o530–o534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279–1283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHajlaoui, S., Chaabane, I., Oueslati, A. & Guidara, K. (2013). Solid State Sci. 25, 134–142.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationRademeyer, M. (2004). Acta Cryst. C60, m55–m56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2008). Acta Cryst. C64, o180–o183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146