metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Diiso­butyl­ammonium tri­phenyl(2-thiolato­acetato-κ2O,S)stannate(IV)

crossmark logo

aUniversity of the District of Columbia, Division of Sciences and Mathematics, 4200 Connecticut Avenue, NW 20008, Washington, DC, USA, and bCollege of William & Mary, Department of Chemistry, 540 Landrum Drive, Williamsburg, VA 23185, USA
*Correspondence e-mail: xsong@udc.edu

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 22 July 2024; accepted 26 July 2024; online 9 August 2024)

Crystals of the title salt, (C8H20N)[Sn(C6H5)3(C2H2O2S)], comprise diisobutyl­ammonium cations and mercapto­acetato­tri­phenyl­stannate(IV) anions. The bidentate binding mode of the mercapto­acetate ligand gives rise to a five-coordinated, ionic tri­phenyl­tin complex with a distorted cis-trigonal–bipyramidal geometry around the tin atom. In the crystal, charge-assisted ammonium-N—H⋯O(carboxyl­ate) hydrogen-bonding connects two cations and two anions into a four-ion aggregate. Two positions were resolved for one of the phenyl rings with the major component having a site occupancy factor of 0.60 (3).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

One of the authors has reported some ionic di- and triorganotin complexes (Song et al., 2005[Song, X., Zhong, G., Xie, Q. & Eng, G. (2005). Inorg. Chem. Commun. 8, 725-728.], 2005[Song, X., Zhong, G., Xie, Q. & Eng, G. (2005). Inorg. Chem. Commun. 8, 725-728.]; Zhong et al., 2005[Zhong, G., Liu, Q., Song, X., Eng, G. & Xie, Q. (2005). J. Organomet. Chem. 690, 3405-3409.]) as part of efforts to modify structures of organotin complexes with the aim to increase their aqueous solubility (Gielen, 2002[Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.]). The title salt is another example of an ionic tri­phenyl­tin complex of mercapto­acetic acid. The salt comprises a diisobutyl­ammonium cation and a mercapto­acetato­tri­phenyl­stannate anion, Fig. 1[link]. This new species is similar to other reported ionic complexes like di-cyclo-hexyl­ammonium thiol­actatotri­phenyl­stannate (Song et al., 2006[Song, X., Koranteng, N., Borkowski, L., Cahill, C. & Eng, G. (2006). Main Group Met. Chem. 29, 263-265.]), tri­methyl­ammonium chlorido­diphenyl­mercapto­acetato­stannnate (Song et al., 2005[Song, X., Zhong, G., Xie, Q. & Eng, G. (2005). Inorg. Chem. Commun. 8, 725-728.]) and 2-methyl­pyrimidium chlorido­diphenyl­mercaptostannate (Zhong et al., 2005[Zhong, G., Liu, Q., Song, X., Eng, G. & Xie, Q. (2005). J. Organomet. Chem. 690, 3405-3409.]). In the new salt, the Ph3Sn residue is covalently bound to a sulfur atom (Sn1—S1 2.423 (1) Å) and also to a less tightly bound carboxyl­ate-O atom as indicated by the relatively long Sn1—O1 bond length of 2.456 (2) Å. The coordination environment around the Sn atom is based on a distorted cis-trigonal–bipyramidal geometry with the O1 and C3 atoms in the axial positions, and the S1, C9 and C15 atoms in the equatorial plane. The axial axis is bent with the C3—Sn1—O1 angle being 168.74 (10)°. The S1—Sn1—O1 angle is significantly reduced [75.58 (6)°] from 90° due to the restricted bite distance of the mercapto­acetato ligand.

[Figure 1]
Figure 1
The mol­ecular structures of the two ions comprising the asymmetric unit in the title salt showing the atom-labelling scheme and anisotropic displacement ellipsoids at the 50% probability level.

Charge-assisted hydrogen-bonding inter­actions (Table 1[link]) between the di-iso-butyl­ammonium cations and the mercapto­acetato­tri­phenyl­stannate anions are observed in the crystal. As shown in Fig. 2[link], one ammonium-N—H atom forms a hydrogen bond to the carbonyl-O atom of one carboxyl­ate residue and the second ammonium-N—H atom bifurcates the carboxyl-O atom of a centrosymmetrically related carboxyl­ate residue. In this way, a four-ion aggregate is formed with a central twelve-membered {⋯HNH⋯OCO}2 synthon with the outer N—H⋯O hydrogen bonds lying above and below the encompassed eight-membered {⋯HNH⋯O}2 synthon. The hydrogen bonding substanti­ally affects the distribution of the electrons within the carboxyl­ate group, which can be seen by the observation of experimentally equivalent C—O bond lengths, i.e. 1.238 (4) Å for the C1—O1 bond and 1.241 (4) Å for the C1—O2 bond.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 1.95 2.791 (4) 157
N1—H1B⋯O1ii 0.89 2.16 2.894 (3) 140
N1—H1B⋯O2ii 0.89 2.23 3.072 (4) 158
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x+1, y, z].
[Figure 2]
Figure 2
A view of the four-ion aggregate in the crystal of the title salt. Dashed lines indicate hydrogen bonds.

Synthesis and crystallization

The salt was prepared by the addition, with stirring, of mercapto­acetic acid (2 mmol) to an acetone solution (30 ml) containing tri­phenyl­tin hydroxide (2 mmol). To this solution was added, drop-wise, di-iso-butyl­amine (2 mmol) in acetone (20 ml). A cloudy solution formed immediately and after refluxing for 2 h, the solution became clear. The crude product was obtained as a solid by removing the solvent on a rotary evaporator. It was then recrystallized from 95% ethanol and upon slow evaporation crystals suitable for X-ray diffraction analysis were obtained. Yield 71%, m.p. 108–109 °C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two positions, in a ratio 0.60 (3):0.40 (3), were resolved for the C15—C20 phenyl ring; all C atoms were refined with anisotropic displacement parameters.

Table 2
Experimental details

Crystal data
Chemical formula (C8H20N)[Sn(C6H5)3(C2H2O2S)]
Mr 570.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.4032 (1), 18.8988 (3), 14.8277 (2)
β (°) 101.382 (1)
V3) 2857.91 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 7.96
Crystal size (mm) 0.39 × 0.25 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.439, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 35046, 5313, 4767
Rint 0.040
(sin θ/λ)max−1) 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.09
No. of reflections 5313
No. of parameters 358
No. of restraints 287
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.45
Computer programs: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Diisobutylammonium triphenyl(2-thiolatoacetato-κ2O,S)stannate(IV) top
Crystal data top
(C8H20N)[Sn(C6H5)3(C2H2O2S)]F(000) = 1176
Mr = 570.33Dx = 1.326 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 10.4032 (1) ÅCell parameters from 9852 reflections
b = 18.8988 (3) Åθ = 3.0–70.1°
c = 14.8277 (2) ŵ = 7.96 mm1
β = 101.382 (1)°T = 296 K
V = 2857.91 (7) Å3Block, colourless
Z = 40.39 × 0.25 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
4767 reflections with I > 2σ(I)
ω and Phi scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 70.6°, θmin = 3.8°
Tmin = 0.439, Tmax = 0.753h = 1112
35046 measured reflectionsk = 2222
5313 independent reflectionsl = 1617
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0367P)2 + 1.6022P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.49 e Å3
5313 reflectionsΔρmin = 0.45 e Å3
358 parametersExtinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
287 restraintsExtinction coefficient: 0.00187 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.29678 (2)0.09786 (2)0.24494 (2)0.05419 (10)
S10.45120 (9)0.10232 (6)0.39021 (6)0.0876 (3)
O10.1637 (2)0.07224 (13)0.36093 (16)0.0666 (5)
O20.1506 (3)0.05058 (15)0.50356 (18)0.0860 (7)
C10.2142 (3)0.06407 (17)0.4431 (2)0.0631 (7)
C20.3620 (4)0.0666 (3)0.4722 (3)0.1027 (15)
H2A0.3931280.0188460.4872750.123*
H2B0.3834730.0944370.5281130.123*
C30.4402 (3)0.13121 (18)0.1641 (2)0.0588 (7)
C40.5037 (4)0.1952 (2)0.1820 (3)0.0813 (10)
H40.4856940.2234680.2293400.098*
C50.5941 (5)0.2185 (3)0.1309 (4)0.1038 (14)
H50.6352440.2619670.1441200.125*
C60.6225 (4)0.1781 (3)0.0618 (3)0.0991 (13)
H60.6830380.1938090.0277870.119*
C70.5623 (4)0.1147 (3)0.0424 (3)0.0944 (12)
H70.5815090.0869720.0049960.113*
C80.4714 (4)0.0910 (2)0.0936 (3)0.0771 (10)
H80.4310910.0473330.0798690.093*
C90.2351 (3)0.00545 (16)0.1959 (2)0.0563 (7)
C100.1733 (4)0.0159 (2)0.1058 (2)0.0755 (9)
H100.1592730.0223450.0655980.091*
C140.2544 (5)0.0634 (2)0.2534 (3)0.0848 (10)
H140.2964260.0578560.3144410.102*
C110.1315 (5)0.0834 (2)0.0741 (3)0.0971 (13)
H110.0901900.0901710.0131620.117*
C120.1517 (5)0.1389 (2)0.1332 (4)0.1092 (15)
H120.1235320.1838540.1126120.131*
C130.2123 (6)0.1294 (2)0.2215 (4)0.1142 (17)
H130.2257760.1679150.2613070.137*
C15A0.160 (2)0.1774 (13)0.2172 (12)0.057 (3)0.60 (3)
C16A0.1154 (19)0.1948 (9)0.1277 (12)0.071 (4)0.60 (3)
H16A0.1444530.1689860.0821690.086*0.60 (3)
C17A0.0257 (18)0.2514 (9)0.1015 (11)0.109 (5)0.60 (3)
H17A0.0000050.2639450.0399200.131*0.60 (3)
C18A0.0224 (17)0.2872 (8)0.1682 (13)0.104 (4)0.60 (3)
H18A0.0844140.3228060.1523160.125*0.60 (3)
C19A0.0231 (17)0.2694 (5)0.2595 (11)0.092 (4)0.60 (3)
H19A0.0080200.2938850.3051990.110*0.60 (3)
C20A0.1138 (17)0.2160 (6)0.2838 (10)0.074 (3)0.60 (3)
H20A0.1444330.2057540.3456580.089*0.60 (3)
C15B0.140 (3)0.1803 (16)0.197 (2)0.050 (4)0.40 (3)
C16B0.121 (3)0.2043 (15)0.1048 (16)0.069 (4)0.40 (3)
H16B0.1769500.1883570.0676840.083*0.40 (3)
C17B0.024 (2)0.2491 (11)0.0687 (17)0.087 (5)0.40 (3)
H17B0.0113870.2608650.0066940.104*0.40 (3)
C18B0.0521 (18)0.2767 (12)0.120 (2)0.102 (6)0.40 (3)
H18B0.1194880.3074090.0950810.123*0.40 (3)
C19B0.032 (3)0.2601 (14)0.210 (2)0.117 (9)0.40 (3)
H19B0.0834720.2818840.2470460.141*0.40 (3)
C20B0.064 (2)0.2111 (12)0.2513 (18)0.083 (6)0.40 (3)
H20B0.0753480.1999720.3134650.100*0.40 (3)
N10.8901 (3)0.04696 (15)0.36359 (18)0.0650 (6)
H1A0.8536890.0194490.4003280.078*
H1B0.9724170.0549490.3921180.078*
C210.8199 (3)0.11575 (19)0.3547 (2)0.0697 (8)
H21A0.7263450.1068430.3454750.084*
H21B0.8366130.1401080.3006490.084*
C220.8592 (4)0.16325 (19)0.4370 (3)0.0730 (9)
H220.9531520.1732060.4446350.088*
C230.8347 (5)0.1307 (2)0.5254 (3)0.0935 (12)
H23A0.7431330.1199850.5189590.140*
H23B0.8604540.1634900.5751010.140*
H23C0.8849530.0879930.5380630.140*
C240.7845 (5)0.2333 (2)0.4176 (4)0.1104 (15)
H24A0.7948910.2512890.3589270.166*
H24B0.8187290.2668980.4647620.166*
H24C0.6931440.2254580.4169260.166*
C250.8944 (4)0.0058 (2)0.2778 (3)0.0893 (11)
H25A0.9415600.0334770.2397370.107*
H25B0.9439070.0372710.2948360.107*
C260.7681 (5)0.0129 (3)0.2235 (3)0.1031 (14)
H260.7239960.0316750.2026710.124*
C270.7886 (6)0.0520 (4)0.1363 (4)0.150 (2)
H27A0.8380260.0224830.1028410.225*
H27B0.7049610.0625630.0982700.225*
H27C0.8356260.0951660.1534320.225*
C280.6779 (6)0.0524 (4)0.2708 (4)0.148 (3)
H28A0.7148230.0978780.2895870.222*
H28B0.5950030.0585880.2296580.222*
H28C0.6652300.0263450.3239740.222*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.05088 (14)0.06135 (14)0.05259 (14)0.00563 (8)0.01566 (8)0.00136 (8)
S10.0602 (5)0.1427 (9)0.0589 (5)0.0359 (5)0.0091 (4)0.0025 (5)
O10.0582 (12)0.0821 (14)0.0624 (13)0.0099 (11)0.0194 (10)0.0025 (11)
O20.0839 (17)0.106 (2)0.0791 (16)0.0043 (14)0.0415 (13)0.0217 (14)
C10.0700 (19)0.0609 (18)0.0635 (19)0.0077 (15)0.0258 (15)0.0004 (14)
C20.078 (2)0.172 (4)0.057 (2)0.034 (3)0.0115 (18)0.014 (2)
C30.0458 (15)0.0736 (19)0.0594 (17)0.0009 (13)0.0162 (13)0.0063 (14)
C40.081 (2)0.083 (2)0.087 (3)0.0152 (19)0.036 (2)0.0066 (19)
C50.094 (3)0.100 (3)0.129 (4)0.030 (2)0.051 (3)0.000 (3)
C60.082 (3)0.126 (4)0.103 (3)0.006 (2)0.052 (2)0.018 (3)
C70.086 (3)0.126 (3)0.083 (3)0.002 (2)0.045 (2)0.005 (2)
C80.074 (2)0.090 (3)0.073 (2)0.0051 (18)0.0302 (18)0.0067 (17)
C90.0525 (16)0.0599 (16)0.0597 (16)0.0008 (13)0.0190 (13)0.0039 (13)
C100.080 (2)0.077 (2)0.068 (2)0.0079 (18)0.0109 (17)0.0059 (17)
C140.120 (3)0.064 (2)0.073 (2)0.012 (2)0.026 (2)0.0054 (16)
C110.100 (3)0.098 (3)0.093 (3)0.019 (2)0.017 (2)0.034 (2)
C120.142 (4)0.067 (2)0.132 (4)0.019 (3)0.060 (3)0.029 (2)
C130.188 (5)0.055 (2)0.113 (3)0.004 (3)0.063 (3)0.000 (2)
C15A0.052 (6)0.059 (6)0.061 (7)0.001 (4)0.018 (6)0.004 (5)
C16A0.083 (5)0.061 (7)0.071 (8)0.015 (5)0.020 (6)0.009 (5)
C17A0.132 (9)0.105 (7)0.087 (8)0.053 (7)0.011 (7)0.013 (6)
C18A0.117 (9)0.087 (7)0.117 (9)0.052 (7)0.047 (7)0.033 (6)
C19A0.120 (9)0.069 (5)0.103 (7)0.031 (5)0.064 (7)0.019 (5)
C20A0.096 (9)0.053 (4)0.082 (6)0.013 (5)0.040 (5)0.009 (4)
C15B0.052 (9)0.041 (5)0.060 (10)0.001 (5)0.014 (8)0.019 (7)
C16B0.076 (7)0.072 (7)0.057 (8)0.010 (5)0.008 (6)0.028 (6)
C17B0.081 (7)0.086 (8)0.085 (11)0.011 (6)0.002 (6)0.031 (7)
C18B0.073 (8)0.100 (11)0.137 (14)0.005 (7)0.027 (8)0.058 (11)
C19B0.106 (13)0.121 (14)0.144 (16)0.059 (11)0.072 (12)0.068 (13)
C20B0.075 (10)0.091 (10)0.096 (11)0.022 (8)0.048 (8)0.043 (9)
N10.0616 (15)0.0770 (17)0.0565 (15)0.0099 (13)0.0118 (12)0.0065 (12)
C210.0609 (19)0.082 (2)0.0644 (19)0.0054 (16)0.0091 (15)0.0126 (16)
C220.067 (2)0.071 (2)0.084 (2)0.0069 (16)0.0229 (17)0.0045 (17)
C230.112 (3)0.098 (3)0.075 (2)0.003 (2)0.029 (2)0.009 (2)
C240.124 (4)0.082 (3)0.136 (4)0.011 (3)0.051 (3)0.008 (3)
C250.084 (3)0.112 (3)0.075 (2)0.015 (2)0.0233 (19)0.012 (2)
C260.096 (3)0.144 (4)0.072 (2)0.034 (3)0.021 (2)0.009 (2)
C270.162 (5)0.208 (7)0.081 (3)0.039 (5)0.025 (3)0.055 (4)
C280.135 (5)0.196 (7)0.113 (4)0.088 (5)0.025 (3)0.015 (4)
Geometric parameters (Å, º) top
Sn1—S12.4212 (9)C19A—H19A0.9300
Sn1—O12.459 (2)C19A—C20A1.381 (12)
Sn1—C32.183 (3)C20A—H20A0.9300
Sn1—C92.137 (3)C15B—C16B1.411 (19)
Sn1—C15A2.055 (19)C15B—C20B1.371 (18)
Sn1—C15B2.27 (2)C16B—H16B0.9300
S1—C21.800 (4)C16B—C17B1.34 (3)
O1—C11.238 (4)C17B—H17B0.9300
O2—C11.241 (4)C17B—C18B1.32 (3)
C1—C21.513 (5)C18B—H18B0.9300
C2—H2A0.9700C18B—C19B1.35 (2)
C2—H2B0.9700C19B—H19B0.9300
C3—C41.379 (5)C19B—C20B1.409 (19)
C3—C81.382 (5)C20B—H20B0.9300
C4—H40.9300N1—H1A0.8900
C4—C51.390 (5)N1—H1B0.8900
C5—H50.9300N1—C211.484 (4)
C5—C61.356 (6)N1—C251.499 (4)
C6—H60.9300C21—H21A0.9700
C6—C71.355 (6)C21—H21B0.9700
C7—H70.9300C21—C221.505 (5)
C7—C81.397 (5)C22—H220.9800
C8—H80.9300C22—C231.513 (5)
C9—C101.378 (5)C22—C241.533 (6)
C9—C141.379 (5)C23—H23A0.9600
C10—H100.9300C23—H23B0.9600
C10—C111.399 (5)C23—H23C0.9600
C14—H140.9300C24—H24A0.9600
C14—C131.374 (6)C24—H24B0.9600
C11—H110.9300C24—H24C0.9600
C11—C121.355 (7)C25—H25A0.9700
C12—H120.9300C25—H25B0.9700
C12—C131.350 (7)C25—C261.444 (6)
C13—H130.9300C26—H260.9800
C15A—C16A1.356 (14)C26—C271.539 (6)
C15A—C20A1.388 (15)C26—C281.480 (6)
C16A—H16A0.9300C27—H27A0.9600
C16A—C17A1.422 (19)C27—H27B0.9600
C17A—H17A0.9300C27—H27C0.9600
C17A—C18A1.372 (15)C28—H28A0.9600
C18A—H18A0.9300C28—H28B0.9600
C18A—C19A1.385 (13)C28—H28C0.9600
S1—Sn1—O175.58 (6)C15A—C20A—H20A119.6
C3—Sn1—S194.18 (8)C19A—C20A—C15A120.9 (10)
C3—Sn1—O1168.74 (10)C19A—C20A—H20A119.6
C3—Sn1—C15B98.9 (7)C16B—C15B—Sn1119.0 (17)
C9—Sn1—S1115.87 (9)C20B—C15B—Sn1124.6 (15)
C9—Sn1—O183.40 (9)C20B—C15B—C16B116.4 (18)
C9—Sn1—C3105.62 (12)C15B—C16B—H16B118.6
C9—Sn1—C15B111.8 (10)C17B—C16B—C15B123 (2)
C15A—Sn1—S1117.7 (6)C17B—C16B—H16B118.6
C15A—Sn1—O179.7 (5)C16B—C17B—H17B119.7
C15A—Sn1—C3101.6 (6)C18B—C17B—C16B120.5 (18)
C15A—Sn1—C9116.7 (8)C18B—C17B—H17B119.7
C15B—Sn1—S1124.5 (9)C17B—C18B—H18B120.3
C15B—Sn1—O183.6 (7)C17B—C18B—C19B119.4 (16)
C2—S1—Sn1104.34 (13)C19B—C18B—H18B120.3
C1—O1—Sn1121.7 (2)C18B—C19B—H19B118.7
O1—C1—O2123.6 (3)C18B—C19B—C20B122.5 (16)
O1—C1—C2119.1 (3)C20B—C19B—H19B118.7
O2—C1—C2117.2 (3)C15B—C20B—C19B117.9 (16)
S1—C2—H2A108.1C15B—C20B—H20B121.0
S1—C2—H2B108.1C19B—C20B—H20B121.0
C1—C2—S1116.7 (3)H1A—N1—H1B107.1
C1—C2—H2A108.1C21—N1—H1A107.7
C1—C2—H2B108.1C21—N1—H1B107.7
H2A—C2—H2B107.3C21—N1—C25118.4 (3)
C4—C3—Sn1120.1 (2)C25—N1—H1A107.7
C4—C3—C8116.9 (3)C25—N1—H1B107.7
C8—C3—Sn1123.0 (3)N1—C21—H21A108.8
C3—C4—H4119.3N1—C21—H21B108.8
C3—C4—C5121.5 (4)N1—C21—C22113.6 (3)
C5—C4—H4119.3H21A—C21—H21B107.7
C4—C5—H5119.8C22—C21—H21A108.8
C6—C5—C4120.4 (4)C22—C21—H21B108.8
C6—C5—H5119.8C21—C22—H22108.2
C5—C6—H6120.1C21—C22—C23113.2 (3)
C7—C6—C5119.8 (4)C21—C22—C24108.4 (3)
C7—C6—H6120.1C23—C22—H22108.2
C6—C7—H7119.9C23—C22—C24110.4 (3)
C6—C7—C8120.1 (4)C24—C22—H22108.2
C8—C7—H7119.9C22—C23—H23A109.5
C3—C8—C7121.3 (4)C22—C23—H23B109.5
C3—C8—H8119.4C22—C23—H23C109.5
C7—C8—H8119.4H23A—C23—H23B109.5
C10—C9—Sn1120.8 (2)H23A—C23—H23C109.5
C10—C9—C14118.0 (3)H23B—C23—H23C109.5
C14—C9—Sn1121.2 (3)C22—C24—H24A109.5
C9—C10—H10119.6C22—C24—H24B109.5
C9—C10—C11120.7 (4)C22—C24—H24C109.5
C11—C10—H10119.6H24A—C24—H24B109.5
C9—C14—H14119.6H24A—C24—H24C109.5
C13—C14—C9120.7 (4)H24B—C24—H24C109.5
C13—C14—H14119.6N1—C25—H25A108.5
C10—C11—H11120.3N1—C25—H25B108.5
C12—C11—C10119.4 (4)H25A—C25—H25B107.5
C12—C11—H11120.3C26—C25—N1115.1 (3)
C11—C12—H12119.8C26—C25—H25A108.5
C13—C12—C11120.5 (4)C26—C25—H25B108.5
C13—C12—H12119.8C25—C26—H26106.4
C14—C13—H13119.6C25—C26—C27108.9 (4)
C12—C13—C14120.7 (4)C25—C26—C28116.9 (4)
C12—C13—H13119.6C27—C26—H26106.4
C16A—C15A—Sn1117.6 (11)C28—C26—H26106.4
C16A—C15A—C20A118.0 (12)C28—C26—C27111.3 (5)
C20A—C15A—Sn1124.4 (10)C26—C27—H27A109.5
C15A—C16A—H16A119.0C26—C27—H27B109.5
C15A—C16A—C17A121.9 (12)C26—C27—H27C109.5
C17A—C16A—H16A119.0H27A—C27—H27B109.5
C16A—C17A—H17A120.4H27A—C27—H27C109.5
C18A—C17A—C16A119.2 (11)H27B—C27—H27C109.5
C18A—C17A—H17A120.4C26—C28—H28A109.5
C17A—C18A—H18A120.6C26—C28—H28B109.5
C17A—C18A—C19A118.8 (10)C26—C28—H28C109.5
C19A—C18A—H18A120.6H28A—C28—H28B109.5
C18A—C19A—H19A119.4H28A—C28—H28C109.5
C20A—C19A—C18A121.1 (8)H28B—C28—H28C109.5
C20A—C19A—H19A119.4
Sn1—S1—C2—C117.7 (4)C10—C11—C12—C130.4 (8)
Sn1—O1—C1—O2179.5 (3)C14—C9—C10—C110.2 (6)
Sn1—O1—C1—C22.8 (5)C11—C12—C13—C140.2 (8)
Sn1—C3—C4—C5179.0 (3)C15A—C16A—C17A—C18A3 (3)
Sn1—C3—C8—C7179.0 (3)C16A—C15A—C20A—C19A1 (3)
Sn1—C9—C10—C11179.2 (3)C16A—C17A—C18A—C19A3 (3)
Sn1—C9—C14—C13178.9 (3)C17A—C18A—C19A—C20A1 (2)
Sn1—C15A—C16A—C17A176.8 (17)C18A—C19A—C20A—C15A2 (2)
Sn1—C15A—C20A—C19A179.0 (13)C20A—C15A—C16A—C17A1 (3)
Sn1—C15B—C16B—C17B175 (2)C15B—C16B—C17B—C18B5 (4)
Sn1—C15B—C20B—C19B178.2 (19)C16B—C15B—C20B—C19B4 (4)
O1—C1—C2—S114.6 (6)C16B—C17B—C18B—C19B1 (3)
O2—C1—C2—S1168.6 (3)C17B—C18B—C19B—C20B3 (3)
C3—C4—C5—C60.3 (7)C18B—C19B—C20B—C15B1 (3)
C4—C3—C8—C70.6 (6)C20B—C15B—C16B—C17B7 (4)
C4—C5—C6—C70.1 (8)N1—C21—C22—C2359.6 (4)
C5—C6—C7—C80.1 (7)N1—C21—C22—C24177.6 (3)
C6—C7—C8—C30.3 (7)N1—C25—C26—C27177.7 (4)
C8—C3—C4—C50.5 (6)N1—C25—C26—C2855.2 (7)
C9—C10—C11—C120.3 (7)C21—N1—C25—C2658.7 (5)
C9—C14—C13—C120.3 (7)C25—N1—C21—C22160.1 (3)
C10—C9—C14—C130.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.952.791 (4)157
N1—H1B···O1ii0.892.162.894 (3)140
N1—H1B···O2ii0.892.233.072 (4)158
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
 

Funding information

Financial assistance from the National Science Foundation (NSF grants #2117621, #1622811 and #1833656) and the University of the District of Columbia (UDC) is gratefully acknowledged.

References

First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGielen, M. (2002). Appl. Organomet. Chem. 16, 481–494.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, X., Koranteng, N., Borkowski, L., Cahill, C. & Eng, G. (2006). Main Group Met. Chem. 29, 263–265.  CrossRef CAS Google Scholar
First citationSong, X., Zhong, G., Xie, Q. & Eng, G. (2005). Inorg. Chem. Commun. 8, 725–728.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, G., Liu, Q., Song, X., Eng, G. & Xie, Q. (2005). J. Organomet. Chem. 690, 3405–3409.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146