organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Pyridinium tosyl­ate

crossmark logo

aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: Richard.Betz@mandela.ac.za

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 21 August 2024; accepted 22 August 2024; online 30 August 2024)

The title compound (systematic name: pyridinium 4-methyl­benzene­sulfonate), C5H6N+·C7H7O3S, is the pyridinium salt of para-toluene­sulfonic acid. In the crystal, classical N—H⋯O hydrogen bonds as well as C—H⋯O contacts connect the cationic and anionic entities into sheets lying parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Many fundamental synthesis reactions in preparative organic chemistry make use of activated reagents to allow for the faster and easier production of certain key compounds or to avoid the presence of cumbersome equilibrium reactions. A prime example for this finding is a series of derivatives of carb­oxy­lic acids such as esters and amides that – instead of employing the free acid as staring material – are often more conveniently obtained by using the pertaining carb­oxy­lic anhydride or acyl chloride or bromide as starting materials (Becker et al., 2000[Becker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum - Organisch-Chemisches Grundpraktikum, 21st ed. Weinheim: Wiley-VCH.]). One downside of this increased reactivity is the frequent need to use auxiliary reagents that can mitigate potential side effects of the byproducts produced, most notably basic reagents that can act as acid scavengers to prevent undesired hydrolysis effects. Among the more common ingredients used in the latter context are amines such as tri­ethyl­amine or pyridine whose onium salts can often conveniently be removed from reaction mixtures in organic solvents by means of simple filtration. Occasionally, however, some of the material tenaciously migrates through many steps of purification procedures and can manifest as lingering impurity in the assumed final product. To prevent the waste of valuable data-collection time on diffractometers for future researchers, it is of importance to report the structures even of such undesired compounds as a reference point for the broader scientific community, as done previously by us for ammonium formate (Hosten & Betz, 2014[Hosten, E. & Betz, R. (2014). Z. Kristallogr. New Cryst. Struct. 229, 143-144.]), ammonium phenyl glyoxylate (Hosten & Betz, 2015[Hosten, E. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct. 230, 309-310.]) as well as the chlorides (Maritz et al., 2021[Maritz, M., Hosten, E. C. & Betz, R. (2021). Z. Kristallogr. New Cryst. Struct. 236, 73-75.]; Muller et al., 2021a[Muller, K., Hosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct. 236, 281-283.],b[Muller, K., Hosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 285-286.],c[Muller, K., Hosten, E. C. & Betz, R. (2021c). Z. Kristallogr. New Cryst. Struct. 236, 287-289.]) and tosyl­ate salts (Moleko et al., 2015[Moleko, P., Tshentu, Z. R., Hosten, E. C. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct. 230, 95-96.]) of a number of protonated amines. Furthermore, the mol­ecular and crystal structures of the non-radioactive halogenide salts of the pyridinium cation are apparent in the literature (Boenigk & Mootz, 1988[Boenigk, D. & Mootz, D. (1988). J. Am. Chem. Soc. 110, 2135-2139.]; Mootz & Hocken, 1989[Mootz, D. & Hocken, J. (1989). Z. Naturforsch. B, 44, 1239-1246.]; Klooster et al., 2019[Klooster, W. T., Coles, S. J., Coletta, M. & Brechin, E. K. (2019). CSD Communication (refcode TISROF) CCDC, Cambridge, England.]; Owczarek et al., 2012[Owczarek, M., Jakubas, R., Kinzhybalo, V., Medycki, W., Kruk, D., Pietraszko, A., Gałazka, M. & Zieliński, P. (2012). Chem. Phys. Lett. 537, 38-47.]).

The asymmetric unit of the title compound, C5H6N+·C7H7O3S, is shown in Fig. 1[link] and consists of one complete ion pair. The S—O bond lengths in the anion are found in the narrow range of 1.4525 (14)–1.4682 (14) Å, which is in agreement with full resonant delocalization of the anionic charge over all three oxygen atoms. All other bond lengths and angles are found in good agreement with other tosyl­ates whose mol­ecular and crystal structures were determined on grounds of diffraction studies conducted on single crystals and whose metrical parameters have been deposited with the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The least-squares planes as defined by the non-hydrogen atoms of the cation as well as the intra­cyclic carbon atoms of the tosyl­ate anion inter­sect at an angle of 74.44 (10)°, i.e. the two separate aromatic systems in the asymmetric unit are orientated almost perpendicular to one another.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with anisotropic displacement ellipsoids drawn at 50% probability level.

In the crystal, classical N—H⋯O hydrogen bonds are observed as well as C—H⋯O contacts whose range falls by more than 0.1 Å below the sum of van der Waals radii of the atoms participating in them (Table 1[link]). While the classical hydrogen bonds are established by the pnictogen-bonded hydrogen atom as donor and one of the oxygen atoms of the sulfato group as acceptor, the C—H⋯O contacts are supported by each of the aromatic hydrogen atoms of the cation except for the one in para position to the protonated nitro­gen atom. All three sulfur-bonded oxygen atoms act as acceptors in for the latter contacts. In terms of graph-set analysis (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), the descriptor for the classical hydrogen bonds is D on the unary level while the C—H⋯O contacts require a DDDD descriptor on the same level. Overall, the inter­molecular contacts connect the ions of the title compound into sheets lying parallel the the ab plane. A depiction of the pattern is shown in Fig. 2[link]. Aromatic ππ stacking is not a prominent feature in the crystal structure of the title compound with the shortest inter­centroid distance between two aromatic systems measuring 4.9276 (12) Å for the anion and its symmetry-generated equivalent.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O11 0.93 (3) 1.81 (3) 2.724 (2) 166 (3)
C21—H21⋯O13i 0.95 2.41 3.306 (2) 157
C22—H22⋯O12ii 0.95 2.36 3.117 (2) 136
C24—H24⋯O13iii 0.95 2.35 3.202 (2) 149
C25—H25⋯O12 0.95 2.54 3.259 (3) 133
C25—H25⋯O11iii 0.95 2.36 3.194 (2) 147
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Inter­molecular contacts, viewed approximately along [001].

Synthesis and crystallization

After an initial unintentional isolation of the crystalline compound from a different synthesis product the compound was targeted by reacting a slight excess of liquid pyridine with solid tosylic acid in solvent-free conditions. Crystals of the title compound in the form of colourless blocks suitable for the diffraction study were obtained upon free evaporation of the reaction mixture at room temperature.

Refinement

Data collection and crystallographic data are summarized in Table 2[link]. The crystal used for data collection was found to be an an inversion twin with a volume ratio of 79.3:20.7.

Table 2
Experimental details

Crystal data
Chemical formula C5H6N+·C7H7O3S
Mr 251.29
Crystal system, space group Orthorhombic, P212121
Temperature (K) 200
a, b, c (Å) 5.8868 (2), 8.8927 (4), 22.8226 (9)
V3) 1194.75 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.57 × 0.39 × 0.34
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.904, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11137, 2972, 2903
Rint 0.013
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.08
No. of reflections 2972
No. of parameters 160
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.26
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.21 (8)
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Pyridinium 4-methylbenzenesulfonate top
Crystal data top
C5H6N+·C7H7O3SDx = 1.397 Mg m3
Mr = 251.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9608 reflections
a = 5.8868 (2) Åθ = 2.5–28.3°
b = 8.8927 (4) ŵ = 0.27 mm1
c = 22.8226 (9) ÅT = 200 K
V = 1194.75 (8) Å3Block, colourless
Z = 40.57 × 0.39 × 0.34 mm
F(000) = 528
Data collection top
Bruker APEXII CCD
diffractometer
2972 independent reflections
Radiation source: sealed tube2903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
φ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.904, Tmax = 1.000k = 1111
11137 measured reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.2871P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2972 reflectionsΔρmax = 0.27 e Å3
160 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.21 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin. The N-bonded H atom was located in a difference map and refined freely. The aromatic carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl group were allowed to rotate but not to tip around the C—C bond to best fit the experimental electron density with U(H) set to 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.59831 (7)0.68244 (5)0.67195 (2)0.02552 (11)
O110.5179 (3)0.56756 (15)0.71323 (6)0.0338 (3)
O120.5035 (3)0.82991 (15)0.68422 (6)0.0367 (3)
O130.8442 (2)0.68221 (16)0.66646 (6)0.0345 (3)
N20.1743 (3)0.6291 (2)0.78954 (7)0.0330 (4)
C110.4869 (3)0.62497 (19)0.60326 (8)0.0257 (3)
C120.2780 (3)0.6787 (2)0.58477 (9)0.0335 (4)
H120.2002550.7521910.6073390.040*
C130.1821 (4)0.6250 (3)0.53319 (10)0.0390 (5)
H130.0398340.6635860.5205600.047*
C140.2902 (4)0.5162 (2)0.49988 (9)0.0357 (4)
C150.5018 (4)0.4649 (2)0.51834 (9)0.0369 (4)
H150.5800510.3920040.4955570.044*
C160.6006 (4)0.5186 (2)0.56962 (8)0.0331 (4)
H160.7453100.4826370.5816030.040*
C170.1802 (5)0.4560 (3)0.44461 (10)0.0515 (6)
H17A0.1852270.5331850.4139900.077*
H17B0.0217160.4294780.4527870.077*
H17C0.2623720.3664560.4313230.077*
C210.0159 (4)0.5375 (2)0.81078 (9)0.0345 (4)
H210.0320910.4316320.8068920.041*
C220.1711 (4)0.5966 (2)0.83835 (9)0.0375 (5)
H220.2866990.5322900.8530710.045*
C230.1893 (4)0.7505 (3)0.84444 (10)0.0374 (5)
H230.3176150.7930020.8634890.045*
C240.0202 (4)0.8426 (2)0.82274 (9)0.0362 (4)
H240.0295290.9486430.8272670.043*
C250.1609 (4)0.7788 (2)0.79463 (9)0.0351 (5)
H250.2771460.8406480.7787250.042*
H20.297 (5)0.594 (3)0.7673 (12)0.054 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0293 (2)0.02035 (18)0.02696 (19)0.00397 (16)0.00644 (17)0.00092 (16)
O110.0426 (8)0.0287 (7)0.0301 (6)0.0043 (6)0.0093 (6)0.0064 (5)
O120.0488 (8)0.0249 (6)0.0364 (7)0.0115 (6)0.0066 (6)0.0023 (6)
O130.0295 (6)0.0324 (6)0.0417 (7)0.0001 (5)0.0046 (5)0.0054 (6)
N20.0307 (8)0.0418 (9)0.0265 (7)0.0042 (7)0.0012 (6)0.0062 (7)
C110.0274 (8)0.0227 (7)0.0270 (8)0.0012 (6)0.0070 (7)0.0037 (6)
C120.0261 (8)0.0338 (9)0.0407 (10)0.0044 (8)0.0068 (7)0.0008 (9)
C130.0289 (9)0.0449 (12)0.0433 (11)0.0019 (8)0.0006 (9)0.0057 (9)
C140.0388 (11)0.0389 (11)0.0294 (9)0.0051 (9)0.0009 (8)0.0073 (8)
C150.0423 (11)0.0369 (10)0.0316 (9)0.0076 (9)0.0051 (8)0.0028 (8)
C160.0341 (9)0.0337 (9)0.0316 (8)0.0104 (8)0.0041 (8)0.0001 (7)
C170.0554 (15)0.0636 (16)0.0356 (11)0.0051 (13)0.0077 (10)0.0004 (11)
C210.0447 (11)0.0244 (9)0.0345 (9)0.0013 (8)0.0069 (8)0.0036 (7)
C220.0370 (10)0.0334 (10)0.0423 (11)0.0134 (8)0.0044 (9)0.0015 (8)
C230.0315 (10)0.0385 (11)0.0422 (11)0.0040 (8)0.0039 (9)0.0069 (9)
C240.0480 (11)0.0216 (8)0.0390 (10)0.0030 (7)0.0055 (9)0.0015 (8)
C250.0370 (11)0.0377 (10)0.0305 (9)0.0133 (8)0.0000 (8)0.0050 (7)
Geometric parameters (Å, º) top
S1—O121.4525 (14)C15—C161.391 (3)
S1—O131.4527 (14)C15—H150.9500
S1—O111.4682 (14)C16—H160.9500
S1—C111.7745 (19)C17—H17A0.9800
N2—C211.330 (3)C17—H17B0.9800
N2—C251.339 (3)C17—H17C0.9800
N2—H20.93 (3)C21—C221.373 (3)
C11—C121.385 (3)C21—H210.9500
C11—C161.390 (2)C22—C231.380 (3)
C12—C131.390 (3)C22—H220.9500
C12—H120.9500C23—C241.381 (3)
C13—C141.385 (3)C23—H230.9500
C13—H130.9500C24—C251.368 (3)
C14—C151.392 (3)C24—H240.9500
C14—C171.516 (3)C25—H250.9500
O12—S1—O13113.63 (9)C11—C16—C15119.79 (19)
O12—S1—O11112.36 (9)C11—C16—H16120.1
O13—S1—O11112.06 (9)C15—C16—H16120.1
O12—S1—C11106.76 (9)C14—C17—H17A109.5
O13—S1—C11106.96 (8)C14—C17—H17B109.5
O11—S1—C11104.32 (9)H17A—C17—H17B109.5
C21—N2—C25122.43 (19)C14—C17—H17C109.5
C21—N2—H2122.5 (18)H17A—C17—H17C109.5
C25—N2—H2114.9 (18)H17B—C17—H17C109.5
C12—C11—C16119.60 (18)N2—C21—C22119.67 (18)
C12—C11—S1119.87 (14)N2—C21—H21120.2
C16—C11—S1120.39 (15)C22—C21—H21120.2
C11—C12—C13120.01 (19)C21—C22—C23119.2 (2)
C11—C12—H12120.0C21—C22—H22120.4
C13—C12—H12120.0C23—C22—H22120.4
C14—C13—C12121.2 (2)C22—C23—C24119.8 (2)
C14—C13—H13119.4C22—C23—H23120.1
C12—C13—H13119.4C24—C23—H23120.1
C13—C14—C15118.3 (2)C25—C24—C23118.95 (18)
C13—C14—C17120.5 (2)C25—C24—H24120.5
C15—C14—C17121.3 (2)C23—C24—H24120.5
C16—C15—C14121.1 (2)N2—C25—C24119.96 (19)
C16—C15—H15119.5N2—C25—H25120.0
C14—C15—H15119.5C24—C25—H25120.0
O12—S1—C11—C1227.38 (17)C13—C14—C15—C161.5 (3)
O13—S1—C11—C12149.35 (15)C17—C14—C15—C16178.9 (2)
O11—S1—C11—C1291.76 (16)C12—C11—C16—C151.2 (3)
O12—S1—C11—C16156.98 (15)S1—C11—C16—C15174.43 (16)
O13—S1—C11—C1635.00 (18)C14—C15—C16—C110.1 (3)
O11—S1—C11—C1683.89 (16)C25—N2—C21—C221.0 (3)
C16—C11—C12—C130.7 (3)N2—C21—C22—C231.1 (3)
S1—C11—C12—C13174.98 (16)C21—C22—C23—C240.1 (4)
C11—C12—C13—C141.0 (3)C22—C23—C24—C251.1 (3)
C12—C13—C14—C152.0 (3)C21—N2—C25—C240.3 (3)
C12—C13—C14—C17178.4 (2)C23—C24—C25—N21.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O110.93 (3)1.81 (3)2.724 (2)166 (3)
C21—H21···O13i0.952.413.306 (2)157
C22—H22···O12ii0.952.363.117 (2)136
C24—H24···O13iii0.952.353.202 (2)149
C25—H25···O120.952.543.259 (3)133
C25—H25···O11iii0.952.363.194 (2)147
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Ms Alida Gerryts for useful discussions.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBecker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum – Organisch-Chemisches Grundpraktikum, 21st ed. Weinheim: Wiley-VCH.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoenigk, D. & Mootz, D. (1988). J. Am. Chem. Soc. 110, 2135–2139.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationHosten, E. & Betz, R. (2014). Z. Kristallogr. New Cryst. Struct. 229, 143–144.  CrossRef CAS Google Scholar
First citationHosten, E. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct. 230, 309–310.  CrossRef CAS Google Scholar
First citationKlooster, W. T., Coles, S. J., Coletta, M. & Brechin, E. K. (2019). CSD Communication (refcode TISROF) CCDC, Cambridge, England.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMaritz, M., Hosten, E. C. & Betz, R. (2021). Z. Kristallogr. New Cryst. Struct. 236, 73–75.  CrossRef CAS Google Scholar
First citationMoleko, P., Tshentu, Z. R., Hosten, E. C. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct. 230, 95–96.  CrossRef CAS Google Scholar
First citationMootz, D. & Hocken, J. (1989). Z. Naturforsch. B, 44, 1239–1246.  CrossRef CAS Google Scholar
First citationMuller, K., Hosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct. 236, 281–283.  CrossRef CAS Google Scholar
First citationMuller, K., Hosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 285–286.  CrossRef CAS Google Scholar
First citationMuller, K., Hosten, E. C. & Betz, R. (2021c). Z. Kristallogr. New Cryst. Struct. 236, 287–289.  CrossRef CAS Google Scholar
First citationOwczarek, M., Jakubas, R., Kinzhybalo, V., Medycki, W., Kruk, D., Pietraszko, A., Gałazka, M. & Zieliński, P. (2012). Chem. Phys. Lett. 537, 38–47.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146