organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 2-[(Z)-5-bromo-2-oxoindolin-3-yl­­idene]­hydrazinecarbodi­thio­ate

crossmark logo

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: abdfatah@uitm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 5 August 2024; accepted 9 August 2024; online 16 August 2024)

The title compound, C10H8BrN3OS2, a brominated di­thio­carbazate imine deriv­ative, was obtained from the condensation reaction of S-methyl­dithio­carbazate (SMDTC) and 5-bromo­isatin. The essentially planar mol­ecule exhibits a Z configuration, with the di­thio­carbazate and 5-bromo­isatin fragments located on the same sides of the C=N azomethine bond, which allows for the formation of an intra­molecular N—H⋯Ob (b = bromo­isatin) hydrogen bond generating an S(6) ring motif. In the crystal, adjacent mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming dimers characterized by an R22(8) loop motif. In the extended structure, mol­ecules are linked into a three-dimensional network by C—H⋯S and C—H⋯Br hydrogen bonds, C—Br⋯S halogen bonds and aromatic ππ stacking.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatin-derived di­thio­carbazate imines have been reported to exhibit a broad spectrum of physiological properties (Yekke-ghasemi et al., 2020[Yekke-ghasemi, Z., Ramezani, M., Mague, J. T. & Takjoo, R. (2020). New J. Chem. 44, 8878-8889.]; Ramilo-Gomes et al., 2021[Ramilo-Gomes, F., Addis, Y., Tekamo, I., Cavaco, I., Campos, D. L., Pavan, F. R., Gomes, C. S. B., Brito, V., Santos, A. O., Domingues, F., Luís, Â., Marques, M. M., Pessoa, J. C., Ferreira, S., Silvestre, S. & Correia, I. (2021). J. Inorg. Biochem. 216, 111331.]). In particular, the S-methyl-substituted derivatives have received considerable attention in the field of organic transformations for the preparation of carbo­thio­hydrazones, carbo­thio­hydrazides and various aza-heterocyclic compounds such as pyrazoles, 1,2,4-triazoles and 1,3,4-thia­diazo­les (Lin et al., 2013[Lin, H. H., Wu, W. Y., Cao, S. L., Liao, J., Ma, L., Gao, M., Li, Z. F. & Xu, X. (2013). Bioorg. Med. Chem. Lett. 23, 3304-3307.]; Moustafa et al., 2021[Moustafa, A. H., Ahmed, D. H., El-Wassimy, M. T. & Mohamed, M. F. (2021). Synth. Commun. 51, 570-584.]; Bekircan et al., 2022[Bekircan, O., Danış, Ö., Şahin, M. E. & Çetin, M. (2022). Bioorg. Chem. 118, 105493.]; Malakar et al., 2023[Malakar, K., Sohtun, W. P., Srinivasan, V. & Velusamy, M. (2023). Inorg. Chem. Commun. 157, 111195.], Geoghegan et al., 2024[Geoghegan, B. L., Bilyj, J. K., Bernhardt, P. V., DeBeer, S. & Cutsail, G. E. (2024). Dalton Trans. 53, 7828-7838.]). Recent study has revealed that the imine obtained from the condensation reaction of isatin and S-methyl­dithio­carbazate can be directly transformed into the spiro-fused 1,3,4-thia­diazole compound in a straightforward synthetic protocol (Moustafa et al., 2021[Moustafa, A. H., Ahmed, D. H., El-Wassimy, M. T. & Mohamed, M. F. (2021). Synth. Commun. 51, 570-584.]). This approach opens a new avenue in accessing isatin-based spiro­cycle mol­ecules. We are concerned with developing new di­thio­carbazate imines containing isatin derivatives and continue research work to explore their potential applications (Abdul Manan et al., 2024[Abdul Manan, M. A. F., Cordes, D. B. & McKay, A. P. (2024). IUCrData, 9, x240235.]). Therefore, as part of our ongoing research and structural studies on such mol­ecules, we now report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound, C10H8BrN3OS2 contains one mol­ecule and crystallizes in the P21/n monoclinic space group with the S-methyl and thione groups being syn (Fig. 1[link]). The non-hydrogen atoms in the mol­ecule are close to planar, indicating electron delocalization within the mol­ecule: the dihedral angle between the di­thio­carbazate group and the 5-bromo­isatin ring is 7.9 (3)°. The imine exists in its thione tautomeric form with the di­thio­carbazate unit adopting a Z conformation about the C=N bond [C4—C3=N3—N4 = 177.9 (9)°] with respect to the 5-bromo­isatin moiety, while the S10 thio­keto sulfur atom is positioned anti to the N3 azomethine nitro­gen atom [N3—N4—C10—S10 = 173.8 (7)°]. The presence of an N—H⋯Ob (b = bromo­isatin) intra­molecular hydrogen helps to consolidate the planar conformatic of the title mol­ecule (Table 1[link]). Otherwise, the bond lengths and angles are comparable to those reported for methyl 2-(5-chloro-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazine­carbodi­thio­ate (Abdul Manan et al., 2011[Abdul Manan, M. A. F., Tahir, M. I. M., Crouse, K. A. & Watkin, D. J. (2011). J. Chem. Crystallogr. 41, 230-235.]), methyl 2-(1-methyl-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazine­carbodi­thio­ate (Abdul Manan et al., 2012[Abdul Manan, M. A. F., Tahir, M. I. M., Crouse, K. A., How, F. N. F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173-179.]) and methyl (Z)-2-(5-fluoro-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazine-1-carbodi­thio­ate (Li et al., 2018[Li, X. H., Qin, Z. X. & Cao, S. L. (2018). Z. Kristallogr. New Cryst. Struct. 233, 131-132.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O2 0.98 (2) 2.04 (8) 2.715 (11) 124 (7)
N1—H1⋯O2i 0.97 (2) 1.86 (4) 2.801 (11) 163 (10)
C5—H5⋯Br5ii 0.95 3.00 3.941 (10) 172
C7—H7⋯S10iii 0.95 2.83 3.775 (10) 171
Symmetry codes: (i) [-x+2, -y, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

In the crystal of the title compound, mol­ecules are linked into dimers through pairwise N1—H1⋯O2 hydrogen bonds in a common R22(8) motif (Fig. 2[link]). These dimers further pack into chains propagating along [2[\overline{1}]0] through a combination of weak C5—H5⋯Br5 hydrogen bonds and Br5⋯S11 [Br⋯S = 3.521 (3) Å, C—S⋯Br = 135.1 (3)°, C—Br⋯S = 155.2 (3)°] halogen bonds, forming a extended R21(9) R22(8) R21(9) motif. These chains are connected into the third dimension by further weak C7—H7⋯S10 hydrogen bonds (Table 1[link], Fig. 3[link]). These hydrogen bonded arrays have parallel mol­ecules separated such that an equivalent inter­penetrating mol­ecular framework exists, inter­acting with the other via aromatic ππ stacking [N1/C2–C4/C9, centroid⋯centroid separation = 3.307 (9) Å].

[Figure 2]
Figure 2
View of the dimers formed by N—H⋯O hydrogen-bonding giving R22(8) motifs.
[Figure 3]
Figure 3
View showing both the weak hydrogen bonds and halogen bonds connecting the hydrogen-bonded dimers in three-dimensions.

Synthesis and crystallization

The di­thio­carbazate precursor, SMDTC was prepared by the literature method (Das & Livingstone, 1976[Das, M. & Livingstone, S. E. (1976). Inorg. Chim. Acta, 19, 5-10.]). The title compound was prepared by adding 5-bromo­isatin (2.26 g, 10.0 mmol, 1.0 eq) dissolved in hot ethanol (20 ml) to a solution of the precursor, SMDTC (1.22 g, 10.0 mmol, 1.0 eq) in hot ethanol (35 ml). The mixture was heated (80°C) with continuous stirring for 15 min and later allowed to stand about 20 min at room temperature until a precipitate was formed, which was then filtered and dried over silica gel, yielding orange crystals on recrystallization from ethanol solution (yield: 2.74 g, 83%). m.p. 259–260°C; 1H NMR (400 MHz, d6-DMSO) δ: (p.p.m.): 2.63 (s, 3H), 6.92 (d, J = 8.28 Hz, 1H), 7.59 (dd, J = 8.32, 2.0 Hz, 1H), 7.63 (d, J = 1.92 Hz, 1H), 11.48 (s, 1H), 13.90 (s, 1H); HRMS m/z (ESI+), found: [M + H]+ 329.9335, C10H8N3OS279Br requires [M + H]+ 329.9370.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two-component twin with component 2 rotated by −176.99° around [0.92 0.02 − 0.38] (reciprocal) or [1.00 0.02 0.00] (direct), and a refined twin fraction of 0.056 (3).

Table 2
Experimental details

Crystal data
Chemical formula C10H8BrN3OS2
Mr 330.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 125
a, b, c (Å) 6.6331 (3), 7.5726 (3), 24.6985 (10)
β (°) 97.141 (4)
V3) 1230.98 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 7.63
Crystal size (mm) 0.11 × 0.01 × 0.01 × 0.40 (radius)
 
Data collection
Diffractometer Rigaku XtaLAB P200K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.025, 0.114
No. of measured, independent and observed [I > 2σ(I)] reflections 11989, 2513, 1869
Rint 0.1931
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.293, 1.14
No. of reflections 2513
No. of parameters 164
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.37, −1.06
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Methyl 2-[(Z)-5-bromo-2-oxoindolin-3-ylidene]hydrazinecarbodithioate top
Crystal data top
C10H8BrN3OS2F(000) = 656
Mr = 330.22Dx = 1.782 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 6.6331 (3) ÅCell parameters from 3279 reflections
b = 7.5726 (3) Åθ = 3.6–75.3°
c = 24.6985 (10) ŵ = 7.63 mm1
β = 97.141 (4)°T = 125 K
V = 1230.98 (9) Å3Needle, orange
Z = 40.11 × 0.01 × 0.01 × 0.40 (radius) mm
Data collection top
Rigaku XtaLAB P200K
diffractometer
2513 independent reflections
Radiation source: Rotating Anode, Rigaku MM-007HF1869 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.193
Detector resolution: 5.8140 pixels mm-1θmax = 76.3°, θmin = 6.1°
shutterless scansh = 77
Absorption correction: multi-scan
(CrysAlisPr; Rigaku OD, 2023)
k = 99
Tmin = 0.025, Tmax = 0.114l = 530
11959 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.093H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.293 w = 1/[σ2(Fo2) + (0.145P)2 + 4.1265P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2513 reflectionsΔρmax = 1.37 e Å3
164 parametersΔρmin = 1.06 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin with HKLF5 generated by TWINROTMAT running in PLATON. NH hydrogen atoms were identifed from Fmap and refined with N-H restrained to 0.98 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br50.00632 (16)0.49654 (14)0.40002 (4)0.0565 (4)
S110.3366 (4)0.2379 (4)0.68815 (10)0.0606 (7)
S100.7209 (4)0.0479 (4)0.73636 (10)0.0602 (7)
O20.9075 (10)0.0482 (9)0.5665 (3)0.0519 (15)
N10.7784 (13)0.1254 (11)0.4779 (3)0.0497 (17)
N40.6432 (12)0.1539 (11)0.6357 (3)0.0500 (17)
N30.5194 (11)0.2188 (10)0.5925 (3)0.0471 (17)
C20.7769 (15)0.1156 (13)0.5335 (4)0.051 (2)
C60.2344 (13)0.3758 (12)0.4224 (4)0.048 (2)
C90.5992 (16)0.2052 (13)0.4534 (4)0.052 (2)
C40.4781 (16)0.2581 (12)0.4928 (4)0.050 (2)
C50.2935 (15)0.3440 (12)0.4784 (4)0.0483 (19)
H50.2107620.3797170.5051440.058*
C100.5760 (17)0.1466 (13)0.6859 (4)0.054 (2)
C70.3544 (14)0.3217 (13)0.3840 (4)0.051 (2)
H70.3099380.3439660.3465430.061*
C110.3089 (19)0.2206 (17)0.7602 (5)0.065 (3)
H11A0.1755840.2664100.7664850.098*
H11B0.4158520.2894730.7815060.098*
H11C0.3201650.0964970.7714210.098*
C80.5376 (16)0.2359 (13)0.3979 (4)0.053 (2)
H80.6186220.1991340.3708550.064*
C30.5842 (16)0.2045 (13)0.5453 (4)0.052 (2)
H40.753 (10)0.069 (10)0.633 (4)0.04 (2)*
H10.881 (13)0.046 (12)0.467 (4)0.05 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br50.0560 (7)0.0579 (7)0.0547 (7)0.0055 (4)0.0036 (5)0.0015 (4)
S110.0661 (15)0.0663 (15)0.0499 (13)0.0133 (12)0.0089 (11)0.0043 (11)
S100.0692 (16)0.0626 (15)0.0472 (13)0.0112 (12)0.0007 (11)0.0017 (11)
O20.049 (4)0.055 (4)0.051 (3)0.004 (3)0.002 (3)0.001 (3)
N10.060 (5)0.048 (4)0.043 (4)0.000 (3)0.012 (3)0.001 (3)
N40.052 (4)0.047 (4)0.050 (4)0.007 (3)0.004 (3)0.002 (3)
N30.049 (4)0.042 (4)0.050 (4)0.002 (3)0.002 (3)0.000 (3)
C20.058 (5)0.047 (5)0.047 (5)0.009 (4)0.008 (4)0.006 (4)
C60.034 (4)0.046 (4)0.061 (5)0.000 (3)0.008 (4)0.001 (4)
C90.060 (6)0.043 (5)0.056 (5)0.005 (4)0.013 (4)0.001 (4)
C40.067 (6)0.038 (4)0.043 (4)0.003 (4)0.002 (4)0.003 (3)
C50.058 (5)0.042 (4)0.044 (5)0.007 (4)0.002 (4)0.002 (3)
C100.074 (6)0.043 (5)0.046 (5)0.004 (4)0.007 (4)0.002 (4)
C70.052 (5)0.055 (5)0.046 (5)0.002 (4)0.009 (4)0.006 (4)
C110.070 (7)0.070 (7)0.058 (6)0.009 (5)0.019 (5)0.004 (5)
C80.060 (6)0.052 (5)0.049 (5)0.011 (4)0.013 (4)0.000 (4)
C30.059 (5)0.046 (5)0.052 (5)0.001 (4)0.012 (4)0.004 (4)
Geometric parameters (Å, º) top
Br5—C61.863 (8)C6—C51.410 (13)
S11—C101.739 (11)C6—C71.375 (14)
S11—C111.816 (11)C9—C41.395 (14)
S10—C101.654 (10)C9—C81.399 (14)
O2—C21.224 (12)C4—C51.394 (14)
N1—C21.378 (12)C4—C31.455 (13)
N1—C91.402 (13)C5—H50.9500
N1—H10.97 (2)C7—H70.9500
N4—N31.355 (11)C7—C81.383 (15)
N4—C101.371 (13)C11—H11A0.9800
N4—H40.98 (2)C11—H11B0.9800
N3—C31.294 (12)C11—H11C0.9800
C2—C31.505 (14)C8—H80.9500
C10—S11—C11101.9 (5)C4—C5—C6117.3 (9)
C2—N1—C9110.1 (8)C4—C5—H5121.3
C2—N1—H1110 (7)S10—C10—S11127.1 (6)
C9—N1—H1137 (7)N4—C10—S11114.4 (7)
N3—N4—C10119.6 (8)N4—C10—S10118.4 (8)
N3—N4—H4124 (5)C6—C7—H7118.9
C10—N4—H4111 (5)C6—C7—C8122.3 (9)
C3—N3—N4116.2 (8)C8—C7—H7118.9
O2—C2—N1126.5 (9)S11—C11—H11A109.5
O2—C2—C3127.3 (9)S11—C11—H11B109.5
N1—C2—C3106.3 (8)S11—C11—H11C109.5
C5—C6—Br5119.9 (7)H11A—C11—H11B109.5
C7—C6—Br5119.3 (7)H11A—C11—H11C109.5
C7—C6—C5120.8 (8)H11B—C11—H11C109.5
C4—C9—N1110.7 (9)C9—C8—H8121.2
C4—C9—C8120.8 (10)C7—C8—C9117.5 (9)
C8—C9—N1128.5 (9)C7—C8—H8121.2
C9—C4—C3106.6 (9)N3—C3—C2126.6 (9)
C5—C4—C9121.3 (9)N3—C3—C4126.9 (9)
C5—C4—C3132.1 (9)C4—C3—C2106.3 (8)
C6—C5—H5121.3
Br5—C6—C5—C4178.0 (7)C9—N1—C2—O2177.5 (9)
Br5—C6—C7—C8178.1 (8)C9—N1—C2—C32.8 (10)
O2—C2—C3—N33.0 (17)C9—C4—C5—C60.2 (14)
O2—C2—C3—C4178.5 (9)C9—C4—C3—N3175.6 (10)
N1—C2—C3—N3177.3 (9)C9—C4—C3—C20.2 (10)
N1—C2—C3—C41.8 (10)C4—C9—C8—C70.6 (14)
N1—C9—C4—C5178.7 (8)C5—C6—C7—C80.6 (15)
N1—C9—C4—C31.6 (11)C5—C4—C3—N34.0 (17)
N1—C9—C8—C7178.4 (9)C5—C4—C3—C2179.5 (10)
N4—N3—C3—C23.3 (14)C10—N4—N3—C3172.9 (9)
N4—N3—C3—C4177.9 (9)C7—C6—C5—C40.7 (13)
N3—N4—C10—S113.9 (12)C11—S11—C10—S106.9 (9)
N3—N4—C10—S10173.8 (7)C11—S11—C10—N4175.7 (8)
C2—N1—C9—C42.9 (11)C8—C9—C4—C50.5 (14)
C2—N1—C9—C8178.0 (10)C8—C9—C4—C3179.2 (9)
C6—C7—C8—C90.1 (15)C3—C4—C5—C6179.8 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O20.98 (2)2.04 (8)2.715 (11)124 (7)
N1—H1···O2i0.97 (2)1.86 (4)2.801 (11)163 (10)
C5—H5···Br5ii0.953.003.941 (10)172
C7—H7···S10iii0.952.833.775 (10)171
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z+1; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge Universiti Teknologi MARA for financial support.

References

First citationAbdul Manan, M. A. F., Cordes, D. B. & McKay, A. P. (2024). IUCrData, 9, x240235.  Google Scholar
First citationAbdul Manan, M. A. F., Tahir, M. I. M., Crouse, K. A., How, F. N. F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173–179.  CAS Google Scholar
First citationAbdul Manan, M. A. F., Tahir, M. I. M., Crouse, K. A. & Watkin, D. J. (2011). J. Chem. Crystallogr. 41, 230–235.  CAS Google Scholar
First citationBekircan, O., Danış, Ö., Şahin, M. E. & Çetin, M. (2022). Bioorg. Chem. 118, 105493.  Web of Science CrossRef PubMed Google Scholar
First citationDas, M. & Livingstone, S. E. (1976). Inorg. Chim. Acta, 19, 5–10.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeoghegan, B. L., Bilyj, J. K., Bernhardt, P. V., DeBeer, S. & Cutsail, G. E. (2024). Dalton Trans. 53, 7828–7838.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, X. H., Qin, Z. X. & Cao, S. L. (2018). Z. Kristallogr. New Cryst. Struct. 233, 131–132.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, H. H., Wu, W. Y., Cao, S. L., Liao, J., Ma, L., Gao, M., Li, Z. F. & Xu, X. (2013). Bioorg. Med. Chem. Lett. 23, 3304–3307.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalakar, K., Sohtun, W. P., Srinivasan, V. & Velusamy, M. (2023). Inorg. Chem. Commun. 157, 111195.  Web of Science CSD CrossRef Google Scholar
First citationMoustafa, A. H., Ahmed, D. H., El-Wassimy, M. T. & Mohamed, M. F. (2021). Synth. Commun. 51, 570–584.  Web of Science CrossRef CAS Google Scholar
First citationRamilo-Gomes, F., Addis, Y., Tekamo, I., Cavaco, I., Campos, D. L., Pavan, F. R., Gomes, C. S. B., Brito, V., Santos, A. O., Domingues, F., Luís, Â., Marques, M. M., Pessoa, J. C., Ferreira, S., Silvestre, S. & Correia, I. (2021). J. Inorg. Biochem. 216, 111331.  Web of Science PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYekke-ghasemi, Z., Ramezani, M., Mague, J. T. & Takjoo, R. (2020). New J. Chem. 44, 8878–8889.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146