organic compounds
Methyl 2-[(Z)-5-bromo-2-oxoindolin-3-ylidene]hydrazinecarbodithioate
aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: abdfatah@uitm.edu.my
The title compound, C10H8BrN3OS2, a brominated dithiocarbazate imine derivative, was obtained from the condensation reaction of S-methyldithiocarbazate (SMDTC) and 5-bromoisatin. The essentially planar molecule exhibits a Z configuration, with the dithiocarbazate and 5-bromoisatin fragments located on the same sides of the C=N azomethine bond, which allows for the formation of an intramolecular N—H⋯Ob (b = bromoisatin) hydrogen bond generating an S(6) ring motif. In the crystal, adjacent molecules are linked by pairs of N—H⋯O hydrogen bonds, forming dimers characterized by an R22(8) loop motif. In the extended structure, molecules are linked into a three-dimensional network by C—H⋯S and C—H⋯Br hydrogen bonds, C—Br⋯S halogen bonds and aromatic π–π stacking.
Keywords: crystal structure; dithiocarbazate; 5-bromoisatin; Z configuration; hydrogen bonding; halogen bond.
CCDC reference: 2376721
Structure description
Isatin-derived dithiocarbazate et al., 2020; Ramilo-Gomes et al., 2021). In particular, the S-methyl-substituted derivatives have received considerable attention in the field of organic transformations for the preparation of carbothiohydrazones, carbothiohydrazides and various aza-heterocyclic compounds such as pyrazoles, 1,2,4-triazoles and 1,3,4-thiadiazoles (Lin et al., 2013; Moustafa et al., 2021; Bekircan et al., 2022; Malakar et al., 2023, Geoghegan et al., 2024). Recent study has revealed that the imine obtained from the condensation reaction of isatin and S-methyldithiocarbazate can be directly transformed into the spiro-fused 1,3,4-thiadiazole compound in a straightforward synthetic protocol (Moustafa et al., 2021). This approach opens a new avenue in accessing isatin-based spirocycle molecules. We are concerned with developing new dithiocarbazate containing isatin derivatives and continue research work to explore their potential applications (Abdul Manan et al., 2024). Therefore, as part of our ongoing research and structural studies on such molecules, we now report the synthesis and of the title compound.
have been reported to exhibit a broad spectrum of physiological properties (Yekke-ghasemiThe 10H8BrN3OS2 contains one molecule and crystallizes in the P21/n monoclinic with the S-methyl and thione groups being syn (Fig. 1). The non-hydrogen atoms in the molecule are close to planar, indicating electron delocalization within the molecule: the dihedral angle between the dithiocarbazate group and the 5-bromoisatin ring is 7.9 (3)°. The imine exists in its thione tautomeric form with the dithiocarbazate unit adopting a Z conformation about the C=N bond [C4—C3=N3—N4 = 177.9 (9)°] with respect to the 5-bromoisatin moiety, while the S10 thioketo sulfur atom is positioned anti to the N3 azomethine nitrogen atom [N3—N4—C10—S10 = 173.8 (7)°]. The presence of an N—H⋯Ob (b = bromoisatin) intramolecular hydrogen helps to consolidate the planar conformatic of the title molecule (Table 1). Otherwise, the bond lengths and angles are comparable to those reported for methyl 2-(5-chloro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)hydrazinecarbodithioate (Abdul Manan et al., 2011), methyl 2-(1-methyl-2-oxo-1,2-dihydro-3H-indol-3-ylidene)hydrazinecarbodithioate (Abdul Manan et al., 2012) and methyl (Z)-2-(5-fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)hydrazine-1-carbodithioate (Li et al., 2018).
of the title compound, CIn the crystal of the title compound, molecules are linked into dimers through pairwise N1—H1⋯O2 hydrogen bonds in a common R22(8) motif (Fig. 2). These dimers further pack into chains propagating along [20] through a combination of weak C5—H5⋯Br5 hydrogen bonds and Br5⋯S11 [Br⋯S = 3.521 (3) Å, C—S⋯Br = 135.1 (3)°, C—Br⋯S = 155.2 (3)°] halogen bonds, forming a extended R21(9) R22(8) R21(9) motif. These chains are connected into the third dimension by further weak C7—H7⋯S10 hydrogen bonds (Table 1, Fig. 3). These hydrogen bonded arrays have parallel molecules separated such that an equivalent interpenetrating molecular framework exists, interacting with the other via aromatic π–π stacking [N1/C2–C4/C9, centroid⋯centroid separation = 3.307 (9) Å].
Synthesis and crystallization
The dithiocarbazate precursor, SMDTC was prepared by the literature method (Das & Livingstone, 1976). The title compound was prepared by adding 5-bromoisatin (2.26 g, 10.0 mmol, 1.0 eq) dissolved in hot ethanol (20 ml) to a solution of the precursor, SMDTC (1.22 g, 10.0 mmol, 1.0 eq) in hot ethanol (35 ml). The mixture was heated (80°C) with continuous stirring for 15 min and later allowed to stand about 20 min at room temperature until a precipitate was formed, which was then filtered and dried over silica gel, yielding orange crystals on recrystallization from ethanol solution (yield: 2.74 g, 83%). m.p. 259–260°C; 1H NMR (400 MHz, d6-DMSO) δ: (p.p.m.): 2.63 (s, 3H), 6.92 (d, J = 8.28 Hz, 1H), 7.59 (dd, J = 8.32, 2.0 Hz, 1H), 7.63 (d, J = 1.92 Hz, 1H), 11.48 (s, 1H), 13.90 (s, 1H); HRMS m/z (ESI+), found: [M + H]+ 329.9335, C10H8N3OS279Br requires [M + H]+ 329.9370.
Refinement
Crystal data, data collection and structure . The structure was refined as a two-component twin with component 2 rotated by −176.99° around [0.92 0.02 − 0.38] (reciprocal) or [1.00 0.02 0.00] (direct), and a refined twin fraction of 0.056 (3).
details are summarized in Table 2
|
Structural data
CCDC reference: 2376721
https://doi.org/10.1107/S2414314624007879/hb4481sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624007879/hb4481Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624007879/hb4481Isup3.cml
C10H8BrN3OS2 | F(000) = 656 |
Mr = 330.22 | Dx = 1.782 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 6.6331 (3) Å | Cell parameters from 3279 reflections |
b = 7.5726 (3) Å | θ = 3.6–75.3° |
c = 24.6985 (10) Å | µ = 7.63 mm−1 |
β = 97.141 (4)° | T = 125 K |
V = 1230.98 (9) Å3 | Needle, orange |
Z = 4 | 0.11 × 0.01 × 0.01 × 0.40 (radius) mm |
Rigaku XtaLAB P200K diffractometer | 2513 independent reflections |
Radiation source: Rotating Anode, Rigaku MM-007HF | 1869 reflections with I > 2σ(I) |
Rigaku Osmic Confocal Optical System monochromator | Rint = 0.193 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 76.3°, θmin = 6.1° |
shutterless scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlisPr; Rigaku OD, 2023) | k = −9→9 |
Tmin = 0.025, Tmax = 0.114 | l = −5→30 |
11959 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.293 | w = 1/[σ2(Fo2) + (0.145P)2 + 4.1265P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
2513 reflections | Δρmax = 1.37 e Å−3 |
164 parameters | Δρmin = −1.06 e Å−3 |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin with HKLF5 generated by TWINROTMAT running in PLATON. NH hydrogen atoms were identifed from Fmap and refined with N-H restrained to 0.98 Å. |
x | y | z | Uiso*/Ueq | ||
Br5 | −0.00632 (16) | 0.49654 (14) | 0.40002 (4) | 0.0565 (4) | |
S11 | 0.3366 (4) | 0.2379 (4) | 0.68815 (10) | 0.0606 (7) | |
S10 | 0.7209 (4) | 0.0479 (4) | 0.73636 (10) | 0.0602 (7) | |
O2 | 0.9075 (10) | 0.0482 (9) | 0.5665 (3) | 0.0519 (15) | |
N1 | 0.7784 (13) | 0.1254 (11) | 0.4779 (3) | 0.0497 (17) | |
N4 | 0.6432 (12) | 0.1539 (11) | 0.6357 (3) | 0.0500 (17) | |
N3 | 0.5194 (11) | 0.2188 (10) | 0.5925 (3) | 0.0471 (17) | |
C2 | 0.7769 (15) | 0.1156 (13) | 0.5335 (4) | 0.051 (2) | |
C6 | 0.2344 (13) | 0.3758 (12) | 0.4224 (4) | 0.048 (2) | |
C9 | 0.5992 (16) | 0.2052 (13) | 0.4534 (4) | 0.052 (2) | |
C4 | 0.4781 (16) | 0.2581 (12) | 0.4928 (4) | 0.050 (2) | |
C5 | 0.2935 (15) | 0.3440 (12) | 0.4784 (4) | 0.0483 (19) | |
H5 | 0.210762 | 0.379717 | 0.505144 | 0.058* | |
C10 | 0.5760 (17) | 0.1466 (13) | 0.6859 (4) | 0.054 (2) | |
C7 | 0.3544 (14) | 0.3217 (13) | 0.3840 (4) | 0.051 (2) | |
H7 | 0.309938 | 0.343966 | 0.346543 | 0.061* | |
C11 | 0.3089 (19) | 0.2206 (17) | 0.7602 (5) | 0.065 (3) | |
H11A | 0.175584 | 0.266410 | 0.766485 | 0.098* | |
H11B | 0.415852 | 0.289473 | 0.781506 | 0.098* | |
H11C | 0.320165 | 0.096497 | 0.771421 | 0.098* | |
C8 | 0.5376 (16) | 0.2359 (13) | 0.3979 (4) | 0.053 (2) | |
H8 | 0.618622 | 0.199134 | 0.370855 | 0.064* | |
C3 | 0.5842 (16) | 0.2045 (13) | 0.5453 (4) | 0.052 (2) | |
H4 | 0.753 (10) | 0.069 (10) | 0.633 (4) | 0.04 (2)* | |
H1 | 0.881 (13) | 0.046 (12) | 0.467 (4) | 0.05 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br5 | 0.0560 (7) | 0.0579 (7) | 0.0547 (7) | 0.0055 (4) | 0.0036 (5) | 0.0015 (4) |
S11 | 0.0661 (15) | 0.0663 (15) | 0.0499 (13) | 0.0133 (12) | 0.0089 (11) | 0.0043 (11) |
S10 | 0.0692 (16) | 0.0626 (15) | 0.0472 (13) | 0.0112 (12) | 0.0007 (11) | 0.0017 (11) |
O2 | 0.049 (4) | 0.055 (4) | 0.051 (3) | 0.004 (3) | 0.002 (3) | −0.001 (3) |
N1 | 0.060 (5) | 0.048 (4) | 0.043 (4) | 0.000 (3) | 0.012 (3) | −0.001 (3) |
N4 | 0.052 (4) | 0.047 (4) | 0.050 (4) | 0.007 (3) | 0.004 (3) | 0.002 (3) |
N3 | 0.049 (4) | 0.042 (4) | 0.050 (4) | 0.002 (3) | 0.002 (3) | 0.000 (3) |
C2 | 0.058 (5) | 0.047 (5) | 0.047 (5) | −0.009 (4) | 0.008 (4) | −0.006 (4) |
C6 | 0.034 (4) | 0.046 (4) | 0.061 (5) | 0.000 (3) | −0.008 (4) | 0.001 (4) |
C9 | 0.060 (6) | 0.043 (5) | 0.056 (5) | −0.005 (4) | 0.013 (4) | −0.001 (4) |
C4 | 0.067 (6) | 0.038 (4) | 0.043 (4) | −0.003 (4) | 0.002 (4) | −0.003 (3) |
C5 | 0.058 (5) | 0.042 (4) | 0.044 (5) | −0.007 (4) | 0.002 (4) | −0.002 (3) |
C10 | 0.074 (6) | 0.043 (5) | 0.046 (5) | 0.004 (4) | 0.007 (4) | −0.002 (4) |
C7 | 0.052 (5) | 0.055 (5) | 0.046 (5) | −0.002 (4) | 0.009 (4) | 0.006 (4) |
C11 | 0.070 (7) | 0.070 (7) | 0.058 (6) | 0.009 (5) | 0.019 (5) | −0.004 (5) |
C8 | 0.060 (6) | 0.052 (5) | 0.049 (5) | −0.011 (4) | 0.013 (4) | 0.000 (4) |
C3 | 0.059 (5) | 0.046 (5) | 0.052 (5) | −0.001 (4) | 0.012 (4) | −0.004 (4) |
Br5—C6 | 1.863 (8) | C6—C5 | 1.410 (13) |
S11—C10 | 1.739 (11) | C6—C7 | 1.375 (14) |
S11—C11 | 1.816 (11) | C9—C4 | 1.395 (14) |
S10—C10 | 1.654 (10) | C9—C8 | 1.399 (14) |
O2—C2 | 1.224 (12) | C4—C5 | 1.394 (14) |
N1—C2 | 1.378 (12) | C4—C3 | 1.455 (13) |
N1—C9 | 1.402 (13) | C5—H5 | 0.9500 |
N1—H1 | 0.97 (2) | C7—H7 | 0.9500 |
N4—N3 | 1.355 (11) | C7—C8 | 1.383 (15) |
N4—C10 | 1.371 (13) | C11—H11A | 0.9800 |
N4—H4 | 0.98 (2) | C11—H11B | 0.9800 |
N3—C3 | 1.294 (12) | C11—H11C | 0.9800 |
C2—C3 | 1.505 (14) | C8—H8 | 0.9500 |
C10—S11—C11 | 101.9 (5) | C4—C5—C6 | 117.3 (9) |
C2—N1—C9 | 110.1 (8) | C4—C5—H5 | 121.3 |
C2—N1—H1 | 110 (7) | S10—C10—S11 | 127.1 (6) |
C9—N1—H1 | 137 (7) | N4—C10—S11 | 114.4 (7) |
N3—N4—C10 | 119.6 (8) | N4—C10—S10 | 118.4 (8) |
N3—N4—H4 | 124 (5) | C6—C7—H7 | 118.9 |
C10—N4—H4 | 111 (5) | C6—C7—C8 | 122.3 (9) |
C3—N3—N4 | 116.2 (8) | C8—C7—H7 | 118.9 |
O2—C2—N1 | 126.5 (9) | S11—C11—H11A | 109.5 |
O2—C2—C3 | 127.3 (9) | S11—C11—H11B | 109.5 |
N1—C2—C3 | 106.3 (8) | S11—C11—H11C | 109.5 |
C5—C6—Br5 | 119.9 (7) | H11A—C11—H11B | 109.5 |
C7—C6—Br5 | 119.3 (7) | H11A—C11—H11C | 109.5 |
C7—C6—C5 | 120.8 (8) | H11B—C11—H11C | 109.5 |
C4—C9—N1 | 110.7 (9) | C9—C8—H8 | 121.2 |
C4—C9—C8 | 120.8 (10) | C7—C8—C9 | 117.5 (9) |
C8—C9—N1 | 128.5 (9) | C7—C8—H8 | 121.2 |
C9—C4—C3 | 106.6 (9) | N3—C3—C2 | 126.6 (9) |
C5—C4—C9 | 121.3 (9) | N3—C3—C4 | 126.9 (9) |
C5—C4—C3 | 132.1 (9) | C4—C3—C2 | 106.3 (8) |
C6—C5—H5 | 121.3 | ||
Br5—C6—C5—C4 | −178.0 (7) | C9—N1—C2—O2 | 177.5 (9) |
Br5—C6—C7—C8 | 178.1 (8) | C9—N1—C2—C3 | −2.8 (10) |
O2—C2—C3—N3 | −3.0 (17) | C9—C4—C5—C6 | −0.2 (14) |
O2—C2—C3—C4 | −178.5 (9) | C9—C4—C3—N3 | −175.6 (10) |
N1—C2—C3—N3 | 177.3 (9) | C9—C4—C3—C2 | −0.2 (10) |
N1—C2—C3—C4 | 1.8 (10) | C4—C9—C8—C7 | 0.6 (14) |
N1—C9—C4—C5 | 178.7 (8) | C5—C6—C7—C8 | −0.6 (15) |
N1—C9—C4—C3 | −1.6 (11) | C5—C4—C3—N3 | 4.0 (17) |
N1—C9—C8—C7 | −178.4 (9) | C5—C4—C3—C2 | 179.5 (10) |
N4—N3—C3—C2 | 3.3 (14) | C10—N4—N3—C3 | −172.9 (9) |
N4—N3—C3—C4 | 177.9 (9) | C7—C6—C5—C4 | 0.7 (13) |
N3—N4—C10—S11 | −3.9 (12) | C11—S11—C10—S10 | 6.9 (9) |
N3—N4—C10—S10 | 173.8 (7) | C11—S11—C10—N4 | −175.7 (8) |
C2—N1—C9—C4 | 2.9 (11) | C8—C9—C4—C5 | −0.5 (14) |
C2—N1—C9—C8 | −178.0 (10) | C8—C9—C4—C3 | 179.2 (9) |
C6—C7—C8—C9 | −0.1 (15) | C3—C4—C5—C6 | −179.8 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···O2 | 0.98 (2) | 2.04 (8) | 2.715 (11) | 124 (7) |
N1—H1···O2i | 0.97 (2) | 1.86 (4) | 2.801 (11) | 163 (10) |
C5—H5···Br5ii | 0.95 | 3.00 | 3.941 (10) | 172 |
C7—H7···S10iii | 0.95 | 2.83 | 3.775 (10) | 171 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
The authors acknowledge Universiti Teknologi MARA for financial support.
References
Abdul Manan, M. A. F., Cordes, D. B. & McKay, A. P. (2024). IUCrData, 9, x240235. Google Scholar
Abdul Manan, M. A. F., Tahir, M. I. M., Crouse, K. A., How, F. N. F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173–179. CAS Google Scholar
Abdul Manan, M. A. F., Tahir, M. I. M., Crouse, K. A. & Watkin, D. J. (2011). J. Chem. Crystallogr. 41, 230–235. CAS Google Scholar
Bekircan, O., Danış, Ö., Şahin, M. E. & Çetin, M. (2022). Bioorg. Chem. 118, 105493. Web of Science CrossRef PubMed Google Scholar
Das, M. & Livingstone, S. E. (1976). Inorg. Chim. Acta, 19, 5–10. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Geoghegan, B. L., Bilyj, J. K., Bernhardt, P. V., DeBeer, S. & Cutsail, G. E. (2024). Dalton Trans. 53, 7828–7838. Web of Science CSD CrossRef CAS PubMed Google Scholar
Li, X. H., Qin, Z. X. & Cao, S. L. (2018). Z. Kristallogr. New Cryst. Struct. 233, 131–132. Web of Science CSD CrossRef CAS Google Scholar
Lin, H. H., Wu, W. Y., Cao, S. L., Liao, J., Ma, L., Gao, M., Li, Z. F. & Xu, X. (2013). Bioorg. Med. Chem. Lett. 23, 3304–3307. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Malakar, K., Sohtun, W. P., Srinivasan, V. & Velusamy, M. (2023). Inorg. Chem. Commun. 157, 111195. Web of Science CSD CrossRef Google Scholar
Moustafa, A. H., Ahmed, D. H., El-Wassimy, M. T. & Mohamed, M. F. (2021). Synth. Commun. 51, 570–584. Web of Science CrossRef CAS Google Scholar
Ramilo-Gomes, F., Addis, Y., Tekamo, I., Cavaco, I., Campos, D. L., Pavan, F. R., Gomes, C. S. B., Brito, V., Santos, A. O., Domingues, F., Luís, Â., Marques, M. M., Pessoa, J. C., Ferreira, S., Silvestre, S. & Correia, I. (2021). J. Inorg. Biochem. 216, 111331. Web of Science PubMed Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yekke-ghasemi, Z., Ramezani, M., Mague, J. T. & Takjoo, R. (2020). New J. Chem. 44, 8878–8889. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.