organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Norfloxacinium nitrate

crossmark logo

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St 83, Tashkent, 100125, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, and cTermez State University, Barkamol Avlod St 43, Termez, 190111, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 30 July 2024; accepted 16 August 2024; online 30 August 2024)

In the title salt [systematic name: 4-(3-carb­oxy-1-ethyl-6-fluoro-4-oxo-1,4-di­hydro­quin­olin-7-yl)piperazin-1-ium nitrate], C16H19FN3O3+·NO3, proton transfer from nitric acid to the N atom of the piperazine ring of norfloxacin has occurred to form a mol­ecular salt. In the extended structure, N—H⋯O hydrogen bonds link alternating cations and anions into [100] chains, which are reinforced by aromatic ππ stacking inter­actions between the quinoline moieties of the norfloxacinium cations.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Norfloxacin (NF, C16H18N3O3F) is a synthetic fluoro­quinolone anti­biotic that has been used to treat a wide variety of bacterial infections since its introduction in the 1980s. It is effective against both Gram-positive and Gram-negative bacteria, and it has been shown to be particularly useful in the treatment of urinary tract infections, respiratory tract infections, and skin and soft tissue infections. Norfloxacin works by inhibiting the bacterial enzyme DNA gyrase, which is essential for DNA replication and transcription (Goldstein et al., 1987[Goldstein, E. J. (1987). Am. J. Med. 82, 3-17.]; Mazuel, 1991[Mazuel, C. (1991). Anal. Profiles Drug. Subst. 20, 557-600.]; Chongcharoen et al., 2008[Chongcharoen, W., Byrn, S. R. & Sutanthavibul, N. (2008). J. Pharm. Sci. 97, 473-489.]; Marc et al., 2019[Marc, G., Araniciu, C., Oniga, S. D., Vlase, L., Pîrnău, A., Nadăş, G. C. Novac, C. Ş., Matei, I.A., Chifiriuc, M.C., Măru?escu, L. & Oniga, O. (2019). Molecules, 24, 3959.]; Spencer et al., 2023[Spencer, A. C. & Panda, S. S. (2023). Biomedicines, 11, 371-327.]). As part of our studies in this area we now describe the synthesis and structure of the title mol­ecular salt, C16H19N3O3F+·NO3, (I), arising from the reaction of norfloxacin and nitric acid in aqueous solution.

Compound (I) crystallizes in the monoclinic space group P21/n, with one cation and one anion in the asymmetric unit (Fig. 1[link]). The N3 nitro­gen atom of the piperazine ring is observed to be protonated. In neutral NF, this nitro­gen atom is protonated by a hydrogen atom from the carb­oxy­lic acid moiety, resulting in a zwitterionic species (e.g., Gunnam & Nangia, 2023[Gunnam, A. & Nangia, A. K. (2023). Cryst. Growth Des. 23, 4198-4213.]). However, in the crystal structure of (I), the hydrogen atom remains attached to the carb­oxy­lic acid fragment. This is evident from the significant difference (0.117 Å) in the lengths of the C10—O1 and C10—O2 bonds [1.325 (2) and 1.208 (2) Å, respectively]. In a delocalized carb­oxy­lic acid moiety, the C—O bond lengths are typically very similar, with a difference of only 0.006 Å (Razzoqova et al., 2022[Razzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277-1283.]). The atoms of the carboxyl moiety (C10, O1, and O2) and the quinoline moiety lie essentially in a plane, with maximum deviations from the mean plane of 0.029 (2) Å for O2 and 0.030 (2) Å for O1. The dihedral angle between the carboxyl and quinoline planes is 1.90 (19)°. The nitro­gen atom (N2) attached to the quinoline moiety is close to planar, as evidenced by the sum of bond angles around it being 356.5°. In contrast, the protonated nitro­gen atom (N3) adopts a tetra­hedral geometry. The piperazine ring exhibits a chair conformation. The ethyl substituent attached to N1 lies essentially in the plane of the quinoline moiety, as indicated by the C1—N1—C11—C12 torsion angle of 0.7 (2)°. The C5—F1 bond length of 1.3506 (18) Å is in good agreement with the mean value reported for 128 structures containing the NF moiety [e.g., 1.350 (2) Å reported by Sultana et al., 2023[Sultana, T., Duffin, R. N., Blair, V. L. & Andrews, P. C. (2023). Chem. Commun. 59, 11093-11096.]]. Atom F1 accepts an intra­molecular hydrogen bond from H13B (C13—H13B⋯F1; Table 1[link]), forming an S(6) ring. Another intra­molecular hydrogen bond is observed between H1 and O3 (O1—H1⋯O3), also forming a six-membered ring. Additionally, a weak hydrogen bond is present between H1A and O2 (C1—H1A⋯O2), forming a five-membered ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.82 1.80 2.5640 (17) 154
N3—H3B⋯O4 0.89 1.97 2.8526 (19) 169
N3—H3A⋯O6i 0.89 2.08 2.937 (2) 161
C13—H13B⋯F1 0.97 1.96 2.726 (2) 135
C15—H15A⋯O4ii 0.97 2.47 3.252 (2) 138
Symmetry codes: (i) [x-1, y, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I). Displacement ellipsoids are shown at the 50% probability level and hydrogen bonds are indicated by dashed lines.

In the extended structure of (I), the norflaxacinium cation forms a hydrogen bond with the nitrate anion via its NH group (N3—H3B⋯O4). The nitrate anion, in turn, accepts a hydrogen bond from the NH group (N3—H3A⋯O6) of an adjacent NF cation related by the symmetry operation 1 + x, y, z (Table 1[link]). These hydrogen bonds generate an infinite chain of alternating cations and anions propagating along the [100] direction (Fig. 2[link]). This packing arrangement is repeated on the opposite side of the chain. As a result, strong ππ stacking inter­actions are formed between layers of NF cations facing each other (Fig. 3[link]). The ππ stacking inter­actions are observed between the original NF cation and its symmetry-related counterparts located at −x, 1 − y, 1 − z and 1 − x, 1 − y, 1 − z. These inter­actions are highlighted by the short centroid–centroid distances: Cg1–Cg3(−x, 1 − y, 1 - z) is 3.6182 (8) Å and Cg1–Cg1 is 3.4403 (7) Å, and Cg1–Cg3(1 − x, 1 − y, 1 − z) is 3.5919 (8) Å and Cg1–Cg1 is 3.4862 (7) Å. These distances are notably shorter than the centroid–centroid contacts reported by Ibukun et al. (2023[Ibukun, O. J., Gumtya, M., Singh, S., Shit, A. & Haldar, D. (2023). Soft Matter, 19, 3215-3221.]) and Shaikh et al. (2024[Shaikh, S. R., Gawade, R. L., Dabke, N. B., Dash, S. R., Vanka, K. & Gonnade, R. G. (2024). CrystEngComm, 26, 3557-3573.]). The angle between the mean planes of the quinoline moieties is zero by symmetry. These stacking inter­actions also contribute to the packing of mol­ecules along the [100] direction.

[Figure 2]
Figure 2
A fragment of a [100] chain in the extended structure of (I), with hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
A view of the ππ stacking inter­action along the a-axis direction.

Synthesis and crystallization

31.9 mg (0.1 mmol) of NF was dissolved in 5 ml of a 0.02 M nitric acid solution. The resulting clear solution was stirred at room temperature for 30 minutes. The solution was then transferred to a vial with small holes in the lid to allow for evaporation. After about a week, needle-like single crystals of the title salt suitable for data collection were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H19FN3O3+·NO3
Mr 382.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 6.6241 (1), 19.1629 (3), 12.6062 (2)
β (°) 93.136 (1)
V3) 1597.80 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.12
Crystal size (mm) 0.12 × 0.06 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.977, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15217, 3087, 2593
Rint 0.030
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.05
No. of reflections 3087
No. of parameters 248
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.40
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2019/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

4-(3-Carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium nitrate top
Crystal data top
C16H19FN3O3+·NO3F(000) = 800
Mr = 382.35Dx = 1.589 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 6.6241 (1) ÅCell parameters from 6698 reflections
b = 19.1629 (3) Åθ = 4.2–71.2°
c = 12.6062 (2) ŵ = 1.12 mm1
β = 93.136 (1)°T = 293 K
V = 1597.80 (4) Å3Block, colourless
Z = 40.12 × 0.06 × 0.06 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
3087 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2593 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.0000 pixels mm-1θmax = 71.4°, θmin = 4.2°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 2322
Tmin = 0.977, Tmax = 1.000l = 1515
15217 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.357P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3087 reflectionsΔρmax = 0.30 e Å3
248 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2303 (3)0.44122 (6)0.15882 (8)0.0807 (5)
O10.2724 (2)0.35903 (6)0.73719 (10)0.0472 (4)
H10.2633620.3459340.6751900.071*
O20.2684 (2)0.45919 (7)0.82376 (9)0.0495 (4)
O30.25105 (18)0.35942 (6)0.53350 (9)0.0402 (3)
N10.25398 (17)0.57393 (6)0.54595 (9)0.0268 (3)
N20.2332 (2)0.59041 (7)0.16174 (9)0.0329 (3)
N30.3057 (2)0.67660 (7)0.01891 (11)0.0377 (4)
H3A0.1822230.6882450.0442830.045*
H3B0.3949110.6962190.0599620.045*
C10.2601 (2)0.53477 (8)0.63385 (11)0.0291 (4)
H1A0.2653300.5577500.6989250.035*
C20.2592 (2)0.46329 (8)0.63512 (11)0.0294 (4)
C30.2514 (2)0.42535 (8)0.53739 (12)0.0292 (4)
C40.2374 (2)0.43679 (8)0.34112 (12)0.0321 (4)
H40.2359280.3884040.3353940.039*
C50.2327 (3)0.47623 (8)0.25186 (12)0.0354 (4)
C60.2319 (2)0.55061 (8)0.25178 (11)0.0270 (4)
C70.2372 (2)0.58073 (7)0.35309 (11)0.0274 (4)
H70.2352170.6291250.3585170.033*
C80.24524 (19)0.54122 (7)0.44637 (11)0.0256 (3)
C90.2443 (2)0.46788 (8)0.44236 (11)0.0273 (4)
C100.2671 (2)0.42813 (9)0.74030 (12)0.0351 (4)
C110.2604 (2)0.65153 (8)0.55207 (12)0.0326 (4)
H11A0.1390910.6699510.5156820.039*
H11B0.3750990.6678780.5143300.039*
C120.2764 (3)0.68081 (9)0.66298 (13)0.0422 (4)
H12A0.2802990.7308420.6597260.063*
H12B0.3978170.6639330.6994100.063*
H12C0.1613880.6663400.7005620.063*
C130.1897 (3)0.56517 (9)0.05373 (13)0.0469 (5)
H13A0.0503130.5754450.0316840.056*
H13B0.2080030.5149770.0516020.056*
C140.3288 (4)0.59967 (10)0.02121 (14)0.0534 (5)
H14A0.4676970.5874160.0010740.064*
H14B0.2981530.5827940.0928260.064*
C150.2046 (3)0.66574 (9)0.16535 (13)0.0490 (5)
H15A0.2341720.6821630.2373020.059*
H15B0.0644390.6766890.1458590.059*
C160.3382 (3)0.70272 (9)0.09163 (13)0.0454 (5)
H16A0.3103190.7523840.0932070.055*
H16B0.4785150.6957570.1154610.055*
O40.62110 (18)0.72318 (8)0.14696 (11)0.0544 (4)
O50.7972 (2)0.68395 (8)0.01286 (11)0.0628 (5)
O60.9454 (2)0.71910 (9)0.14916 (14)0.0697 (5)
N40.7890 (2)0.70827 (7)0.10335 (11)0.0383 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1802 (16)0.0320 (6)0.0297 (6)0.0089 (7)0.0057 (7)0.0077 (4)
O10.0642 (8)0.0373 (7)0.0399 (7)0.0008 (6)0.0013 (6)0.0116 (5)
O20.0670 (9)0.0511 (8)0.0305 (7)0.0034 (6)0.0035 (5)0.0060 (5)
O30.0526 (7)0.0269 (6)0.0409 (7)0.0004 (5)0.0006 (5)0.0042 (4)
N10.0280 (6)0.0271 (7)0.0252 (6)0.0004 (4)0.0003 (5)0.0005 (4)
N20.0462 (8)0.0281 (7)0.0244 (6)0.0018 (5)0.0027 (5)0.0008 (5)
N30.0396 (7)0.0417 (8)0.0321 (7)0.0027 (6)0.0042 (5)0.0076 (5)
C10.0272 (7)0.0348 (8)0.0254 (7)0.0004 (6)0.0012 (5)0.0012 (6)
C20.0246 (7)0.0338 (8)0.0296 (8)0.0007 (5)0.0011 (6)0.0049 (6)
C30.0233 (7)0.0284 (8)0.0358 (8)0.0004 (5)0.0016 (6)0.0039 (6)
C40.0370 (8)0.0241 (7)0.0352 (8)0.0010 (6)0.0020 (6)0.0005 (6)
C50.0495 (9)0.0287 (8)0.0281 (8)0.0020 (7)0.0036 (6)0.0061 (6)
C60.0251 (7)0.0287 (8)0.0272 (7)0.0010 (5)0.0020 (5)0.0011 (5)
C70.0296 (7)0.0233 (7)0.0291 (8)0.0009 (5)0.0005 (5)0.0013 (5)
C80.0206 (6)0.0287 (8)0.0273 (8)0.0003 (5)0.0010 (5)0.0004 (5)
C90.0232 (7)0.0277 (8)0.0311 (8)0.0000 (5)0.0011 (5)0.0009 (5)
C100.0313 (8)0.0395 (9)0.0344 (9)0.0010 (6)0.0004 (6)0.0091 (6)
C110.0389 (8)0.0267 (8)0.0320 (8)0.0008 (6)0.0004 (6)0.0012 (6)
C120.0558 (11)0.0347 (9)0.0357 (9)0.0029 (7)0.0020 (7)0.0055 (6)
C130.0763 (13)0.0368 (9)0.0268 (8)0.0158 (8)0.0044 (8)0.0006 (6)
C140.0844 (15)0.0448 (10)0.0325 (9)0.0064 (9)0.0162 (9)0.0002 (7)
C150.0866 (14)0.0318 (9)0.0296 (8)0.0117 (8)0.0129 (8)0.0031 (6)
C160.0659 (12)0.0318 (9)0.0373 (9)0.0092 (8)0.0087 (8)0.0048 (7)
O40.0380 (7)0.0706 (9)0.0537 (8)0.0043 (6)0.0058 (5)0.0246 (6)
O50.0728 (10)0.0773 (10)0.0375 (7)0.0144 (8)0.0061 (6)0.0081 (6)
O60.0420 (8)0.0876 (12)0.0807 (11)0.0025 (7)0.0152 (7)0.0163 (9)
N40.0388 (8)0.0353 (7)0.0405 (8)0.0010 (6)0.0004 (6)0.0001 (6)
Geometric parameters (Å, º) top
C5—F11.3506 (18)C6—C71.4002 (19)
O1—H10.8200C7—H70.9300
C10—O11.325 (2)C7—C81.3972 (19)
C10—O21.208 (2)C8—C91.406 (2)
O3—C31.2643 (19)C11—H11A0.9700
N1—C11.3371 (18)C11—H11B0.9700
N1—C81.4015 (18)C11—C121.505 (2)
N1—C111.4895 (18)C12—H12A0.9600
N2—C61.3679 (18)C12—H12B0.9600
N2—C131.4587 (19)C12—H12C0.9600
N2—C151.457 (2)C13—H13A0.9700
N3—H3A0.8900C13—H13B0.9700
N3—H3B0.8900C13—C141.508 (3)
N3—C141.482 (2)C14—H14A0.9700
N3—C161.485 (2)C14—H14B0.9700
C1—H1A0.9300C15—H15A0.9700
C1—C21.370 (2)C15—H15B0.9700
C2—C31.429 (2)C15—C161.497 (3)
C2—C101.486 (2)C16—H16A0.9700
C3—C91.448 (2)C16—H16B0.9700
C4—H40.9300O4—N41.2465 (18)
C4—C51.354 (2)O5—N41.2307 (19)
C4—C91.407 (2)O6—N41.2311 (19)
C5—C61.425 (2)
C10—O1—H1109.5O2—C10—O1121.25 (14)
C1—N1—C8119.29 (12)O2—C10—C2123.50 (15)
C1—N1—C11121.19 (12)N1—C11—H11A108.5
C8—N1—C11119.51 (11)N1—C11—H11B108.5
C6—N2—C13125.43 (13)N1—C11—C12114.88 (12)
C6—N2—C15121.32 (12)H11A—C11—H11B107.5
C15—N2—C13109.78 (13)C12—C11—H11A108.5
H3A—N3—H3B108.2C12—C11—H11B108.5
C14—N3—H3A109.6C11—C12—H12A109.5
C14—N3—H3B109.6C11—C12—H12B109.5
C14—N3—C16110.09 (13)C11—C12—H12C109.5
C16—N3—H3A109.6H12A—C12—H12B109.5
C16—N3—H3B109.6H12A—C12—H12C109.5
N1—C1—H1A117.6H12B—C12—H12C109.5
N1—C1—C2124.81 (13)N2—C13—H13A109.6
C2—C1—H1A117.6N2—C13—H13B109.6
C1—C2—C3119.91 (13)N2—C13—C14110.09 (14)
C1—C2—C10117.64 (13)H13A—C13—H13B108.2
C3—C2—C10122.45 (14)C14—C13—H13A109.6
O3—C3—C2122.81 (13)C14—C13—H13B109.6
O3—C3—C9122.04 (14)N3—C14—C13110.89 (15)
C2—C3—C9115.15 (13)N3—C14—H14A109.5
C5—C4—H4119.5N3—C14—H14B109.5
C5—C4—C9121.03 (14)C13—C14—H14A109.5
C9—C4—H4119.5C13—C14—H14B109.5
F1—C5—C4116.29 (14)H14A—C14—H14B108.0
F1—C5—C6119.75 (13)N2—C15—H15A109.3
C4—C5—C6123.96 (13)N2—C15—H15B109.3
N2—C6—C5123.92 (13)N2—C15—C16111.55 (15)
N2—C6—C7121.73 (13)H15A—C15—H15B108.0
C7—C6—C5114.31 (12)C16—C15—H15A109.3
C6—C7—H7118.6C16—C15—H15B109.3
C8—C7—C6122.83 (13)N3—C16—C15111.25 (14)
C8—C7—H7118.6N3—C16—H16A109.4
N1—C8—C9118.62 (12)N3—C16—H16B109.4
C7—C8—N1120.62 (13)C15—C16—H16A109.4
C7—C8—C9120.76 (13)C15—C16—H16B109.4
C4—C9—C3120.68 (14)H16A—C16—H16B108.0
C8—C9—C3122.21 (13)O5—N4—O4119.25 (15)
C8—C9—C4117.11 (13)O5—N4—O6120.21 (15)
O1—C10—C2115.24 (14)O6—N4—O4120.52 (15)
F1—C5—C6—N21.5 (2)C5—C4—C9—C80.3 (2)
F1—C5—C6—C7179.23 (15)C5—C6—C7—C80.8 (2)
O3—C3—C9—C40.3 (2)C6—N2—C13—C14141.27 (16)
O3—C3—C9—C8179.83 (13)C6—N2—C15—C16141.16 (15)
N1—C1—C2—C30.1 (2)C6—C7—C8—N1178.83 (12)
N1—C1—C2—C10179.87 (13)C6—C7—C8—C91.3 (2)
N1—C8—C9—C30.18 (19)C7—C8—C9—C3179.68 (13)
N1—C8—C9—C4179.42 (12)C7—C8—C9—C40.7 (2)
N2—C6—C7—C8177.03 (13)C8—N1—C1—C20.2 (2)
N2—C13—C14—N358.8 (2)C8—N1—C11—C12178.10 (13)
N2—C15—C16—N356.1 (2)C9—C4—C5—F1178.70 (15)
C1—N1—C8—C7179.51 (12)C9—C4—C5—C60.8 (2)
C1—N1—C8—C90.34 (18)C10—C2—C3—O30.1 (2)
C1—N1—C11—C120.7 (2)C10—C2—C3—C9179.98 (13)
C1—C2—C3—O3179.71 (14)C11—N1—C1—C2178.54 (13)
C1—C2—C3—C90.23 (19)C11—N1—C8—C71.70 (19)
C1—C2—C10—O1177.93 (13)C11—N1—C8—C9178.45 (12)
C1—C2—C10—O22.2 (2)C13—N2—C6—C514.7 (2)
C2—C3—C9—C4179.68 (13)C13—N2—C6—C7167.66 (16)
C2—C3—C9—C80.10 (19)C13—N2—C15—C1658.8 (2)
C3—C2—C10—O11.9 (2)C14—N3—C16—C1553.7 (2)
C3—C2—C10—O2178.01 (15)C15—N2—C6—C5171.54 (16)
C4—C5—C6—N2178.02 (15)C15—N2—C6—C710.8 (2)
C4—C5—C6—C70.2 (2)C15—N2—C13—C1459.7 (2)
C5—C4—C9—C3179.32 (14)C16—N3—C14—C1355.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.821.802.5640 (17)154
N3—H3B···O40.891.972.8526 (19)169
N3—H3A···O6i0.892.082.937 (2)161
C13—H13B···F10.971.962.726 (2)135
C15—H15A···O4ii0.972.473.252 (2)138
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1/2.
 

References

First citationChongcharoen, W., Byrn, S. R. & Sutanthavibul, N. (2008). J. Pharm. Sci. 97, 473–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldstein, E. J. (1987). Am. J. Med. 82, 3–17.  CrossRef CAS PubMed Google Scholar
First citationGunnam, A. & Nangia, A. K. (2023). Cryst. Growth Des. 23, 4198–4213.  CrossRef CAS Google Scholar
First citationIbukun, O. J., Gumtya, M., Singh, S., Shit, A. & Haldar, D. (2023). Soft Matter, 19, 3215–3221.  CrossRef CAS PubMed Google Scholar
First citationMarc, G., Araniciu, C., Oniga, S. D., Vlase, L., Pîrnău, A., Nadăş, G. C. Novac, C. Ş., Matei, I.A., Chifiriuc, M.C., Măru?escu, L. & Oniga, O. (2019). Molecules, 24, 3959.  Google Scholar
First citationMazuel, C. (1991). Anal. Profiles Drug. Subst. 20, 557–600.  CrossRef CAS Google Scholar
First citationRazzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277–1283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShaikh, S. R., Gawade, R. L., Dabke, N. B., Dash, S. R., Vanka, K. & Gonnade, R. G. (2024). CrystEngComm, 26, 3557–3573.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpencer, A. C. & Panda, S. S. (2023). Biomedicines, 11, 371–327.  CrossRef CAS PubMed Google Scholar
First citationSultana, T., Duffin, R. N., Blair, V. L. & Andrews, P. C. (2023). Chem. Commun. 59, 11093–11096.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146