organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-[(2-Phenyl­eth­yl)amino]­benzoic acid

crossmark logo

aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: sihuilong@wit.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 26 May 2024; accepted 31 July 2024; online 6 August 2024)

The title compound, C15H15NO2, crystallizes with two mol­ecules in the asymmetric unit. In the crystal, the two mol­ecules associate to form an acid–acid dimer by pairwise O—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Non-steroidal anti-inflammatory drugs (NSAIDs) constitute approximately 5–10% of all prescribed medications worldwide as anti­pyretic, anti-inflammatory, and analgesic agents (Sohail et al., 2023[Sohail, R., Mathew, M., Patel, K. K., Reddy, S. A., Haider, Z., Naria, M., Habib, A., Abdin, Z. U., Chaudhry, W. R. & Akbar, A. (2023). Cureus, 15, e37080.]). As part of our ongoing studies in this area (Liu & Long, 2023[Liu, C. & Long, S. (2023). IUCrData, 8, x230599.]), the title compound, C15H15NO2, was synthesized employing the Borch reductive amination reaction.

There are two mol­ecules, A (containing C1) and B (containing C16), in the asymmetric unit (Fig. 1[link]). Both mol­ecules are twisted with dihedral angles between their aromatic rings of 80.98 (9)° (mol­ecule A) and 83.54 (11)° (mol­ecule B). The main difference between the mol­ecules lies in the geometries of the linking ethyl-amino chains: the N1—C8—C9—C10 (mol­ecule A) torsion angle of 166.11 (15)° indicates an anti conformation whereas the N2—C23—C24—C25 (mol­ecule B) torsion angle of −59.3 (4)° is gauche. In the extended structure, the mol­ecules form AB carb­oxy­lic acid dimers linked by pairs of O—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]). Conversely, the NH groups do not participate in hydrogen bonds, presumably due to steric crowding.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 1.05 (4) 1.58 (4) 2.6380 (19) 177 (3)
O3—H3A⋯O2 0.82 1.81 2.6246 (18) 175
[Figure 1]
Figure 1
The mol­ecular structures of mol­ecules A and B in title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing of the mol­ecules in the title compound: C1 mol­ecule shown in blue, C16 mol­ecule shown in red (for clarity, H atoms not involved in hydrogen bonding are omitted).

Synthesis and crystallization

The title compound was obtained by the reaction of 4-amino­benzoic acid and 2-phenyl­acetaldehyde using methanol as solvent in the presence of 2-picoline borane complex (Fig. 3[link]). The crude product was recovered by filtration and purified by silica gel column chromatography. Colourless needles were produced by recrystallization from aceto­nitrile solution.

[Figure 3]
Figure 3
Synthesis scheme for the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H15NO2
Mr 241.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 305
a, b, c (Å) 14.7698 (7), 6.6730 (3), 26.2392 (12)
β (°) 102.231 (5)
V3) 2527.4 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.16 × 0.05 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.598, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 26873, 6498, 3944
Rint 0.033
(sin θ/λ)max−1) 0.725
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.175, 1.03
No. of reflections 6498
No. of parameters 330
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

4-[(2-Phenylethyl)amino]benzoic acid top
Crystal data top
C15H15NO2F(000) = 1024
Mr = 241.28Dx = 1.268 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.7698 (7) ÅCell parameters from 6437 reflections
b = 6.6730 (3) Åθ = 1.9–27.2°
c = 26.2392 (12) ŵ = 0.08 mm1
β = 102.231 (5)°T = 305 K
V = 2527.4 (2) Å3Needle, colourless
Z = 80.16 × 0.05 × 0.04 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
6498 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source3944 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.0000 pixels mm-1θmax = 31.0°, θmin = 1.9°
ω scansh = 2119
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 89
Tmin = 0.598, Tmax = 1.000l = 3234
26873 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: mixed
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.4926P]
where P = (Fo2 + 2Fc2)/3
6498 reflections(Δ/σ)max = 0.001
330 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of H atoms attached to N1 and O1 were obtained from a difference Fourier map. Other H atoms were positioned geometrically with O—H = 0.82, N—H = 0.86 and C—H = 0.93 Å and constraioned to ride on their parent atoms with Uiso(H) = 1.2Ueq(carrier).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63928 (9)0.5549 (2)0.49996 (5)0.0608 (4)
H10.661 (2)0.687 (5)0.4841 (12)0.139 (12)*
O20.78373 (9)0.5311 (2)0.54712 (6)0.0623 (4)
N10.62345 (10)0.2690 (2)0.62201 (6)0.0556 (4)
H1A0.6709420.3433260.6335280.067*
C10.67845 (12)0.2741 (2)0.55501 (6)0.0448 (4)
C20.58830 (12)0.2008 (3)0.54624 (7)0.0475 (4)
H20.5408670.2732510.5252160.057*
C30.56779 (12)0.0226 (3)0.56814 (7)0.0473 (4)
H30.5069360.0229890.5619970.057*
C40.63833 (12)0.0896 (3)0.59955 (7)0.0461 (4)
C50.72918 (12)0.0169 (3)0.60742 (8)0.0575 (5)
H50.7772730.0901550.6276170.069*
C60.74806 (13)0.1609 (3)0.58571 (8)0.0539 (5)
H60.8088610.2067900.5916750.065*
C70.70333 (13)0.4639 (3)0.53328 (7)0.0485 (4)
C80.53414 (12)0.3427 (3)0.62782 (7)0.0523 (4)
H8A0.4960790.3743580.5938910.063*
H8B0.5025890.2410650.6439820.063*
C90.54902 (12)0.5296 (3)0.66167 (7)0.0496 (4)
H9A0.5676420.6383430.6415890.060*
H9B0.5996540.5049180.6911900.060*
C100.46542 (11)0.5960 (2)0.68191 (6)0.0439 (4)
C110.43655 (13)0.4860 (3)0.72026 (7)0.0554 (5)
H110.4663720.3665260.7318130.067*
C120.36428 (14)0.5512 (4)0.74149 (8)0.0678 (6)
H120.3457390.4761650.7673530.081*
C130.31917 (13)0.7279 (4)0.72450 (9)0.0671 (6)
H130.2705030.7723690.7389920.080*
C140.34607 (13)0.8363 (3)0.68665 (8)0.0629 (5)
H140.3153780.9546610.6749130.075*
C150.41898 (12)0.7717 (3)0.66540 (7)0.0525 (4)
H150.4370400.8477350.6395670.063*
O30.84499 (10)0.8497 (2)0.50638 (6)0.0662 (4)
H3A0.8225330.7515960.5179180.099*
O40.69836 (10)0.8856 (2)0.46252 (6)0.0632 (4)
N20.87828 (12)1.6586 (3)0.38333 (7)0.0675 (5)
H2A0.8330241.7299920.3667700.081*
C160.78021 (12)0.9463 (3)0.47444 (7)0.0496 (4)
C170.80772 (12)1.1332 (3)0.45255 (7)0.0466 (4)
C180.74220 (12)1.2459 (3)0.41908 (7)0.0538 (4)
H180.6808581.2033400.4114620.065*
C190.76571 (13)1.4194 (3)0.39684 (8)0.0588 (5)
H190.7201201.4930540.3747670.071*
C200.85731 (12)1.4864 (3)0.40705 (7)0.0506 (4)
C210.92346 (13)1.3758 (3)0.44124 (7)0.0563 (5)
H210.9847661.4186400.4491180.068*
C220.89844 (13)1.2027 (3)0.46351 (7)0.0552 (5)
H220.9434521.1307790.4864420.066*
C230.97058 (16)1.7271 (4)0.38434 (9)0.0814 (7)
H23A1.0017361.6305110.3663970.098*
H23B1.0043911.7345020.4202620.098*
C240.9728 (2)1.9283 (5)0.35931 (10)0.1036 (10)
H24A1.0371101.9660350.3621820.124*
H24B0.9454712.0250640.3791690.124*
C250.92401 (13)1.9459 (3)0.30261 (8)0.0552 (5)
C260.86614 (18)2.1100 (4)0.28705 (13)0.0890 (9)
H260.8542392.2027360.3112590.107*
C270.82450 (17)2.1318 (4)0.23115 (15)0.0942 (9)
H270.7859472.2394750.2190540.113*
C280.84354 (17)1.9928 (5)0.19821 (11)0.0813 (7)
H280.8180892.0052140.1627710.098*
C290.89698 (17)1.8403 (5)0.21468 (11)0.0843 (7)
H290.9080931.7458090.1906880.101*
C300.93649 (15)1.8160 (3)0.26544 (9)0.0701 (6)
H300.9740231.7046640.2752620.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0613 (8)0.0543 (8)0.0630 (8)0.0015 (6)0.0047 (7)0.0157 (6)
O20.0600 (8)0.0528 (8)0.0691 (9)0.0071 (6)0.0024 (7)0.0133 (6)
N10.0481 (8)0.0523 (9)0.0676 (10)0.0004 (7)0.0151 (7)0.0153 (7)
C10.0516 (9)0.0429 (9)0.0393 (9)0.0004 (7)0.0083 (7)0.0014 (7)
C20.0505 (10)0.0479 (10)0.0412 (9)0.0034 (7)0.0032 (7)0.0007 (7)
C30.0458 (9)0.0518 (10)0.0441 (9)0.0039 (8)0.0091 (7)0.0022 (7)
C40.0508 (9)0.0451 (9)0.0442 (9)0.0013 (7)0.0138 (8)0.0006 (7)
C50.0459 (9)0.0536 (11)0.0690 (12)0.0004 (8)0.0035 (9)0.0161 (9)
C60.0460 (9)0.0509 (10)0.0632 (12)0.0048 (8)0.0080 (8)0.0068 (8)
C70.0564 (10)0.0440 (9)0.0442 (9)0.0007 (8)0.0089 (8)0.0001 (7)
C80.0485 (9)0.0545 (10)0.0534 (10)0.0047 (8)0.0099 (8)0.0063 (8)
C90.0468 (9)0.0494 (10)0.0530 (10)0.0008 (8)0.0113 (8)0.0037 (8)
C100.0430 (8)0.0460 (9)0.0400 (8)0.0014 (7)0.0030 (7)0.0045 (7)
C110.0529 (10)0.0597 (11)0.0528 (10)0.0053 (9)0.0092 (8)0.0099 (9)
C120.0603 (12)0.0907 (16)0.0558 (12)0.0063 (11)0.0201 (10)0.0033 (11)
C130.0450 (10)0.0887 (16)0.0674 (13)0.0044 (10)0.0117 (9)0.0236 (12)
C140.0538 (11)0.0573 (12)0.0734 (14)0.0133 (9)0.0043 (10)0.0092 (10)
C150.0545 (10)0.0465 (10)0.0542 (10)0.0002 (8)0.0065 (8)0.0004 (8)
O30.0646 (8)0.0566 (8)0.0739 (10)0.0053 (6)0.0068 (7)0.0218 (7)
O40.0641 (8)0.0550 (8)0.0659 (9)0.0059 (6)0.0033 (7)0.0118 (6)
N20.0597 (10)0.0657 (11)0.0753 (12)0.0049 (8)0.0104 (9)0.0216 (9)
C160.0546 (10)0.0474 (10)0.0451 (9)0.0041 (8)0.0069 (8)0.0023 (7)
C170.0517 (9)0.0446 (9)0.0431 (9)0.0028 (7)0.0093 (8)0.0002 (7)
C180.0451 (9)0.0550 (10)0.0596 (11)0.0006 (8)0.0073 (8)0.0095 (9)
C190.0509 (10)0.0609 (11)0.0626 (12)0.0056 (9)0.0076 (9)0.0180 (9)
C200.0536 (10)0.0489 (10)0.0496 (10)0.0004 (8)0.0115 (8)0.0030 (8)
C210.0477 (10)0.0631 (12)0.0549 (11)0.0058 (9)0.0033 (8)0.0017 (9)
C220.0539 (10)0.0559 (11)0.0509 (10)0.0073 (8)0.0001 (8)0.0056 (8)
C230.0672 (13)0.1038 (19)0.0657 (14)0.0280 (13)0.0031 (11)0.0224 (13)
C240.126 (2)0.114 (2)0.0658 (15)0.0607 (19)0.0075 (15)0.0107 (15)
C250.0525 (10)0.0566 (11)0.0596 (11)0.0118 (9)0.0191 (9)0.0030 (9)
C260.0799 (15)0.0647 (14)0.139 (3)0.0150 (12)0.0612 (17)0.0271 (15)
C270.0561 (13)0.0780 (17)0.145 (3)0.0076 (12)0.0123 (16)0.0388 (18)
C280.0611 (13)0.098 (2)0.0812 (17)0.0161 (14)0.0059 (12)0.0191 (15)
C290.0666 (14)0.108 (2)0.0783 (17)0.0111 (14)0.0154 (13)0.0114 (15)
C300.0577 (12)0.0682 (13)0.0840 (16)0.0033 (10)0.0139 (11)0.0099 (12)
Geometric parameters (Å, º) top
O1—H11.05 (4)O3—H3A0.8200
O1—C71.295 (2)O3—C161.301 (2)
O2—C71.249 (2)O4—C161.250 (2)
N1—H1A0.8600N2—H2A0.8600
N1—C41.372 (2)N2—C201.373 (2)
N1—C81.446 (2)N2—C231.433 (3)
C1—C21.391 (2)C16—C171.466 (2)
C1—C61.387 (2)C17—C181.383 (2)
C1—C71.467 (2)C17—C221.389 (3)
C2—H20.9300C18—H180.9300
C2—C31.382 (2)C18—C191.374 (3)
C3—H30.9300C19—H190.9300
C3—C41.401 (2)C19—C201.396 (3)
C4—C51.400 (2)C20—C211.390 (3)
C5—H50.9300C21—H210.9300
C5—C61.370 (3)C21—C221.380 (3)
C6—H60.9300C22—H220.9300
C8—H8A0.9700C23—H23A0.9700
C8—H8B0.9700C23—H23B0.9700
C8—C91.520 (2)C23—C241.498 (4)
C9—H9A0.9700C24—H24A0.9700
C9—H9B0.9700C24—H24B0.9700
C9—C101.510 (2)C24—C251.514 (3)
C10—C111.384 (3)C25—C261.396 (3)
C10—C151.381 (2)C25—C301.346 (3)
C11—H110.9300C26—H260.9300
C11—C121.375 (3)C26—C271.473 (4)
C12—H120.9300C27—H270.9300
C12—C131.381 (3)C27—C281.337 (4)
C13—H130.9300C28—H280.9300
C13—C141.354 (3)C28—C291.304 (4)
C14—H140.9300C29—H290.9300
C14—C151.382 (3)C29—C301.346 (3)
C15—H150.9300C30—H300.9300
C7—O1—H1114.6 (18)C16—O3—H3A109.5
C4—N1—H1A117.5C20—N2—H2A117.8
C4—N1—C8125.08 (15)C20—N2—C23124.32 (18)
C8—N1—H1A117.5C23—N2—H2A117.8
C2—C1—C7123.29 (16)O3—C16—C17116.54 (16)
C6—C1—C2118.06 (16)O4—C16—O3122.73 (17)
C6—C1—C7118.65 (16)O4—C16—C17120.73 (16)
C1—C2—H2119.3C18—C17—C16119.79 (16)
C3—C2—C1121.34 (16)C18—C17—C22117.64 (16)
C3—C2—H2119.3C22—C17—C16122.56 (16)
C2—C3—H3119.9C17—C18—H18119.3
C2—C3—C4120.23 (16)C19—C18—C17121.49 (17)
C4—C3—H3119.9C19—C18—H18119.3
N1—C4—C3123.51 (16)C18—C19—H19119.7
N1—C4—C5118.33 (16)C18—C19—C20120.67 (17)
C5—C4—C3118.14 (16)C20—C19—H19119.7
C4—C5—H5119.6N2—C20—C19118.91 (17)
C6—C5—C4120.78 (17)N2—C20—C21122.79 (17)
C6—C5—H5119.6C21—C20—C19118.30 (17)
C1—C6—H6119.3C20—C21—H21119.9
C5—C6—C1121.43 (17)C22—C21—C20120.20 (17)
C5—C6—H6119.3C22—C21—H21119.9
O1—C7—C1117.37 (16)C17—C22—H22119.2
O2—C7—O1122.76 (17)C21—C22—C17121.67 (17)
O2—C7—C1119.88 (16)C21—C22—H22119.2
N1—C8—H8A110.0N2—C23—H23A109.0
N1—C8—H8B110.0N2—C23—H23B109.0
N1—C8—C9108.58 (15)N2—C23—C24112.8 (2)
H8A—C8—H8B108.4H23A—C23—H23B107.8
C9—C8—H8A110.0C24—C23—H23A109.0
C9—C8—H8B110.0C24—C23—H23B109.0
C8—C9—H9A108.6C23—C24—H24A108.1
C8—C9—H9B108.6C23—C24—H24B108.1
H9A—C9—H9B107.6C23—C24—C25116.8 (2)
C10—C9—C8114.73 (14)H24A—C24—H24B107.3
C10—C9—H9A108.6C25—C24—H24A108.1
C10—C9—H9B108.6C25—C24—H24B108.1
C11—C10—C9120.06 (16)C26—C25—C24118.9 (2)
C15—C10—C9121.85 (17)C30—C25—C24123.5 (2)
C15—C10—C11117.99 (17)C30—C25—C26117.5 (2)
C10—C11—H11119.6C25—C26—H26121.0
C12—C11—C10120.79 (19)C25—C26—C27118.0 (2)
C12—C11—H11119.6C27—C26—H26121.0
C11—C12—H12119.9C26—C27—H27120.8
C11—C12—C13120.1 (2)C28—C27—C26118.3 (2)
C13—C12—H12119.9C28—C27—H27120.8
C12—C13—H13120.1C27—C28—H28119.3
C14—C13—C12119.75 (19)C29—C28—C27121.5 (3)
C14—C13—H13120.1C29—C28—H28119.3
C13—C14—H14119.9C28—C29—H29119.1
C13—C14—C15120.25 (19)C28—C29—C30121.8 (3)
C15—C14—H14119.9C30—C29—H29119.1
C10—C15—C14121.07 (19)C25—C30—H30118.6
C10—C15—H15119.5C29—C30—C25122.8 (2)
C14—C15—H15119.5C29—C30—H30118.6
N1—C4—C5—C6179.70 (18)O3—C16—C17—C18178.77 (17)
N1—C8—C9—C10166.11 (15)O3—C16—C17—C222.1 (3)
C1—C2—C3—C40.6 (3)O4—C16—C17—C181.2 (3)
C2—C1—C6—C50.7 (3)O4—C16—C17—C22177.96 (18)
C2—C1—C7—O17.6 (3)N2—C20—C21—C22179.35 (18)
C2—C1—C7—O2172.46 (17)N2—C23—C24—C2559.3 (4)
C2—C3—C4—N1179.11 (16)C16—C17—C18—C19178.47 (18)
C2—C3—C4—C50.6 (3)C16—C17—C22—C21177.95 (17)
C3—C4—C5—C61.2 (3)C17—C18—C19—C200.7 (3)
C4—N1—C8—C9171.47 (17)C18—C17—C22—C211.2 (3)
C4—C5—C6—C10.5 (3)C18—C19—C20—N2178.84 (19)
C6—C1—C2—C31.2 (3)C18—C19—C20—C211.6 (3)
C6—C1—C7—O1172.14 (16)C19—C20—C21—C221.1 (3)
C6—C1—C7—O27.8 (3)C20—N2—C23—C24174.9 (2)
C7—C1—C2—C3179.02 (15)C20—C21—C22—C170.3 (3)
C7—C1—C6—C5179.53 (18)C22—C17—C18—C190.7 (3)
C8—N1—C4—C316.3 (3)C23—N2—C20—C19170.4 (2)
C8—N1—C4—C5165.28 (18)C23—N2—C20—C2110.0 (3)
C8—C9—C10—C1171.6 (2)C23—C24—C25—C26134.2 (3)
C8—C9—C10—C15112.22 (19)C23—C24—C25—C3049.0 (4)
C9—C10—C11—C12175.79 (17)C24—C25—C26—C27175.8 (2)
C9—C10—C15—C14176.03 (17)C24—C25—C30—C29175.8 (2)
C10—C11—C12—C130.3 (3)C25—C26—C27—C280.5 (3)
C11—C10—C15—C140.3 (3)C26—C25—C30—C291.1 (3)
C11—C12—C13—C140.3 (3)C26—C27—C28—C290.5 (4)
C12—C13—C14—C150.6 (3)C27—C28—C29—C300.7 (4)
C13—C14—C15—C100.3 (3)C28—C29—C30—C250.1 (4)
C15—C10—C11—C120.6 (3)C30—C25—C26—C271.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O41.05 (4)1.58 (4)2.6380 (19)177 (3)
O3—H3A···O20.821.812.6246 (18)175
 

Acknowledgements

KZ and SL thank the Graduate Innovation Fund of WIT for financial support.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, C. & Long, S. (2023). IUCrData, 8, x230599.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSohail, R., Mathew, M., Patel, K. K., Reddy, S. A., Haider, Z., Naria, M., Habib, A., Abdin, Z. U., Chaudhry, W. R. & Akbar, A. (2023). Cureus, 15, e37080.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146