organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Redetermined structure of 4-(benz­yl­oxy)benzoic acid

crossmark logo

aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China, and bSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
*Correspondence e-mail: sihuilong@wit.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 21 May 2024; accepted 31 July 2024; online 6 August 2024)

In the title compound, C14H14O3, the dihedral angle between the aromatic rings is 39.76 (9)°. In the crystal, the mol­ecules associate to form centrosymmetric acid–acid dimers linked by pairwise O—H⋯O hydrogen bonds. The precision of the geometric parameters in the present single-crystal study is about an order of magnitude better than the previous powder diffraction study [Chattopadhyay et al. (2013[Chattopadhyay, B., Das, U., Mukherjee, M. & Mukherjee, A. K. (2013). CrystEngComm, 15, 1077-1085.]). CrystEngComm, 15, 1077–1085].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Non-steroidal anti-inflammatory drugs (NSAIDs) constitute approximately 5–10% of all prescribed medicines worldwide as anti­pyretic, anti-inflammatory and analgesic agents (Sohail et al., 2023[Sohail, R., Mathew, M., Patel, K. K., Reddy, S. A., Haider, Z., Naria, M., Habib, A., Abdin, Z. U., Chaudhry, W. R. & Akbar, A. (2023). Cureus, 15, e37080.]). Moreover, they are found to have a protective role against various critical diseases, such as cancer and cardiovascular diseases (Prasher & Sharma, 2021[Prasher, P. & Sharma, M. (2021). Drug Dev. Res. 82, 945-958.]). It is estimated that 30 million individuals use NSAIDs daily (Bhala et al., 2013[Bhala, N., Emberson, J., Merhi, A., Abramson, S., Arber, N., Baron, J. A., Bombardier, C., Cannon, C., Farkouh, M. E., FitzGerald, G. A., Goss, P., Halls, H., Hawk, E., Hawkey, C., Hennekens, C., Hochberg, M., Holland, L. E., Kearney, P. M., Laine, L., Lanas, A., Lance, P., Laupacis, A., Oates, J., Patrono, C., Schnitzer, T. J., Solomon, S., Tugwell, P., Wilson, K., Wittes, J. & Baigent, C. (2013). Lancet, 382, 769-779.]).

As part of our studies in this area, the title compound (Fig. 1[link]) was synthesized by a two-step reaction. The C1–C6 and C9–C14 aromatic rings subtend a dihedral angle of 39.76 (9)° and the linking C4—O3—C8—C9 bond has an anti conformation [torsion angle = −171.59 (12)°]. The short C4—O3 bond length of 1.3601 (16) Å indicates some conjugation of the O atom lone pair with the adjacent aromatic ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the extended structure, mol­ecules pair up to form carb­oxy­lic acid–carb­oxy­lic acid hydrogen-bonded dimers (Table 1[link], Fig. 2[link]). The crystal structure of the title compound was also solved from X-ray powder diffraction data (Chattopadhyay et al., 2013[Chattopadhyay, B., Das, U., Mukherjee, M. & Mukherjee, A. K. (2013). CrystEngComm, 15, 1077-1085.]) with corresponding hydrogen-bond parameters of 1.94 Å and 176°, respectively, which deviate from those obtained in this study from single-crystal X-ray diffraction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.81 2.6213 (15) 169
Symmetry code: (i) [-x+2, -y, -z+1].
[Figure 2]
Figure 2
Packing of the mol­ecules in the title compound (for clarity, H atoms not involved in hydrogen bonding are omitted).

Synthesis and crystallization

The title compound was prepared by a two-step reaction (Fig. 3[link]). The product was purified by column chromatography. Single crystals were obtained by slowly evaporating an ethanol solution of the title compound.

[Figure 3]
Figure 3
Synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H12O3
Mr 228.24
Crystal system, space group Monoclinic, P21/n
Temperature (K) 305
a, b, c (Å) 10.0564 (5), 3.9985 (2), 28.2235 (14)
β (°) 97.744 (5)
V3) 1124.54 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.16 × 0.15 × 0.13
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.875, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10523, 2793, 1996
Rint 0.019
(sin θ/λ)max−1) 0.721
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.135, 1.08
No. of reflections 2793
No. of parameters 156
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

4-(Benzyloxy)benzoic acid top
Crystal data top
C14H12O3F(000) = 480
Mr = 228.24Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.0564 (5) ÅCell parameters from 5298 reflections
b = 3.9985 (2) Åθ = 2.1–29.8°
c = 28.2235 (14) ŵ = 0.10 mm1
β = 97.744 (5)°T = 305 K
V = 1124.54 (10) Å3Block, clear light colourless
Z = 40.16 × 0.15 × 0.13 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
2793 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source1996 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.0000 pixels mm-1θmax = 30.8°, θmin = 2.1°
ω scansh = 1213
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 45
Tmin = 0.875, Tmax = 1.000l = 2937
10523 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.1717P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.26 e Å3
2793 reflectionsΔρmin = 0.19 e Å3
156 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.008 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of the H atom attached to O1 was obtained from a difference Fourier map. Other H atoms were positioned geometrically with C—H = 0.93 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.35692 (9)0.6152 (3)0.36054 (4)0.0557 (3)
O20.94382 (10)0.2255 (4)0.45018 (4)0.0666 (4)
O10.83138 (10)0.0288 (4)0.50696 (4)0.0658 (4)
H10.9061530.0431180.5171330.099*
C40.46870 (13)0.5035 (4)0.38859 (5)0.0444 (3)
C50.58913 (14)0.5572 (4)0.37085 (5)0.0503 (4)
H50.5893110.6632920.3415390.060*
C60.70792 (13)0.4545 (4)0.39638 (5)0.0491 (4)
H60.7881980.4908760.3842440.059*
C10.70890 (12)0.2960 (4)0.44041 (4)0.0431 (3)
C20.58902 (13)0.2464 (4)0.45795 (5)0.0495 (4)
H20.5891030.1429720.4874730.059*
C30.46833 (14)0.3477 (4)0.43243 (5)0.0505 (4)
H30.3880520.3117000.4445890.061*
C80.22907 (13)0.5294 (4)0.37376 (5)0.0526 (4)
H8A0.2160210.6426450.4031760.063*
H8B0.2242070.2902050.3789710.063*
C90.12226 (13)0.6340 (3)0.33413 (5)0.0452 (3)
C100.13472 (15)0.5661 (4)0.28683 (5)0.0548 (4)
H100.2115450.4609960.2792040.066*
C110.03322 (16)0.6542 (4)0.25081 (6)0.0616 (4)
H110.0422810.6088560.2190820.074*
C120.08060 (15)0.8081 (4)0.26183 (6)0.0625 (4)
H120.1488330.8658970.2376180.075*
C130.09369 (15)0.8766 (4)0.30845 (6)0.0623 (4)
H130.1709910.9803030.3159290.075*
C140.00810 (14)0.7917 (4)0.34459 (6)0.0536 (4)
H140.0008450.8417110.3761810.064*
C70.83567 (13)0.1772 (4)0.46735 (5)0.0467 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0376 (5)0.0723 (7)0.0548 (6)0.0030 (5)0.0018 (4)0.0171 (5)
O20.0403 (5)0.1045 (10)0.0549 (6)0.0051 (6)0.0064 (4)0.0152 (6)
O10.0449 (6)0.0978 (9)0.0527 (6)0.0062 (6)0.0000 (5)0.0210 (6)
C40.0394 (7)0.0492 (8)0.0425 (7)0.0025 (6)0.0015 (5)0.0019 (6)
C50.0461 (7)0.0633 (9)0.0407 (7)0.0034 (6)0.0029 (6)0.0094 (6)
C60.0378 (7)0.0648 (9)0.0447 (7)0.0040 (6)0.0056 (5)0.0046 (6)
C10.0390 (7)0.0499 (8)0.0392 (6)0.0014 (5)0.0011 (5)0.0005 (5)
C20.0434 (7)0.0629 (9)0.0417 (7)0.0008 (6)0.0038 (5)0.0089 (6)
C30.0378 (7)0.0644 (10)0.0492 (8)0.0020 (6)0.0058 (5)0.0083 (7)
C80.0405 (7)0.0618 (9)0.0546 (8)0.0032 (6)0.0025 (6)0.0103 (7)
C90.0374 (6)0.0455 (8)0.0515 (8)0.0053 (5)0.0019 (5)0.0046 (6)
C100.0462 (8)0.0608 (10)0.0573 (8)0.0017 (7)0.0068 (6)0.0025 (7)
C110.0607 (9)0.0722 (11)0.0497 (8)0.0119 (8)0.0004 (7)0.0001 (7)
C120.0449 (8)0.0691 (11)0.0689 (10)0.0100 (7)0.0094 (7)0.0173 (8)
C130.0396 (7)0.0666 (11)0.0803 (11)0.0039 (7)0.0063 (7)0.0117 (8)
C140.0438 (7)0.0609 (9)0.0568 (8)0.0024 (7)0.0090 (6)0.0022 (7)
C70.0406 (7)0.0584 (9)0.0403 (7)0.0004 (6)0.0022 (5)0.0007 (6)
Geometric parameters (Å, º) top
O3—C41.3601 (16)C3—H30.9300
O3—C81.4279 (17)C8—H8A0.9700
O2—C71.2636 (17)C8—H8B0.9700
O1—H10.8200C8—C91.5019 (19)
O1—C71.2716 (17)C9—C101.384 (2)
C4—C51.3881 (19)C9—C141.376 (2)
C4—C31.3857 (19)C10—H100.9300
C5—H50.9300C10—C111.386 (2)
C5—C61.3721 (19)C11—H110.9300
C6—H60.9300C11—C121.372 (2)
C6—C11.3937 (19)C12—H120.9300
C1—C21.3780 (18)C12—C131.368 (2)
C1—C71.4723 (18)C13—H130.9300
C2—H20.9300C13—C141.386 (2)
C2—C31.3858 (19)C14—H140.9300
C4—O3—C8118.15 (11)C9—C8—H8A110.0
C7—O1—H1109.5C9—C8—H8B110.0
O3—C4—C5115.61 (12)C10—C9—C8121.00 (13)
O3—C4—C3124.46 (12)C14—C9—C8120.09 (13)
C3—C4—C5119.93 (12)C14—C9—C10118.89 (13)
C4—C5—H5119.9C9—C10—H10119.9
C6—C5—C4120.30 (12)C9—C10—C11120.29 (14)
C6—C5—H5119.9C11—C10—H10119.9
C5—C6—H6119.8C10—C11—H11119.9
C5—C6—C1120.36 (12)C12—C11—C10120.15 (15)
C1—C6—H6119.8C12—C11—H11119.9
C6—C1—C7120.58 (12)C11—C12—H12120.0
C2—C1—C6118.97 (12)C13—C12—C11119.97 (14)
C2—C1—C7120.44 (12)C13—C12—H12120.0
C1—C2—H2119.4C12—C13—H13120.0
C1—C2—C3121.23 (13)C12—C13—C14120.10 (15)
C3—C2—H2119.4C14—C13—H13120.0
C4—C3—C2119.21 (13)C9—C14—C13120.60 (14)
C4—C3—H3120.4C9—C14—H14119.7
C2—C3—H3120.4C13—C14—H14119.7
O3—C8—H8A110.0O2—C7—O1122.78 (12)
O3—C8—H8B110.0O2—C7—C1118.87 (12)
O3—C8—C9108.51 (11)O1—C7—C1118.36 (12)
H8A—C8—H8B108.4
O3—C4—C5—C6179.92 (14)C2—C1—C7—O10.0 (2)
O3—C4—C3—C2179.61 (14)C3—C4—C5—C60.5 (2)
O3—C8—C9—C1045.48 (19)C8—O3—C4—C5172.07 (13)
O3—C8—C9—C14136.32 (14)C8—O3—C4—C38.5 (2)
C4—O3—C8—C9171.59 (12)C8—C9—C10—C11177.81 (14)
C4—C5—C6—C10.2 (2)C8—C9—C14—C13177.25 (14)
C5—C4—C3—C20.2 (2)C9—C10—C11—C120.3 (3)
C5—C6—C1—C20.4 (2)C10—C9—C14—C131.0 (2)
C5—C6—C1—C7178.37 (14)C10—C11—C12—C130.4 (3)
C6—C1—C2—C30.7 (2)C11—C12—C13—C140.2 (3)
C6—C1—C7—O20.9 (2)C12—C13—C14—C90.9 (2)
C6—C1—C7—O1178.79 (15)C14—C9—C10—C110.4 (2)
C1—C2—C3—C40.4 (2)C7—C1—C2—C3178.11 (14)
C2—C1—C7—O2179.73 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.812.6213 (15)169
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

QS thanks the Graduate Innovation Fund of WIT for financial support.

References

First citationChattopadhyay, B., Das, U., Mukherjee, M. & Mukherjee, A. K. (2013). CrystEngComm, 15, 1077–1085.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhala, N., Emberson, J., Merhi, A., Abramson, S., Arber, N., Baron, J. A., Bombardier, C., Cannon, C., Farkouh, M. E., FitzGerald, G. A., Goss, P., Halls, H., Hawk, E., Hawkey, C., Hennekens, C., Hochberg, M., Holland, L. E., Kearney, P. M., Laine, L., Lanas, A., Lance, P., Laupacis, A., Oates, J., Patrono, C., Schnitzer, T. J., Solomon, S., Tugwell, P., Wilson, K., Wittes, J. & Baigent, C. (2013). Lancet, 382, 769–779.  Web of Science CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrasher, P. & Sharma, M. (2021). Drug Dev. Res. 82, 945–958.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSohail, R., Mathew, M., Patel, K. K., Reddy, S. A., Haider, Z., Naria, M., Habib, A., Abdin, Z. U., Chaudhry, W. R. & Akbar, A. (2023). Cureus, 15, e37080.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146