metal-organic compounds
Poly[tris(2-aminobutan-1-ol)copper(II) [hexakis-μ2-cyanido-κ12C:N-tetracopper(I)] bis(2-aminobutan-1-olato)aquacopper(II) monohydrate]
aDepartment of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
*Correspondence e-mail: pcorfield@fordham.edu
The title structure, {[Cu(C4H11NO)3][Cu4(CN)6]·[Cu(C4H10NO)2(H2O)]·H2O}n, is made up of diperiodic honeycomb CuICN networks built from [Cu4(CN)6]2− units, together with two independent CuII complexes: six-coordinate [Cu(CH3CH2CH(NH2)CH2OH)3]2+ cations, and five-coordinate [Cu(CH3CH2CH(NH2)CH2O)2·H2O] neutral species. The two CuII complexes are not covalently bonded to the CuICN networks. Strong O—H⋯O hydrogen bonds link the CuII complexes into pairs and the pairs are hydrogen bonded into chains along the crystallographic b axis via the hydrate water molecule. In addition, O—H⋯(CN) and N—H⋯(CN) hydrogen bonds link the cations to the CuCN network. In the honeycomb polymeric moiety, all bridging cyanido ligands are disordered over two orientations, head-to-tail and tail-to-head, with occupancies for C and N atoms varying for each CN group.
Keywords: crystal structure; mixed valence Cu; CuCN network; 2-amino-1-butanol.
CCDC reference: 2379862
Structure description
Copper cyanide networks are of continuing interest because of the wide variety of different networks found (Pike, 2012; Iwai et al., 2023) and the interesting and potentially useful magnetic or photoluminescent properties shown by some of them (e.g. Lim et al., 2008). Anionic CuICN networks, which are hosts to cationic conjugate acids of various amine bases, have been studied in order to understand how the various network structures relate to the nature of the hosted cations – the so-called template effect – and to investigate certain physical properties of the network structures (e.g. Pretsch & Hartl, 2004; Corfield et al., 2022). There are fewer structurally characterized mixed-valence organic CuCN networks in the literature. Our previous work in this area has involved attempts to synthesize neutral CuCN networks that fully incorporate both CuI and CuII atoms (Corfield et al., 2024; Corfield & Sabatino, 2017).
The title compound was obtained serendipitously during attempts to continue syntheses of these mixed-valence CuCN networks with the use of the base 2-amino-1-butanol. Instead of the expected structure type, with CN bridging CuI and CuII atoms, we obtained the title compound, where a CuICN network is host to guest CuII complexes. The shown in Fig. 1 is comprised of CuI atoms (Cu1 to Cu4), CuII atoms (Cu5 and Cu6), six bridging cyanido ligands, five 2-amino-1-butanol bases, and two water molecules, O2 coordinated to Cu5 and O1 situated separately.
Of the two CuII atoms, Cu5 is coordinated by the two bases O11⋯C16 and O21⋯C26, as well as by a water molecule, in a square-pyramidal arrangement with the H2O in the apical position, at a distance of 2.582 (12) Å. The bases have both lost their hydroxy protons, making this complex neutral in charge. The bases are in the cis position relative to each other, and the chelated conformations are both λ. Atom Cu6 is coordinated by three chelating bases that have all kept their OH protons, so that this complex has a +2 charge. The chelates are all in the λ conformation. The coordination around Cu6 is elongated octahedral. Base O31⋯C36 coordinates in the equatorial plane, while bases O41⋯C46 and O51⋯C56 have their NH2 groups in the equatorial plane, and their OH groups in the axial positions, with long Cu—O axial bonds, at 2.508 (6) and 2.453 (5) Å. Bond Cu—O31 in the equatorial plane is much shorter at 1.956 (4) Å, although this distance is longer than the Cu—O distances of 1.901 (4) and 1.904 (4) Å in the Cu5 complex, where the H atoms have been lost. The equatorial Cu—N bond lengths in the octahedral complex of Cu6 average 2.022 (4) Å, slightly longer than those in the square-pyramidal Cu5 complex, which average 1.989 (5) Å.
Hydrogen bonds are listed in Table 1. The two CuII complexes are linked together by the short hydrogen bonds O31—H31⋯O21 and O51—H51⋯O11, as shown in Fig. 1. A somewhat longer hydrogen bond, N44—H44B⋯O11, also links the two complexes. Hydrogen bonding to the lattice water molecule O1 links the pairs of CuII complexes into a chain along the b axis. These hydrogen bonds are also shown in the packing diagrams, Figs. 2 and 3. Two hydrogen bonds link the pairs of complexes to the CuCN network, and these are shown in blue in Figs. 2 and 3. There may be other weaker interactions with the network, but their distances are outside the 3.2 Å limit that we set.
The [Cu4(CN)6]2− units making up the diperiodic network form planar honeycomb networks made up of 18-membered CuCN rings, parallel to plane (101) in the crystal. Each of the four independent Cu atoms involved is close to coplanar with its three coordinated CN groups, with maximum deviation of Cu atom from its neighbours of 0.068 (4) Å for Cu4. Each of these Cu atoms is distorted from trigonal planar coordination in the same way: one of the three bond angles at Cu is larger, average 128.1 (7)°, than the other two, which average 115.9 (10)° (standard deviations given are of the mean). The average Cu—(C/N) distance for the two bonds surrounding the larger angle is slightly shorter than the third Cu—(C/N) bond length. The angle distortions lead to the 18-membered CuCN rings being somewhat lengthened in the direction of the screw axes.
The first organic CuCN complex described in the literature (Williams et al., 1972) had a similar mixed-valence structure to the one described here. In that case, a three-dimensional CuICN network hosts guest [Cu(en)2H2O]2+ cations, where en = ethylenediamine. In a search of the Cambridge Structural Database (CSD, Version 5.35; Groom et al., 2016), we found relatively few other organic CuCN network structures of this type. Entries COXRIR (Benmansour et al., 2009) and COXRIR01 (Etaiw et al., 2015) describe a diperiodic CuICN network hosting Cu(en)2 cations, and entry UGUTOF (Colacio et al., 2002) describes a three-dimensional CuICN network with guest CuII cations coordinated by 2-methylethylenediamine. There are also three inorganic CuCN networks with guest [Cu(NH3)4]2+ cations.
Synthesis and crystallization
A mixture of 5.02 mmol CuCN and 8.12 mmol NaCN was added to 20 ml of H2O and stirred until all the mixture had dissolved. In a separate container, 10.06 mmol of 2-amino-1-butanol were dissolved in 10 ml H2O and added to the solution while stirring under heat. The solution immediately developed a faint purple tint. The pH was 11.9. The beaker was covered and allowed to sit for approximately 72 h, after which point a heterogeneous mixture of navy blue crystals and pale blue material was recovered. The structure presented here is based upon diffraction data from one of the dark blue crystals. IR spectra (cm −1): 2117 (s), (CN stretch); 3440 (versus, broad) (O—H) stretch; 3328 (sh), 3272 (sh) (N—H stretch). We have not identified any sharp OH peak that might be expected for the strong O—H ⋯ O hydrogen bonds in the structure.
Refinement
Crystal data, data collection and structure . Only reflections with a resolution up to 0.80 Å were used in the as the data in the shell beyond this had just 14% of reflections with I > 2σ(I). C- and N-bound H atoms were fixed in their expected positions, while O-bound H atoms were refined, with restraints. N-bound H atoms were fixed because refinements of these atoms did not provide any more satisfactory geometry. Their initial placement was facilitated by use of difference maps based upon low order data, and by the SHELXL HFIX 83 instruction (Sheldrick, 2015). The terminal CH3 group of the ethyl group in base O21⋯C26 is modelled as disordered between two possible orientations, with occupancies 0.615 (19) and 0.385 (19). In the polymeric part, all bridging cyano ligands were modelled over two orientations, head-to-tail and tail-to head, since this ligand, while coordinating CuI, has no strong preference for any orientation. Both atomic sites in each C≡N group is then a mixture of C and N atoms. Atoms sharing the same site were constrained to have the same coordinates and displacement parameters, and their occupancies were fixed or refined using free variables: 0.5/0.5 for C1≡N1, 0.69 (8)/0.31 (8) for C2≡N2, 0.70 (8)/0.30 (8) for C3≡N3, 0.65 (8)/0.35 (8) for C4≡N4, 0.5/0.5 for C5≡N5 and 0.79 (8)/0.21 (8) for C6≡N6.
details are summarized in Table 2
|
Structural data
CCDC reference: 2379862
https://doi.org/10.1107/S2414314624008459/bh4088sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624008459/bh4088Isup2.hkl
[Cu(C4H11NO)3][Cu4(CN)6]·[Cu(C4H10NO)2(H2O)]·H2O | F(000) = 1040 |
Mr = 1017.06 | Dx = 1.600 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.7107 Å |
a = 11.1008 (2) Å | Cell parameters from 5040 reflections |
b = 14.9561 (3) Å | θ = 1.0–27.5° |
c = 12.7221 (2) Å | µ = 3.02 mm−1 |
β = 91.486 (1)° | T = 297 K |
V = 2111.47 (7) Å3 | Plate, blue |
Z = 2 | 0.33 × 0.30 × 0.04 mm |
Enraf–Nonius KappaCCD diffractometer | 8587 independent reflections |
Radiation source: fine-focus sealed tube | 6363 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 9 pixels mm-1 | θmax = 26.4°, θmin = 2.7° |
combination of ω and φ scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −18→18 |
Tmin = 0.47, Tmax = 0.62 | l = −15→15 |
41170 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0396P)2 + 0.587P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
8587 reflections | Δρmax = 0.53 e Å−3 |
488 parameters | Δρmin = −0.36 e Å−3 |
56 restraints | Absolute structure: Flack x determined using 2729 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.002 (6) |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.13212 (7) | 0.73559 (5) | 0.34410 (6) | 0.0649 (2) | |
Cu2 | 0.11909 (7) | 0.06380 (5) | 0.40774 (6) | 0.0615 (2) | |
Cu3 | 0.37743 (8) | 0.56666 (6) | 0.08561 (6) | 0.0665 (2) | |
Cu4 | 0.37261 (8) | 0.23970 (6) | 0.16423 (6) | 0.0702 (3) | |
Cu5 | 0.40743 (6) | 0.34502 (6) | 0.81097 (5) | 0.0576 (2) | |
Cu6 | 0.32863 (6) | 0.51268 (6) | 0.49443 (5) | 0.05431 (19) | |
C1 | 0.1237 (5) | 0.8626 (5) | 0.3695 (5) | 0.0665 (16) | 0.5 |
N1 | 0.1171 (6) | 0.9375 (5) | 0.3827 (5) | 0.0643 (16) | 0.5 |
C1N | 0.1237 (5) | 0.8626 (5) | 0.3695 (5) | 0.0665 (16) | 0.5 |
N1C | 0.1171 (6) | 0.9375 (5) | 0.3827 (5) | 0.0643 (16) | 0.5 |
C2 | −0.0198 (5) | 0.1648 (4) | 0.5751 (5) | 0.062 (2) | 0.69 (8) |
N2 | 0.0352 (6) | 0.1255 (4) | 0.5153 (6) | 0.064 (2) | 0.69 (8) |
C2N | −0.0198 (5) | 0.1648 (4) | 0.5751 (5) | 0.062 (2) | 0.31 (8) |
N2C | 0.0352 (6) | 0.1255 (4) | 0.5153 (6) | 0.064 (2) | 0.31 (8) |
C3 | 0.2250 (6) | 0.6736 (4) | 0.2436 (5) | 0.065 (2) | 0.70 (8) |
N3 | 0.2810 (7) | 0.6341 (4) | 0.1838 (5) | 0.072 (2) | 0.70 (8) |
C3N | 0.2250 (6) | 0.6736 (4) | 0.2436 (5) | 0.065 (2) | 0.30 (8) |
N3C | 0.2810 (7) | 0.6341 (4) | 0.1838 (5) | 0.072 (2) | 0.30 (8) |
C4 | 0.2166 (6) | 0.1360 (4) | 0.3143 (5) | 0.070 (2) | 0.65 (8) |
N4 | 0.2754 (7) | 0.1768 (4) | 0.2599 (5) | 0.067 (2) | 0.65 (8) |
C4N | 0.2166 (6) | 0.1360 (4) | 0.3143 (5) | 0.070 (2) | 0.35 (8) |
N4C | 0.2754 (7) | 0.1768 (4) | 0.2599 (5) | 0.067 (2) | 0.35 (8) |
C5 | 0.3725 (6) | 0.4402 (5) | 0.1119 (6) | 0.0741 (19) | 0.5 |
N5 | 0.3719 (6) | 0.3657 (5) | 0.1318 (5) | 0.0722 (18) | 0.5 |
C5N | 0.3725 (6) | 0.4402 (5) | 0.1119 (6) | 0.0741 (19) | 0.5 |
N5C | 0.3719 (6) | 0.3657 (5) | 0.1318 (5) | 0.0722 (18) | 0.5 |
C6 | 0.4684 (7) | 0.6317 (5) | −0.0145 (6) | 0.068 (3) | 0.79 (8) |
N6 | 0.5232 (6) | 0.6729 (4) | −0.0720 (5) | 0.073 (2) | 0.79 (8) |
C6N | 0.4684 (7) | 0.6317 (5) | −0.0145 (6) | 0.068 (3) | 0.21 (8) |
N6C | 0.5232 (6) | 0.6729 (4) | −0.0720 (5) | 0.073 (2) | 0.21 (8) |
O11 | 0.2742 (4) | 0.3548 (3) | 0.7144 (3) | 0.0645 (11) | |
C12 | 0.1803 (7) | 0.2945 (6) | 0.7398 (6) | 0.087 (2) | |
H12A | 0.193103 | 0.237710 | 0.705079 | 0.130* | |
H12B | 0.103570 | 0.318424 | 0.714813 | 0.130* | |
C13 | 0.1774 (6) | 0.2804 (6) | 0.8570 (6) | 0.0756 (19) | |
H13 | 0.151893 | 0.336224 | 0.889999 | 0.091* | |
N14 | 0.3041 (5) | 0.2619 (5) | 0.8902 (5) | 0.086 (2) | |
H14A | 0.323150 | 0.205475 | 0.875983 | 0.103* | |
H14B | 0.314170 | 0.270814 | 0.959086 | 0.103* | |
C15 | 0.0893 (8) | 0.2057 (8) | 0.8872 (8) | 0.122 (4) | |
H15A | 0.010376 | 0.218608 | 0.856436 | 0.183* | |
H15B | 0.116589 | 0.149459 | 0.858193 | 0.183* | |
C16 | 0.0792 (12) | 0.1963 (12) | 1.0034 (10) | 0.186 (7) | |
H16A | 0.023536 | 0.149157 | 1.018496 | 0.279* | |
H16B | 0.156787 | 0.182288 | 1.034068 | 0.279* | |
H16C | 0.050601 | 0.251419 | 1.032311 | 0.279* | |
O21 | 0.4974 (4) | 0.4360 (3) | 0.7441 (4) | 0.0777 (14) | |
C22 | 0.6035 (6) | 0.4630 (5) | 0.8017 (6) | 0.0705 (18) | |
H22A | 0.584489 | 0.511926 | 0.848575 | 0.106* | |
H22B | 0.663782 | 0.483664 | 0.753506 | 0.106* | |
C23 | 0.6513 (5) | 0.3858 (4) | 0.8637 (5) | 0.0548 (15) | |
H23 | 0.685262 | 0.343004 | 0.814279 | 0.066* | |
N24 | 0.5486 (5) | 0.3439 (5) | 0.9111 (5) | 0.0836 (18) | |
H24A | 0.530199 | 0.373036 | 0.969548 | 0.100* | |
H24B | 0.566803 | 0.287729 | 0.928435 | 0.100* | |
C25A | 0.7491 (7) | 0.4097 (6) | 0.9434 (6) | 0.087 (2) | 0.615 (19) |
H25A | 0.715832 | 0.452718 | 0.991801 | 0.131* | 0.615 (19) |
H25B | 0.768278 | 0.356241 | 0.983695 | 0.131* | 0.615 (19) |
C26A | 0.8629 (12) | 0.4466 (11) | 0.9055 (12) | 0.105 (6) | 0.615 (19) |
H26A | 0.916415 | 0.458570 | 0.964309 | 0.158* | 0.615 (19) |
H26B | 0.899646 | 0.404146 | 0.859638 | 0.158* | 0.615 (19) |
H26C | 0.846953 | 0.501075 | 0.867783 | 0.158* | 0.615 (19) |
C25B | 0.7491 (7) | 0.4097 (6) | 0.9434 (6) | 0.087 (2) | 0.385 (19) |
H25C | 0.812559 | 0.441743 | 0.908386 | 0.131* | 0.385 (19) |
H25D | 0.716001 | 0.449316 | 0.995693 | 0.131* | 0.385 (19) |
C26B | 0.800 (3) | 0.333 (3) | 0.995 (3) | 0.183 (19) | 0.385 (19) |
H26D | 0.861208 | 0.351890 | 1.044754 | 0.275* | 0.385 (19) |
H26E | 0.737698 | 0.301833 | 1.031250 | 0.275* | 0.385 (19) |
H26F | 0.834263 | 0.294260 | 0.943935 | 0.275* | 0.385 (19) |
O31 | 0.4789 (3) | 0.5107 (4) | 0.5782 (3) | 0.0656 (11) | |
H31 | 0.463 (3) | 0.482 (4) | 0.629 (2) | 0.098* | |
C32 | 0.5749 (7) | 0.4743 (6) | 0.5192 (6) | 0.088 (3) | |
H32A | 0.567285 | 0.409806 | 0.515361 | 0.132* | |
H32B | 0.651678 | 0.488503 | 0.553397 | 0.132* | |
C33 | 0.5695 (7) | 0.5132 (7) | 0.4117 (6) | 0.090 (2) | |
H33 | 0.588182 | 0.577133 | 0.416693 | 0.108* | |
N34 | 0.4426 (5) | 0.5031 (5) | 0.3742 (4) | 0.0810 (16) | |
H34A | 0.433250 | 0.450112 | 0.343149 | 0.097* | |
H34B | 0.425159 | 0.545258 | 0.326937 | 0.097* | |
C35 | 0.6643 (9) | 0.4674 (11) | 0.3387 (8) | 0.143 (5) | |
H35A | 0.741267 | 0.463956 | 0.376384 | 0.214* | |
H35B | 0.638242 | 0.406805 | 0.323281 | 0.214* | |
C36 | 0.6806 (13) | 0.5143 (16) | 0.2409 (11) | 0.211 (8) | |
H36A | 0.739051 | 0.483414 | 0.200114 | 0.316* | |
H36B | 0.605266 | 0.516790 | 0.202262 | 0.316* | |
H36C | 0.708348 | 0.573973 | 0.255395 | 0.316* | |
O41 | 0.3128 (6) | 0.6792 (4) | 0.5131 (5) | 0.0905 (16) | |
H41 | 0.389 (2) | 0.678 (6) | 0.522 (4) | 0.08 (3)* | |
C42 | 0.2553 (9) | 0.6937 (6) | 0.6109 (7) | 0.092 (2) | |
H42A | 0.170783 | 0.706689 | 0.597084 | 0.138* | |
H42B | 0.291188 | 0.745625 | 0.645029 | 0.138* | |
C43 | 0.2652 (7) | 0.6162 (5) | 0.6833 (6) | 0.0704 (18) | |
H43 | 0.349305 | 0.610567 | 0.707766 | 0.084* | |
N44 | 0.2308 (5) | 0.5340 (3) | 0.6244 (4) | 0.0595 (13) | |
H44A | 0.153248 | 0.537659 | 0.605269 | 0.071* | |
H44B | 0.239458 | 0.487169 | 0.667042 | 0.071* | |
C45 | 0.1859 (9) | 0.6301 (6) | 0.7794 (7) | 0.095 (2) | |
H45A | 0.214013 | 0.682983 | 0.816758 | 0.142* | |
H45B | 0.104046 | 0.641692 | 0.754587 | 0.142* | |
C46 | 0.1839 (11) | 0.5535 (8) | 0.8555 (8) | 0.127 (4) | |
H46A | 0.132451 | 0.568038 | 0.912492 | 0.190* | |
H46B | 0.153872 | 0.500987 | 0.820125 | 0.190* | |
H46C | 0.264076 | 0.542367 | 0.882430 | 0.190* | |
O51 | 0.2942 (4) | 0.3516 (3) | 0.5143 (3) | 0.0560 (9) | |
H51 | 0.291 (3) | 0.356 (3) | 0.5790 (19) | 0.027 (12)* | |
C52 | 0.1759 (5) | 0.3430 (4) | 0.4693 (5) | 0.0578 (14) | |
H52A | 0.117561 | 0.363766 | 0.519200 | 0.087* | |
H52B | 0.159421 | 0.280502 | 0.454484 | 0.087* | |
C53 | 0.1630 (5) | 0.3962 (4) | 0.3695 (5) | 0.0533 (14) | |
H53 | 0.226567 | 0.377331 | 0.322218 | 0.064* | |
N54 | 0.1840 (5) | 0.4926 (3) | 0.3971 (4) | 0.0601 (14) | |
H54A | 0.118635 | 0.513874 | 0.427577 | 0.072* | |
H54B | 0.194089 | 0.523440 | 0.338158 | 0.072* | |
C55 | 0.0431 (7) | 0.3810 (6) | 0.3142 (6) | 0.082 (2) | |
H55A | 0.034408 | 0.317527 | 0.300018 | 0.123* | |
H55B | −0.020229 | 0.397982 | 0.361328 | 0.123* | |
C56 | 0.0252 (9) | 0.4310 (8) | 0.2130 (7) | 0.112 (3) | |
H56A | −0.052989 | 0.417512 | 0.183150 | 0.169* | |
H56B | 0.031257 | 0.494045 | 0.226158 | 0.169* | |
H56C | 0.085993 | 0.413444 | 0.164737 | 0.169* | |
O1 | 0.4541 (8) | 0.2308 (8) | 0.4517 (12) | 0.197 (5) | |
H1A | 0.423 (13) | 0.282 (4) | 0.457 (14) | 0.237* | |
H1B | 0.396 (9) | 0.195 (8) | 0.446 (15) | 0.237* | |
O2 | 0.4949 (10) | 0.2175 (9) | 0.6993 (9) | 0.186 (4) | |
H2A | 0.493 (13) | 0.235 (13) | 0.632 (5) | 0.224* | |
H2B | 0.574 (4) | 0.224 (12) | 0.710 (11) | 0.224* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0717 (5) | 0.0490 (4) | 0.0752 (5) | −0.0008 (4) | 0.0231 (4) | 0.0030 (4) |
Cu2 | 0.0585 (5) | 0.0502 (4) | 0.0764 (5) | 0.0024 (4) | 0.0170 (4) | −0.0054 (4) |
Cu3 | 0.0797 (6) | 0.0571 (5) | 0.0638 (5) | −0.0017 (4) | 0.0217 (4) | 0.0020 (4) |
Cu4 | 0.0902 (6) | 0.0590 (5) | 0.0625 (5) | 0.0025 (4) | 0.0238 (4) | 0.0030 (4) |
Cu5 | 0.0527 (4) | 0.0638 (5) | 0.0564 (4) | −0.0085 (4) | 0.0025 (3) | 0.0137 (4) |
Cu6 | 0.0534 (4) | 0.0505 (4) | 0.0588 (4) | −0.0034 (3) | −0.0018 (3) | 0.0070 (3) |
C1 | 0.063 (4) | 0.059 (5) | 0.079 (4) | −0.003 (3) | 0.022 (3) | 0.003 (3) |
N1 | 0.064 (4) | 0.052 (5) | 0.078 (4) | −0.004 (3) | 0.022 (3) | −0.004 (3) |
C1N | 0.063 (4) | 0.059 (5) | 0.079 (4) | −0.003 (3) | 0.022 (3) | 0.003 (3) |
N1C | 0.064 (4) | 0.052 (5) | 0.078 (4) | −0.004 (3) | 0.022 (3) | −0.004 (3) |
C2 | 0.059 (4) | 0.045 (3) | 0.082 (4) | −0.008 (3) | 0.028 (3) | −0.007 (3) |
N2 | 0.062 (4) | 0.045 (4) | 0.087 (5) | −0.011 (3) | 0.024 (4) | 0.002 (3) |
C2N | 0.059 (4) | 0.045 (3) | 0.082 (4) | −0.008 (3) | 0.028 (3) | −0.007 (3) |
N2C | 0.062 (4) | 0.045 (4) | 0.087 (5) | −0.011 (3) | 0.024 (4) | 0.002 (3) |
C3 | 0.080 (5) | 0.042 (4) | 0.074 (5) | −0.002 (3) | 0.024 (4) | 0.008 (3) |
N3 | 0.099 (5) | 0.047 (3) | 0.073 (4) | 0.003 (3) | 0.037 (4) | 0.004 (3) |
C3N | 0.080 (5) | 0.042 (4) | 0.074 (5) | −0.002 (3) | 0.024 (4) | 0.008 (3) |
N3C | 0.099 (5) | 0.047 (3) | 0.073 (4) | 0.003 (3) | 0.037 (4) | 0.004 (3) |
C4 | 0.094 (5) | 0.039 (3) | 0.079 (4) | −0.001 (3) | 0.038 (4) | −0.010 (3) |
N4 | 0.091 (5) | 0.046 (4) | 0.066 (4) | 0.007 (3) | 0.032 (4) | −0.004 (3) |
C4N | 0.094 (5) | 0.039 (3) | 0.079 (4) | −0.001 (3) | 0.038 (4) | −0.010 (3) |
N4C | 0.091 (5) | 0.046 (4) | 0.066 (4) | 0.007 (3) | 0.032 (4) | −0.004 (3) |
C5 | 0.087 (5) | 0.061 (5) | 0.075 (4) | −0.001 (3) | 0.032 (4) | 0.001 (4) |
N5 | 0.094 (5) | 0.055 (5) | 0.069 (4) | 0.004 (3) | 0.031 (3) | −0.003 (3) |
C5N | 0.087 (5) | 0.061 (5) | 0.075 (4) | −0.001 (3) | 0.032 (4) | 0.001 (4) |
N5C | 0.094 (5) | 0.055 (5) | 0.069 (4) | 0.004 (3) | 0.031 (3) | −0.003 (3) |
C6 | 0.085 (5) | 0.060 (4) | 0.062 (4) | −0.002 (4) | 0.025 (4) | −0.012 (3) |
N6 | 0.090 (5) | 0.059 (4) | 0.072 (4) | −0.006 (3) | 0.037 (4) | −0.005 (3) |
C6N | 0.085 (5) | 0.060 (4) | 0.062 (4) | −0.002 (4) | 0.025 (4) | −0.012 (3) |
N6C | 0.090 (5) | 0.059 (4) | 0.072 (4) | −0.006 (3) | 0.037 (4) | −0.005 (3) |
O11 | 0.056 (2) | 0.075 (3) | 0.063 (2) | −0.013 (2) | 0.0006 (18) | 0.017 (2) |
C12 | 0.063 (4) | 0.113 (6) | 0.083 (5) | −0.030 (4) | −0.010 (4) | 0.035 (5) |
C13 | 0.057 (4) | 0.090 (5) | 0.080 (5) | −0.015 (4) | 0.005 (3) | 0.021 (4) |
N14 | 0.073 (4) | 0.108 (5) | 0.075 (4) | −0.026 (3) | −0.009 (3) | 0.034 (4) |
C15 | 0.078 (6) | 0.163 (10) | 0.125 (7) | −0.050 (6) | 0.005 (5) | 0.050 (7) |
C16 | 0.152 (11) | 0.261 (19) | 0.145 (9) | −0.095 (12) | 0.027 (9) | 0.079 (11) |
O21 | 0.070 (3) | 0.083 (3) | 0.080 (3) | −0.026 (2) | −0.013 (2) | 0.034 (3) |
C22 | 0.069 (4) | 0.059 (4) | 0.083 (5) | −0.015 (3) | −0.008 (4) | 0.007 (4) |
C23 | 0.056 (4) | 0.052 (4) | 0.057 (3) | −0.005 (3) | 0.007 (3) | −0.003 (3) |
N24 | 0.071 (4) | 0.106 (5) | 0.073 (4) | −0.029 (4) | −0.009 (3) | 0.037 (4) |
C25A | 0.073 (5) | 0.103 (6) | 0.085 (5) | −0.020 (4) | −0.009 (4) | 0.006 (4) |
C26A | 0.066 (8) | 0.143 (13) | 0.106 (11) | −0.030 (8) | −0.031 (7) | 0.024 (10) |
C25B | 0.073 (5) | 0.103 (6) | 0.085 (5) | −0.020 (4) | −0.009 (4) | 0.006 (4) |
C26B | 0.20 (3) | 0.15 (2) | 0.19 (3) | −0.01 (2) | −0.14 (3) | 0.01 (2) |
O31 | 0.049 (2) | 0.084 (3) | 0.063 (2) | −0.008 (2) | 0.0015 (19) | 0.021 (3) |
C32 | 0.053 (4) | 0.133 (8) | 0.079 (5) | 0.003 (4) | 0.006 (4) | 0.022 (5) |
C33 | 0.069 (4) | 0.122 (6) | 0.079 (5) | −0.026 (5) | 0.012 (4) | 0.008 (5) |
N34 | 0.076 (4) | 0.102 (5) | 0.066 (3) | −0.001 (4) | 0.004 (3) | 0.015 (3) |
C35 | 0.079 (6) | 0.240 (16) | 0.111 (8) | 0.006 (8) | 0.029 (6) | 0.028 (8) |
C36 | 0.159 (12) | 0.33 (2) | 0.145 (11) | −0.043 (15) | 0.058 (10) | 0.041 (13) |
O41 | 0.105 (5) | 0.073 (3) | 0.093 (4) | −0.018 (3) | −0.009 (3) | 0.007 (3) |
C42 | 0.116 (7) | 0.062 (5) | 0.099 (6) | −0.001 (4) | −0.007 (5) | −0.015 (4) |
C43 | 0.073 (4) | 0.062 (4) | 0.076 (4) | −0.002 (3) | −0.006 (3) | −0.017 (3) |
N44 | 0.059 (3) | 0.056 (3) | 0.063 (3) | 0.001 (2) | −0.001 (2) | −0.004 (2) |
C45 | 0.108 (6) | 0.089 (6) | 0.087 (5) | 0.012 (5) | 0.006 (5) | −0.022 (4) |
C46 | 0.147 (9) | 0.134 (9) | 0.100 (7) | 0.007 (7) | 0.033 (7) | −0.009 (6) |
O51 | 0.060 (2) | 0.052 (2) | 0.056 (2) | 0.005 (2) | 0.0057 (18) | 0.003 (2) |
C52 | 0.058 (3) | 0.048 (3) | 0.068 (3) | −0.005 (3) | 0.011 (3) | −0.008 (3) |
C53 | 0.054 (3) | 0.047 (3) | 0.059 (3) | 0.005 (3) | 0.009 (3) | −0.004 (3) |
N54 | 0.064 (3) | 0.046 (3) | 0.070 (3) | 0.009 (2) | −0.009 (3) | 0.000 (2) |
C55 | 0.071 (4) | 0.088 (5) | 0.086 (5) | −0.005 (4) | −0.010 (4) | −0.017 (4) |
C56 | 0.100 (7) | 0.150 (10) | 0.086 (6) | 0.009 (6) | −0.030 (5) | −0.008 (5) |
O1 | 0.133 (7) | 0.163 (8) | 0.291 (12) | 0.067 (6) | −0.082 (8) | −0.123 (9) |
O2 | 0.173 (9) | 0.171 (10) | 0.213 (10) | 0.032 (7) | −0.049 (8) | −0.058 (9) |
Cu1—C3 | 1.904 (7) | C26A—H26C | 0.9600 |
Cu1—C1 | 1.930 (7) | C25B—C26B | 1.43 (3) |
Cu1—C2i | 1.949 (6) | C25B—H25C | 0.9700 |
Cu2—N2 | 1.912 (7) | C25B—H25D | 0.9700 |
Cu2—N1ii | 1.915 (7) | C26B—H26D | 0.9600 |
Cu2—C4 | 1.954 (7) | C26B—H26E | 0.9600 |
Cu3—C6 | 1.912 (8) | C26B—H26F | 0.9600 |
Cu3—C5 | 1.922 (8) | O31—C32 | 1.427 (9) |
Cu3—N3 | 1.947 (7) | O31—H31 | 0.80 (3) |
Cu4—N4 | 1.897 (7) | C32—C33 | 1.486 (11) |
Cu4—N5 | 1.929 (8) | C32—H32A | 0.9700 |
Cu4—N6iii | 1.945 (7) | C32—H32B | 0.9700 |
Cu5—O21 | 1.901 (4) | C33—N34 | 1.483 (9) |
Cu5—O11 | 1.904 (4) | C33—C35 | 1.578 (14) |
Cu5—N14 | 1.984 (6) | C33—H33 | 0.9800 |
Cu5—N24 | 1.994 (5) | N34—H34A | 0.8900 |
Cu5—O2 | 2.582 (12) | N34—H34B | 0.8900 |
Cu6—O31 | 1.956 (4) | C35—C36 | 1.443 (16) |
Cu6—N34 | 2.015 (6) | C35—H35A | 0.9700 |
Cu6—N54 | 2.025 (5) | C35—H35B | 0.9700 |
Cu6—N44 | 2.027 (5) | C36—H36A | 0.9600 |
Cu6—O51 | 2.453 (5) | C36—H36B | 0.9600 |
Cu6—O41 | 2.508 (6) | C36—H36C | 0.9600 |
C1—N1 | 1.135 (8) | O41—C42 | 1.429 (10) |
C2—N2 | 1.150 (8) | O41—H41 | 0.86 (3) |
C3—N3 | 1.158 (8) | C42—C43 | 1.483 (11) |
C4—N4 | 1.141 (8) | C42—H42A | 0.9700 |
C5—N5 | 1.142 (8) | C42—H42B | 0.9700 |
C6—N6 | 1.144 (8) | C43—N44 | 1.485 (8) |
O11—C12 | 1.422 (8) | C43—C45 | 1.538 (11) |
C12—C13 | 1.506 (10) | C43—H43 | 0.9800 |
C12—H12A | 0.9700 | N44—H44A | 0.8900 |
C12—H12B | 0.9700 | N44—H44B | 0.8900 |
C13—N14 | 1.484 (9) | C45—C46 | 1.501 (13) |
C13—C15 | 1.540 (11) | C45—H45A | 0.9700 |
C13—H13 | 0.9800 | C45—H45B | 0.9700 |
N14—H14A | 0.8900 | C46—H46A | 0.9600 |
N14—H14B | 0.8900 | C46—H46B | 0.9600 |
C15—C16 | 1.492 (14) | C46—H46C | 0.9600 |
C15—H15A | 0.9700 | O51—C52 | 1.424 (7) |
C15—H15B | 0.9700 | O51—H51 | 0.83 (2) |
C16—H16A | 0.9600 | C52—C53 | 1.503 (9) |
C16—H16B | 0.9600 | C52—H52A | 0.9700 |
C16—H16C | 0.9600 | C52—H52B | 0.9700 |
O21—C22 | 1.430 (8) | C53—N54 | 1.500 (8) |
C22—C23 | 1.489 (9) | C53—C55 | 1.506 (9) |
C22—H22A | 0.9700 | C53—H53 | 0.9800 |
C22—H22B | 0.9700 | N54—H54A | 0.8900 |
C23—N24 | 1.447 (8) | N54—H54B | 0.8900 |
C23—C25B | 1.509 (10) | C55—C56 | 1.498 (12) |
C23—C25A | 1.509 (10) | C55—H55A | 0.9700 |
C23—H23 | 0.9800 | C55—H55B | 0.9700 |
N24—H24A | 0.8900 | C56—H56A | 0.9600 |
N24—H24B | 0.8900 | C56—H56B | 0.9600 |
C25A—C26A | 1.471 (15) | C56—H56C | 0.9600 |
C25A—H25A | 0.9700 | O1—H1A | 0.84 (3) |
C25A—H25B | 0.9700 | O1—H1B | 0.84 (3) |
C26A—H26A | 0.9600 | O2—H2A | 0.90 (3) |
C26A—H26B | 0.9600 | O2—H2B | 0.89 (3) |
C3—Cu1—C1 | 128.4 (2) | C26B—C25B—H25C | 109.0 |
C3—Cu1—C2i | 117.1 (3) | C23—C25B—H25C | 109.0 |
C1—Cu1—C2i | 114.3 (2) | C26B—C25B—H25D | 109.0 |
N2—Cu2—N1ii | 126.2 (2) | C23—C25B—H25D | 109.0 |
N2—Cu2—C4 | 117.2 (2) | H25C—C25B—H25D | 107.8 |
N1ii—Cu2—C4 | 116.6 (2) | C25B—C26B—H26D | 109.5 |
C6—Cu3—C5 | 129.4 (3) | C25B—C26B—H26E | 109.5 |
C6—Cu3—N3 | 118.2 (3) | H26D—C26B—H26E | 109.5 |
C5—Cu3—N3 | 112.3 (3) | C25B—C26B—H26F | 109.5 |
N4—Cu4—N5 | 128.5 (3) | H26D—C26B—H26F | 109.5 |
N4—Cu4—N6iii | 119.3 (3) | H26E—C26B—H26F | 109.5 |
N5—Cu4—N6iii | 111.8 (3) | C32—O31—Cu6 | 110.9 (4) |
O21—Cu5—O11 | 93.70 (19) | C32—O31—H31 | 114 (3) |
O21—Cu5—N14 | 173.1 (3) | Cu6—O31—H31 | 104 (3) |
O11—Cu5—N14 | 85.8 (2) | O31—C32—C33 | 108.8 (7) |
O21—Cu5—N24 | 83.0 (2) | O31—C32—H32A | 109.9 |
O11—Cu5—N24 | 176.0 (3) | C33—C32—H32A | 109.9 |
N14—Cu5—N24 | 97.2 (2) | O31—C32—H32B | 109.9 |
O21—Cu5—O2 | 94.2 (3) | C33—C32—H32B | 109.9 |
O11—Cu5—O2 | 89.9 (3) | H32A—C32—H32B | 108.3 |
N14—Cu5—O2 | 92.7 (4) | N34—C33—C32 | 105.7 (6) |
N24—Cu5—O2 | 92.6 (3) | N34—C33—C35 | 114.1 (7) |
O31—Cu6—N34 | 82.5 (2) | C32—C33—C35 | 111.1 (8) |
O31—Cu6—N54 | 169.3 (2) | N34—C33—H33 | 108.6 |
N34—Cu6—N54 | 91.7 (2) | C32—C33—H33 | 108.6 |
O31—Cu6—N44 | 91.45 (19) | C35—C33—H33 | 108.6 |
N34—Cu6—N44 | 172.1 (3) | C33—N34—Cu6 | 111.0 (4) |
N54—Cu6—N44 | 95.1 (2) | C33—N34—H34A | 109.4 |
O31—Cu6—O51 | 93.57 (19) | Cu6—N34—H34A | 109.4 |
N34—Cu6—O51 | 96.3 (2) | C33—N34—H34B | 109.4 |
N54—Cu6—O51 | 78.11 (17) | Cu6—N34—H34B | 109.4 |
N44—Cu6—O51 | 89.00 (17) | H34A—N34—H34B | 108.0 |
O31—Cu6—O41 | 91.4 (2) | C36—C35—C33 | 113.4 (13) |
N34—Cu6—O41 | 100.9 (3) | C36—C35—H35A | 108.9 |
N54—Cu6—O41 | 98.56 (19) | C33—C35—H35A | 108.9 |
N44—Cu6—O41 | 74.1 (2) | C36—C35—H35B | 108.9 |
O51—Cu6—O41 | 162.51 (17) | C33—C35—H35B | 108.9 |
N1—C1—Cu1 | 178.6 (6) | H35A—C35—H35B | 107.7 |
C1—N1—Cu2iv | 175.5 (6) | C35—C36—H36A | 109.5 |
N2—C2—Cu1v | 170.1 (6) | C35—C36—H36B | 109.5 |
C2—N2—Cu2 | 175.7 (7) | H36A—C36—H36B | 109.5 |
N3—C3—Cu1 | 178.4 (5) | C35—C36—H36C | 109.5 |
C3—N3—Cu3 | 178.8 (6) | H36A—C36—H36C | 109.5 |
N4—C4—Cu2 | 178.5 (6) | H36B—C36—H36C | 109.5 |
C4—N4—Cu4 | 177.0 (6) | C42—O41—Cu6 | 105.5 (5) |
N5—C5—Cu3 | 177.0 (7) | C42—O41—H41 | 111 (3) |
C5—N5—Cu4 | 179.3 (6) | Cu6—O41—H41 | 85 (6) |
N6—C6—Cu3 | 177.6 (6) | O41—C42—C43 | 113.2 (7) |
C6—N6—Cu4vi | 175.7 (7) | O41—C42—H42A | 108.9 |
C12—O11—Cu5 | 111.5 (4) | C43—C42—H42A | 108.9 |
O11—C12—C13 | 110.4 (6) | O41—C42—H42B | 108.9 |
O11—C12—H12A | 109.6 | C43—C42—H42B | 108.9 |
C13—C12—H12A | 109.6 | H42A—C42—H42B | 107.7 |
O11—C12—H12B | 109.6 | C42—C43—N44 | 108.6 (6) |
C13—C12—H12B | 109.6 | C42—C43—C45 | 110.7 (7) |
H12A—C12—H12B | 108.1 | N44—C43—C45 | 111.6 (6) |
N14—C13—C12 | 105.3 (6) | C42—C43—H43 | 108.6 |
N14—C13—C15 | 113.4 (7) | N44—C43—H43 | 108.6 |
C12—C13—C15 | 112.3 (7) | C45—C43—H43 | 108.6 |
N14—C13—H13 | 108.6 | C43—N44—Cu6 | 113.9 (4) |
C12—C13—H13 | 108.6 | C43—N44—H44A | 108.8 |
C15—C13—H13 | 108.6 | Cu6—N44—H44A | 108.8 |
C13—N14—Cu5 | 107.1 (4) | C43—N44—H44B | 108.8 |
C13—N14—H14A | 110.3 | Cu6—N44—H44B | 108.8 |
Cu5—N14—H14A | 110.3 | H44A—N44—H44B | 107.7 |
C13—N14—H14B | 110.3 | C46—C45—C43 | 115.3 (7) |
Cu5—N14—H14B | 110.3 | C46—C45—H45A | 108.4 |
H14A—N14—H14B | 108.5 | C43—C45—H45A | 108.4 |
C16—C15—C13 | 112.4 (9) | C46—C45—H45B | 108.4 |
C16—C15—H15A | 109.1 | C43—C45—H45B | 108.4 |
C13—C15—H15A | 109.1 | H45A—C45—H45B | 107.5 |
C16—C15—H15B | 109.1 | C45—C46—H46A | 109.5 |
C13—C15—H15B | 109.1 | C45—C46—H46B | 109.5 |
H15A—C15—H15B | 107.9 | H46A—C46—H46B | 109.5 |
C15—C16—H16A | 109.5 | C45—C46—H46C | 109.5 |
C15—C16—H16B | 109.5 | H46A—C46—H46C | 109.5 |
H16A—C16—H16B | 109.5 | H46B—C46—H46C | 109.5 |
C15—C16—H16C | 109.5 | C52—O51—Cu6 | 101.1 (3) |
H16A—C16—H16C | 109.5 | C52—O51—H51 | 110 (2) |
H16B—C16—H16C | 109.5 | Cu6—O51—H51 | 92 (4) |
C22—O21—Cu5 | 114.1 (4) | O51—C52—C53 | 111.0 (5) |
O21—C22—C23 | 109.3 (5) | O51—C52—H52A | 109.4 |
O21—C22—H22A | 109.8 | C53—C52—H52A | 109.4 |
C23—C22—H22A | 109.8 | O51—C52—H52B | 109.4 |
O21—C22—H22B | 109.8 | C53—C52—H52B | 109.4 |
C23—C22—H22B | 109.8 | H52A—C52—H52B | 108.0 |
H22A—C22—H22B | 108.3 | N54—C53—C52 | 107.5 (5) |
N24—C23—C22 | 106.4 (5) | N54—C53—C55 | 112.6 (5) |
N24—C23—C25B | 112.6 (6) | C52—C53—C55 | 112.2 (5) |
C22—C23—C25B | 114.4 (6) | N54—C53—H53 | 108.1 |
N24—C23—C25A | 112.6 (6) | C52—C53—H53 | 108.1 |
C22—C23—C25A | 114.4 (6) | C55—C53—H53 | 108.1 |
N24—C23—H23 | 107.7 | C53—N54—Cu6 | 113.7 (4) |
C22—C23—H23 | 107.7 | C53—N54—H54A | 108.8 |
C25A—C23—H23 | 107.7 | Cu6—N54—H54A | 108.8 |
C23—N24—Cu5 | 110.2 (4) | C53—N54—H54B | 108.8 |
C23—N24—H24A | 109.6 | Cu6—N54—H54B | 108.8 |
Cu5—N24—H24A | 109.6 | H54A—N54—H54B | 107.7 |
C23—N24—H24B | 109.6 | C56—C55—C53 | 114.9 (7) |
Cu5—N24—H24B | 109.6 | C56—C55—H55A | 108.5 |
H24A—N24—H24B | 108.1 | C53—C55—H55A | 108.5 |
C26A—C25A—C23 | 118.5 (8) | C56—C55—H55B | 108.5 |
C26A—C25A—H25A | 107.7 | C53—C55—H55B | 108.5 |
C23—C25A—H25A | 107.7 | H55A—C55—H55B | 107.5 |
C26A—C25A—H25B | 107.7 | C55—C56—H56A | 109.5 |
C23—C25A—H25B | 107.7 | C55—C56—H56B | 109.5 |
H25A—C25A—H25B | 107.1 | H56A—C56—H56B | 109.5 |
C25A—C26A—H26A | 109.5 | C55—C56—H56C | 109.5 |
C25A—C26A—H26B | 109.5 | H56A—C56—H56C | 109.5 |
H26A—C26A—H26B | 109.5 | H56B—C56—H56C | 109.5 |
C25A—C26A—H26C | 109.5 | H1A—O1—H1B | 106 (5) |
H26A—C26A—H26C | 109.5 | Cu5—O2—H2A | 108 (10) |
H26B—C26A—H26C | 109.5 | Cu5—O2—H2B | 103 (10) |
C26B—C25B—C23 | 112.8 (14) | H2A—O2—H2B | 96 (4) |
Cu5—O11—C12—C13 | 31.8 (8) | O31—C32—C33—C35 | −173.5 (8) |
O11—C12—C13—N14 | −48.1 (9) | C32—C33—N34—Cu6 | 32.6 (9) |
O11—C12—C13—C15 | −171.9 (8) | C35—C33—N34—Cu6 | 155.1 (7) |
C12—C13—N14—Cu5 | 41.0 (7) | N34—C33—C35—C36 | 72.6 (14) |
C15—C13—N14—Cu5 | 164.1 (7) | C32—C33—C35—C36 | −167.9 (11) |
N14—C13—C15—C16 | 65.2 (13) | Cu6—O41—C42—C43 | 21.0 (8) |
C12—C13—C15—C16 | −175.6 (10) | O41—C42—C43—N44 | −48.5 (9) |
Cu5—O21—C22—C23 | 30.5 (7) | O41—C42—C43—C45 | −171.4 (7) |
O21—C22—C23—N24 | −44.1 (8) | C42—C43—N44—Cu6 | 56.3 (7) |
O21—C22—C23—C25B | −169.0 (6) | C45—C43—N44—Cu6 | 178.6 (5) |
O21—C22—C23—C25A | −169.0 (6) | C42—C43—C45—C46 | 176.9 (8) |
C22—C23—N24—Cu5 | 38.3 (7) | N44—C43—C45—C46 | 55.8 (10) |
C25B—C23—N24—Cu5 | 164.4 (6) | Cu6—O51—C52—C53 | 43.5 (5) |
C25A—C23—N24—Cu5 | 164.4 (6) | O51—C52—C53—N54 | −61.6 (6) |
N24—C23—C25A—C26A | 175.4 (10) | O51—C52—C53—C55 | 174.1 (5) |
C22—C23—C25A—C26A | −62.9 (12) | C52—C53—N54—Cu6 | 45.2 (5) |
N24—C23—C25B—C26B | 63 (2) | C55—C53—N54—Cu6 | 169.3 (5) |
C22—C23—C25B—C26B | −175 (2) | N54—C53—C55—C56 | 59.6 (9) |
Cu6—O31—C32—C33 | 44.0 (8) | C52—C53—C55—C56 | −179.0 (7) |
O31—C32—C33—N34 | −49.2 (10) |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) x, y−1, z; (iii) −x+1, y−1/2, −z; (iv) x, y+1, z; (v) −x, y−1/2, −z+1; (vi) −x+1, y+1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O31—H31···O21 | 0.80 (3) | 1.66 (2) | 2.393 (6) | 152 (4) |
O51—H51···O11 | 0.83 (2) | 1.74 (3) | 2.562 (6) | 174 (5) |
N44—H44B···O11 | 0.89 | 2.10 | 2.950 (7) | 159 |
O41—H41···O1vii | 0.86 (3) | 1.93 (5) | 2.726 (10) | 154 (9) |
N54—H54A···C2i | 0.89 | 2.51 | 3.180 (7) | 133 |
O1—H1A···O51 | 0.84 (3) | 1.93 (10) | 2.669 (9) | 146 (16) |
O2—H2B···N3viii | 0.89 (3) | 2.47 (12) | 3.125 (13) | 130 (13) |
Symmetry codes: (i) −x, y+1/2, −z+1; (vii) −x+1, y+1/2, −z+1; (viii) −x+1, y−1/2, −z+1. |
Acknowledgements
We gratefully acknowledge support from the Chemistry Department at Fordham University
References
Benmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308–1314. Web of Science CSD CrossRef CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Colacio, E., Kivekäs, R., Lloret, F., Sunberg, M., Suarez-Varela, J., Bardají, M. & Laguna, A. (2002). Inorg. Chem. 41, 5141–5149. Web of Science CSD CrossRef PubMed CAS Google Scholar
Corfield, P., Carlson, A., DaCunha, T., Eisha, N., Varona, A. M. F. & Garcia, D. (2022). Acta Cryst. A78, a192. Web of Science CrossRef IUCr Journals Google Scholar
Corfield, P. W. R., Elsayed, A., DaCunha, T. & Bender, C. (2024). Acta Cryst. C80, 212–220. CrossRef IUCr Journals Google Scholar
Corfield, P. W. R. & Sabatino, A. (2017). Acta Cryst. E73, 141–146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Etaiw, S. H., Abdou, S. N. & Badr El-din, A. S. (2015). J. Inorg. Organomet. Polym. 25, 1394–1406. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Iwai, Y., Imamura, Y., Nakaya, M., Inada, M., Le Ouay, B., Ohba, M. & Ohtani, R. (2023). Inorg. Chem. 62, 18707–18713. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lim, M. J., Murray, C. A., Tronic, T. A., deKrafft, K. E., Ley, A. N., deButts, J. C., Pike, R. D., Lu, H. & Patterson, H. H. (2008). Inorg. Chem. 47, 6931–6947. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nonius (1997). KappaCCD Server Software for Windows. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pike, R. D. (2012). Organometallics, 31, 7647–7660. Web of Science CrossRef CAS Google Scholar
Pretsch, T. & Hartl, H. (2004). Z. Anorg. Allge Chem. 630, 1581–1588. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Williams, R. J., Larson, A. C. & Cromer, D. T. (1972). Acta Cryst. B28, 858–864. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.