metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[tris­­(2-amino­butan-1-ol)copper(II) [hexa­kis-μ2-cyanido-κ12C:N-tetra­copper(I)] bis­­(2-amino­butan-1-olato)aqua­copper(II) monohydrate]

crossmark logo

aDepartment of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
*Correspondence e-mail: pcorfield@fordham.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 24 July 2024; accepted 26 August 2024; online 30 August 2024)

The title structure, {[Cu(C4H11NO)3][Cu4(CN)6]·[Cu(C4H10NO)2(H2O)]·H2O}n, is made up of diperiodic honeycomb CuICN networks built from [Cu4(CN)6]2− units, together with two independent CuII complexes: six-coord­inate [Cu(CH3CH2CH(NH2)CH2OH)3]2+ cations, and five-coordinate [Cu(CH3CH2CH(NH2)CH2O)2·H2O] neutral species. The two CuII complexes are not covalently bonded to the CuICN networks. Strong O—H⋯O hydrogen bonds link the CuII complexes into pairs and the pairs are hydrogen bonded into chains along the crystallographic b axis via the hydrate water mol­ecule. In addition, O—H⋯(CN) and N—H⋯(CN) hydrogen bonds link the cations to the CuCN network. In the honeycomb polymeric moiety, all bridging cyanido ligands are disordered over two orientations, head-to-tail and tail-to-head, with occupancies for C and N atoms varying for each CN group.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Copper cyanide networks are of continuing inter­est because of the wide variety of different networks found (Pike, 2012[Pike, R. D. (2012). Organometallics, 31, 7647-7660.]; Iwai et al., 2023[Iwai, Y., Imamura, Y., Nakaya, M., Inada, M., Le Ouay, B., Ohba, M. & Ohtani, R. (2023). Inorg. Chem. 62, 18707-18713.]) and the inter­esting and potentially useful magnetic or photoluminescent properties shown by some of them (e.g. Lim et al., 2008[Lim, M. J., Murray, C. A., Tronic, T. A., deKrafft, K. E., Ley, A. N., deButts, J. C., Pike, R. D., Lu, H. & Patterson, H. H. (2008). Inorg. Chem. 47, 6931-6947.]). Anionic CuICN networks, which are hosts to cationic conjugate acids of various amine bases, have been studied in order to understand how the various network structures relate to the nature of the hosted cations – the so-called template effect – and to investigate certain physical properties of the network structures (e.g. Pretsch & Hartl, 2004[Pretsch, T. & Hartl, H. (2004). Z. Anorg. Allge Chem. 630, 1581-1588.]; Corfield et al., 2022[Corfield, P., Carlson, A., DaCunha, T., Eisha, N., Varona, A. M. F. & Garcia, D. (2022). Acta Cryst. A78, a192.]). There are fewer structurally characterized mixed-valence organic CuCN networks in the literature. Our previous work in this area has involved attempts to synthesize neutral CuCN networks that fully incorporate both CuI and CuII atoms (Corfield et al., 2024[Corfield, P. W. R., Elsayed, A., DaCunha, T. & Bender, C. (2024). Acta Cryst. C80, 212-220.]; Corfield & Sabatino, 2017[Corfield, P. W. R. & Sabatino, A. (2017). Acta Cryst. E73, 141-146.]).

The title compound was obtained serendipitously during attempts to continue syntheses of these mixed-valence CuCN networks with the use of the base 2-amino-1-butanol. Instead of the expected structure type, with CN bridging CuI and CuII atoms, we obtained the title compound, where a CuICN network is host to guest CuII complexes. The asymmetric unit shown in Fig. 1[link] is comprised of CuI atoms (Cu1 to Cu4), CuII atoms (Cu5 and Cu6), six bridging cyanido ligands, five 2-amino-1-butanol bases, and two water mol­ecules, O2 coord­inated to Cu5 and O1 situated separately.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with 30% displacement ellipsoids. Colours are: C, H black; O red; N blue; Cu magenta. H atoms associated with the disordered methyl group C26b are omitted for clarity. Hydrogen bonds linking the CuII complexes together are shown as green dashed lines. H41 is not visible, as it is located behind O41 in this figure.

Of the two CuII atoms, Cu5 is coordinated by the two bases O11⋯C16 and O21⋯C26, as well as by a water mol­ecule, in a square-pyramidal arrangement with the H2O in the apical position, at a distance of 2.582 (12) Å. The bases have both lost their hy­droxy protons, making this complex neutral in charge. The bases are in the cis position relative to each other, and the chelated conformations are both λ. Atom Cu6 is coordinated by three chelating bases that have all kept their OH protons, so that this complex has a +2 charge. The chelates are all in the λ conformation. The coordination around Cu6 is elongated octa­hedral. Base O31⋯C36 coordinates in the equatorial plane, while bases O41⋯C46 and O51⋯C56 have their NH2 groups in the equatorial plane, and their OH groups in the axial positions, with long Cu—O axial bonds, at 2.508 (6) and 2.453 (5) Å. Bond Cu—O31 in the equatorial plane is much shorter at 1.956 (4) Å, although this distance is longer than the Cu—O distances of 1.901 (4) and 1.904 (4) Å in the Cu5 complex, where the H atoms have been lost. The equatorial Cu—N bond lengths in the octa­hedral complex of Cu6 average 2.022 (4) Å, slightly longer than those in the square-pyramidal Cu5 complex, which average 1.989 (5) Å.

Hydrogen bonds are listed in Table 1[link]. The two CuII complexes are linked together by the short hydrogen bonds O31—H31⋯O21 and O51—H51⋯O11, as shown in Fig. 1[link]. A somewhat longer hydrogen bond, N44—H44B⋯O11, also links the two complexes. Hydrogen bonding to the lattice water mol­ecule O1 links the pairs of CuII complexes into a chain along the b axis. These hydrogen bonds are also shown in the packing diagrams, Figs. 2[link] and 3[link]. Two hydrogen bonds link the pairs of complexes to the CuCN network, and these are shown in blue in Figs. 2[link] and 3[link]. There may be other weaker inter­actions with the network, but their distances are outside the 3.2 Å limit that we set.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O31—H31⋯O21 0.80 (3) 1.66 (2) 2.393 (6) 152 (4)
O51—H51⋯O11 0.83 (2) 1.74 (3) 2.562 (6) 174 (5)
N44—H44B⋯O11 0.89 2.10 2.950 (7) 159
O41—H41⋯O1i 0.86 (3) 1.93 (5) 2.726 (10) 154 (9)
N54—H54A⋯C2ii 0.89 2.51 3.180 (7) 133
O1—H1A⋯O51 0.84 (3) 1.93 (10) 2.669 (9) 146 (16)
O2—H2B⋯N3iii 0.89 (3) 2.47 (12) 3.125 (13) 130 (13)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Packing diagram, showing the structure viewed down the c axis. Colours as in Fig. 1[link]; All H atoms and C26b (disordered meth­yl) are omitted. Hydrogen bonds between the CuII complexes are shown as dashed green bonds, while those between the complexes and CN groups of the polymeric network are shown in blue.
[Figure 3]
Figure 3
Packing diagram, showing the structure viewed down the b axis. Colours and hydrogen bonds as in Fig. 1[link]. The CuCN honeycomb networks are seen edge-on in this projection.

The [Cu4(CN)6]2− units making up the diperiodic network form planar honeycomb networks made up of 18-membered CuCN rings, parallel to plane (101) in the crystal. Each of the four independent Cu atoms involved is close to coplanar with its three coordinated CN groups, with maximum deviation of Cu atom from its neighbours of 0.068 (4) Å for Cu4. Each of these Cu atoms is distorted from trigonal planar coordination in the same way: one of the three bond angles at Cu is larger, average 128.1 (7)°, than the other two, which average 115.9 (10)° (standard deviations given are of the mean). The average Cu—(C/N) distance for the two bonds surrounding the larger angle is slightly shorter than the third Cu—(C/N) bond length. The angle distortions lead to the 18-membered CuCN rings being somewhat lengthened in the direction of the screw axes.

The first organic CuCN complex described in the literature (Williams et al., 1972[Williams, R. J., Larson, A. C. & Cromer, D. T. (1972). Acta Cryst. B28, 858-864.]) had a similar mixed-valence structure to the one described here. In that case, a three-dimensional CuICN network hosts guest [Cu(en)2H2O]2+ cations, where en = ethyl­enedi­amine. In a search of the Cambridge Structural Database (CSD, Version 5.35; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), we found relatively few other organic CuCN network structures of this type. Entries COXRIR (Benmansour et al., 2009[Benmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308-1314.]) and COXRIR01 (Etaiw et al., 2015[Etaiw, S. H., Abdou, S. N. & Badr El-din, A. S. (2015). J. Inorg. Organomet. Polym. 25, 1394-1406.]) describe a diperiodic CuICN network hosting Cu(en)2 cations, and entry UGUTOF (Colacio et al., 2002[Colacio, E., Kivekäs, R., Lloret, F., Sunberg, M., Suarez-Varela, J., Bardají, M. & Laguna, A. (2002). Inorg. Chem. 41, 5141-5149.]) describes a three-dimensional CuICN network with guest CuII cations coordinated by 2-methyl­ethylenedi­amine. There are also three inorganic CuCN networks with guest [Cu(NH3)4]2+ cations.

Synthesis and crystallization

A mixture of 5.02 mmol CuCN and 8.12 mmol NaCN was added to 20 ml of H2O and stirred until all the mixture had dissolved. In a separate container, 10.06 mmol of 2-amino-1-butanol were dissolved in 10 ml H2O and added to the solution while stirring under heat. The solution immediately developed a faint purple tint. The pH was 11.9. The beaker was covered and allowed to sit for approximately 72 h, after which point a heterogeneous mixture of navy blue crystals and pale blue material was recovered. The structure presented here is based upon diffraction data from one of the dark blue crystals. IR spectra (cm −1): 2117 (s), (CN stretch); 3440 (versus, broad) (O—H) stretch; 3328 (sh), 3272 (sh) (N—H stretch). We have not identified any sharp OH peak that might be expected for the strong O—H ⋯ O hydrogen bonds in the structure.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Only reflections with a resolution up to 0.80 Å were used in the refinement, as the data in the shell beyond this had just 14% of reflections with I > 2σ(I). C- and N-bound H atoms were fixed in their expected positions, while O-bound H atoms were refined, with restraints. N-bound H atoms were fixed because refinements of these atoms did not provide any more satisfactory geometry. Their initial placement was facilitated by use of difference maps based upon low order data, and by the SHELXL HFIX 83 instruction (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The terminal CH3 group of the ethyl group in base O21⋯C26 is modelled as disordered between two possible orientations, with occupancies 0.615 (19) and 0.385 (19). In the polymeric part, all bridging cyano ligands were modelled over two orientations, head-to-tail and tail-to head, since this ligand, while coordinating CuI, has no strong preference for any orientation. Both atomic sites in each C≡N group is then a mixture of C and N atoms. Atoms sharing the same site were constrained to have the same coordinates and displacement parameters, and their occupancies were fixed or refined using free variables: 0.5/0.5 for C1≡N1, 0.69 (8)/0.31 (8) for C2≡N2, 0.70 (8)/0.30 (8) for C3≡N3, 0.65 (8)/0.35 (8) for C4≡N4, 0.5/0.5 for C5≡N5 and 0.79 (8)/0.21 (8) for C6≡N6.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C4H11NO)3][Cu4(CN)6]·[Cu(C4H10NO)2(H2O)]·H2O
Mr 1017.06
Crystal system, space group Monoclinic, P21
Temperature (K) 297
a, b, c (Å) 11.1008 (2), 14.9561 (3), 12.7221 (2)
β (°) 91.486 (1)
V3) 2111.47 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.02
Crystal size (mm) 0.33 × 0.30 × 0.04
 
Data collection
Diffractometer Enraf–Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.47, 0.62
No. of measured, independent and observed [I > 2σ(I)] reflections 41170, 8587, 6363
Rint 0.038
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.094, 1.13
No. of reflections 8587
No. of parameters 488
No. of restraints 56
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.36
Absolute structure Flack x determined using 2729 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.002 (6)
Computer programs: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software for Windows. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Poly[tris(2-aminobutan-1-ol)copper(II) [hexakis-µ2-cyanido-κ12C:N-tetracopper(I)] bis(2-aminobutan-1-olato)aquacopper(II) monohydrate] top
Crystal data top
[Cu(C4H11NO)3][Cu4(CN)6]·[Cu(C4H10NO)2(H2O)]·H2OF(000) = 1040
Mr = 1017.06Dx = 1.600 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.7107 Å
a = 11.1008 (2) ÅCell parameters from 5040 reflections
b = 14.9561 (3) Åθ = 1.0–27.5°
c = 12.7221 (2) ŵ = 3.02 mm1
β = 91.486 (1)°T = 297 K
V = 2111.47 (7) Å3Plate, blue
Z = 20.33 × 0.30 × 0.04 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
8587 independent reflections
Radiation source: fine-focus sealed tube6363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9 pixels mm-1θmax = 26.4°, θmin = 2.7°
combination of ω and φ scansh = 1313
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1818
Tmin = 0.47, Tmax = 0.62l = 1515
41170 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.587P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
8587 reflectionsΔρmax = 0.53 e Å3
488 parametersΔρmin = 0.36 e Å3
56 restraintsAbsolute structure: Flack x determined using 2729 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (6)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.13212 (7)0.73559 (5)0.34410 (6)0.0649 (2)
Cu20.11909 (7)0.06380 (5)0.40774 (6)0.0615 (2)
Cu30.37743 (8)0.56666 (6)0.08561 (6)0.0665 (2)
Cu40.37261 (8)0.23970 (6)0.16423 (6)0.0702 (3)
Cu50.40743 (6)0.34502 (6)0.81097 (5)0.0576 (2)
Cu60.32863 (6)0.51268 (6)0.49443 (5)0.05431 (19)
C10.1237 (5)0.8626 (5)0.3695 (5)0.0665 (16)0.5
N10.1171 (6)0.9375 (5)0.3827 (5)0.0643 (16)0.5
C1N0.1237 (5)0.8626 (5)0.3695 (5)0.0665 (16)0.5
N1C0.1171 (6)0.9375 (5)0.3827 (5)0.0643 (16)0.5
C20.0198 (5)0.1648 (4)0.5751 (5)0.062 (2)0.69 (8)
N20.0352 (6)0.1255 (4)0.5153 (6)0.064 (2)0.69 (8)
C2N0.0198 (5)0.1648 (4)0.5751 (5)0.062 (2)0.31 (8)
N2C0.0352 (6)0.1255 (4)0.5153 (6)0.064 (2)0.31 (8)
C30.2250 (6)0.6736 (4)0.2436 (5)0.065 (2)0.70 (8)
N30.2810 (7)0.6341 (4)0.1838 (5)0.072 (2)0.70 (8)
C3N0.2250 (6)0.6736 (4)0.2436 (5)0.065 (2)0.30 (8)
N3C0.2810 (7)0.6341 (4)0.1838 (5)0.072 (2)0.30 (8)
C40.2166 (6)0.1360 (4)0.3143 (5)0.070 (2)0.65 (8)
N40.2754 (7)0.1768 (4)0.2599 (5)0.067 (2)0.65 (8)
C4N0.2166 (6)0.1360 (4)0.3143 (5)0.070 (2)0.35 (8)
N4C0.2754 (7)0.1768 (4)0.2599 (5)0.067 (2)0.35 (8)
C50.3725 (6)0.4402 (5)0.1119 (6)0.0741 (19)0.5
N50.3719 (6)0.3657 (5)0.1318 (5)0.0722 (18)0.5
C5N0.3725 (6)0.4402 (5)0.1119 (6)0.0741 (19)0.5
N5C0.3719 (6)0.3657 (5)0.1318 (5)0.0722 (18)0.5
C60.4684 (7)0.6317 (5)0.0145 (6)0.068 (3)0.79 (8)
N60.5232 (6)0.6729 (4)0.0720 (5)0.073 (2)0.79 (8)
C6N0.4684 (7)0.6317 (5)0.0145 (6)0.068 (3)0.21 (8)
N6C0.5232 (6)0.6729 (4)0.0720 (5)0.073 (2)0.21 (8)
O110.2742 (4)0.3548 (3)0.7144 (3)0.0645 (11)
C120.1803 (7)0.2945 (6)0.7398 (6)0.087 (2)
H12A0.1931030.2377100.7050790.130*
H12B0.1035700.3184240.7148130.130*
C130.1774 (6)0.2804 (6)0.8570 (6)0.0756 (19)
H130.1518930.3362240.8899990.091*
N140.3041 (5)0.2619 (5)0.8902 (5)0.086 (2)
H14A0.3231500.2054750.8759830.103*
H14B0.3141700.2708140.9590860.103*
C150.0893 (8)0.2057 (8)0.8872 (8)0.122 (4)
H15A0.0103760.2186080.8564360.183*
H15B0.1165890.1494590.8581930.183*
C160.0792 (12)0.1963 (12)1.0034 (10)0.186 (7)
H16A0.0235360.1491571.0184960.279*
H16B0.1567870.1822881.0340680.279*
H16C0.0506010.2514191.0323110.279*
O210.4974 (4)0.4360 (3)0.7441 (4)0.0777 (14)
C220.6035 (6)0.4630 (5)0.8017 (6)0.0705 (18)
H22A0.5844890.5119260.8485750.106*
H22B0.6637820.4836640.7535060.106*
C230.6513 (5)0.3858 (4)0.8637 (5)0.0548 (15)
H230.6852620.3430040.8142790.066*
N240.5486 (5)0.3439 (5)0.9111 (5)0.0836 (18)
H24A0.5301990.3730360.9695480.100*
H24B0.5668030.2877290.9284350.100*
C25A0.7491 (7)0.4097 (6)0.9434 (6)0.087 (2)0.615 (19)
H25A0.7158320.4527180.9918010.131*0.615 (19)
H25B0.7682780.3562410.9836950.131*0.615 (19)
C26A0.8629 (12)0.4466 (11)0.9055 (12)0.105 (6)0.615 (19)
H26A0.9164150.4585700.9643090.158*0.615 (19)
H26B0.8996460.4041460.8596380.158*0.615 (19)
H26C0.8469530.5010750.8677830.158*0.615 (19)
C25B0.7491 (7)0.4097 (6)0.9434 (6)0.087 (2)0.385 (19)
H25C0.8125590.4417430.9083860.131*0.385 (19)
H25D0.7160010.4493160.9956930.131*0.385 (19)
C26B0.800 (3)0.333 (3)0.995 (3)0.183 (19)0.385 (19)
H26D0.8612080.3518901.0447540.275*0.385 (19)
H26E0.7376980.3018331.0312500.275*0.385 (19)
H26F0.8342630.2942600.9439350.275*0.385 (19)
O310.4789 (3)0.5107 (4)0.5782 (3)0.0656 (11)
H310.463 (3)0.482 (4)0.629 (2)0.098*
C320.5749 (7)0.4743 (6)0.5192 (6)0.088 (3)
H32A0.5672850.4098060.5153610.132*
H32B0.6516780.4885030.5533970.132*
C330.5695 (7)0.5132 (7)0.4117 (6)0.090 (2)
H330.5881820.5771330.4166930.108*
N340.4426 (5)0.5031 (5)0.3742 (4)0.0810 (16)
H34A0.4332500.4501120.3431490.097*
H34B0.4251590.5452580.3269370.097*
C350.6643 (9)0.4674 (11)0.3387 (8)0.143 (5)
H35A0.7412670.4639560.3763840.214*
H35B0.6382420.4068050.3232810.214*
C360.6806 (13)0.5143 (16)0.2409 (11)0.211 (8)
H36A0.7390510.4834140.2001140.316*
H36B0.6052660.5167900.2022620.316*
H36C0.7083480.5739730.2553950.316*
O410.3128 (6)0.6792 (4)0.5131 (5)0.0905 (16)
H410.389 (2)0.678 (6)0.522 (4)0.08 (3)*
C420.2553 (9)0.6937 (6)0.6109 (7)0.092 (2)
H42A0.1707830.7066890.5970840.138*
H42B0.2911880.7456250.6450290.138*
C430.2652 (7)0.6162 (5)0.6833 (6)0.0704 (18)
H430.3493050.6105670.7077660.084*
N440.2308 (5)0.5340 (3)0.6244 (4)0.0595 (13)
H44A0.1532480.5376590.6052690.071*
H44B0.2394580.4871690.6670420.071*
C450.1859 (9)0.6301 (6)0.7794 (7)0.095 (2)
H45A0.2140130.6829830.8167580.142*
H45B0.1040460.6416920.7545870.142*
C460.1839 (11)0.5535 (8)0.8555 (8)0.127 (4)
H46A0.1324510.5680380.9124920.190*
H46B0.1538720.5009870.8201250.190*
H46C0.2640760.5423670.8824300.190*
O510.2942 (4)0.3516 (3)0.5143 (3)0.0560 (9)
H510.291 (3)0.356 (3)0.5790 (19)0.027 (12)*
C520.1759 (5)0.3430 (4)0.4693 (5)0.0578 (14)
H52A0.1175610.3637660.5192000.087*
H52B0.1594210.2805020.4544840.087*
C530.1630 (5)0.3962 (4)0.3695 (5)0.0533 (14)
H530.2265670.3773310.3222180.064*
N540.1840 (5)0.4926 (3)0.3971 (4)0.0601 (14)
H54A0.1186350.5138740.4275770.072*
H54B0.1940890.5234400.3381580.072*
C550.0431 (7)0.3810 (6)0.3142 (6)0.082 (2)
H55A0.0344080.3175270.3000180.123*
H55B0.0202290.3979820.3613280.123*
C560.0252 (9)0.4310 (8)0.2130 (7)0.112 (3)
H56A0.0529890.4175120.1831500.169*
H56B0.0312570.4940450.2261580.169*
H56C0.0859930.4134440.1647370.169*
O10.4541 (8)0.2308 (8)0.4517 (12)0.197 (5)
H1A0.423 (13)0.282 (4)0.457 (14)0.237*
H1B0.396 (9)0.195 (8)0.446 (15)0.237*
O20.4949 (10)0.2175 (9)0.6993 (9)0.186 (4)
H2A0.493 (13)0.235 (13)0.632 (5)0.224*
H2B0.574 (4)0.224 (12)0.710 (11)0.224*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0717 (5)0.0490 (4)0.0752 (5)0.0008 (4)0.0231 (4)0.0030 (4)
Cu20.0585 (5)0.0502 (4)0.0764 (5)0.0024 (4)0.0170 (4)0.0054 (4)
Cu30.0797 (6)0.0571 (5)0.0638 (5)0.0017 (4)0.0217 (4)0.0020 (4)
Cu40.0902 (6)0.0590 (5)0.0625 (5)0.0025 (4)0.0238 (4)0.0030 (4)
Cu50.0527 (4)0.0638 (5)0.0564 (4)0.0085 (4)0.0025 (3)0.0137 (4)
Cu60.0534 (4)0.0505 (4)0.0588 (4)0.0034 (3)0.0018 (3)0.0070 (3)
C10.063 (4)0.059 (5)0.079 (4)0.003 (3)0.022 (3)0.003 (3)
N10.064 (4)0.052 (5)0.078 (4)0.004 (3)0.022 (3)0.004 (3)
C1N0.063 (4)0.059 (5)0.079 (4)0.003 (3)0.022 (3)0.003 (3)
N1C0.064 (4)0.052 (5)0.078 (4)0.004 (3)0.022 (3)0.004 (3)
C20.059 (4)0.045 (3)0.082 (4)0.008 (3)0.028 (3)0.007 (3)
N20.062 (4)0.045 (4)0.087 (5)0.011 (3)0.024 (4)0.002 (3)
C2N0.059 (4)0.045 (3)0.082 (4)0.008 (3)0.028 (3)0.007 (3)
N2C0.062 (4)0.045 (4)0.087 (5)0.011 (3)0.024 (4)0.002 (3)
C30.080 (5)0.042 (4)0.074 (5)0.002 (3)0.024 (4)0.008 (3)
N30.099 (5)0.047 (3)0.073 (4)0.003 (3)0.037 (4)0.004 (3)
C3N0.080 (5)0.042 (4)0.074 (5)0.002 (3)0.024 (4)0.008 (3)
N3C0.099 (5)0.047 (3)0.073 (4)0.003 (3)0.037 (4)0.004 (3)
C40.094 (5)0.039 (3)0.079 (4)0.001 (3)0.038 (4)0.010 (3)
N40.091 (5)0.046 (4)0.066 (4)0.007 (3)0.032 (4)0.004 (3)
C4N0.094 (5)0.039 (3)0.079 (4)0.001 (3)0.038 (4)0.010 (3)
N4C0.091 (5)0.046 (4)0.066 (4)0.007 (3)0.032 (4)0.004 (3)
C50.087 (5)0.061 (5)0.075 (4)0.001 (3)0.032 (4)0.001 (4)
N50.094 (5)0.055 (5)0.069 (4)0.004 (3)0.031 (3)0.003 (3)
C5N0.087 (5)0.061 (5)0.075 (4)0.001 (3)0.032 (4)0.001 (4)
N5C0.094 (5)0.055 (5)0.069 (4)0.004 (3)0.031 (3)0.003 (3)
C60.085 (5)0.060 (4)0.062 (4)0.002 (4)0.025 (4)0.012 (3)
N60.090 (5)0.059 (4)0.072 (4)0.006 (3)0.037 (4)0.005 (3)
C6N0.085 (5)0.060 (4)0.062 (4)0.002 (4)0.025 (4)0.012 (3)
N6C0.090 (5)0.059 (4)0.072 (4)0.006 (3)0.037 (4)0.005 (3)
O110.056 (2)0.075 (3)0.063 (2)0.013 (2)0.0006 (18)0.017 (2)
C120.063 (4)0.113 (6)0.083 (5)0.030 (4)0.010 (4)0.035 (5)
C130.057 (4)0.090 (5)0.080 (5)0.015 (4)0.005 (3)0.021 (4)
N140.073 (4)0.108 (5)0.075 (4)0.026 (3)0.009 (3)0.034 (4)
C150.078 (6)0.163 (10)0.125 (7)0.050 (6)0.005 (5)0.050 (7)
C160.152 (11)0.261 (19)0.145 (9)0.095 (12)0.027 (9)0.079 (11)
O210.070 (3)0.083 (3)0.080 (3)0.026 (2)0.013 (2)0.034 (3)
C220.069 (4)0.059 (4)0.083 (5)0.015 (3)0.008 (4)0.007 (4)
C230.056 (4)0.052 (4)0.057 (3)0.005 (3)0.007 (3)0.003 (3)
N240.071 (4)0.106 (5)0.073 (4)0.029 (4)0.009 (3)0.037 (4)
C25A0.073 (5)0.103 (6)0.085 (5)0.020 (4)0.009 (4)0.006 (4)
C26A0.066 (8)0.143 (13)0.106 (11)0.030 (8)0.031 (7)0.024 (10)
C25B0.073 (5)0.103 (6)0.085 (5)0.020 (4)0.009 (4)0.006 (4)
C26B0.20 (3)0.15 (2)0.19 (3)0.01 (2)0.14 (3)0.01 (2)
O310.049 (2)0.084 (3)0.063 (2)0.008 (2)0.0015 (19)0.021 (3)
C320.053 (4)0.133 (8)0.079 (5)0.003 (4)0.006 (4)0.022 (5)
C330.069 (4)0.122 (6)0.079 (5)0.026 (5)0.012 (4)0.008 (5)
N340.076 (4)0.102 (5)0.066 (3)0.001 (4)0.004 (3)0.015 (3)
C350.079 (6)0.240 (16)0.111 (8)0.006 (8)0.029 (6)0.028 (8)
C360.159 (12)0.33 (2)0.145 (11)0.043 (15)0.058 (10)0.041 (13)
O410.105 (5)0.073 (3)0.093 (4)0.018 (3)0.009 (3)0.007 (3)
C420.116 (7)0.062 (5)0.099 (6)0.001 (4)0.007 (5)0.015 (4)
C430.073 (4)0.062 (4)0.076 (4)0.002 (3)0.006 (3)0.017 (3)
N440.059 (3)0.056 (3)0.063 (3)0.001 (2)0.001 (2)0.004 (2)
C450.108 (6)0.089 (6)0.087 (5)0.012 (5)0.006 (5)0.022 (4)
C460.147 (9)0.134 (9)0.100 (7)0.007 (7)0.033 (7)0.009 (6)
O510.060 (2)0.052 (2)0.056 (2)0.005 (2)0.0057 (18)0.003 (2)
C520.058 (3)0.048 (3)0.068 (3)0.005 (3)0.011 (3)0.008 (3)
C530.054 (3)0.047 (3)0.059 (3)0.005 (3)0.009 (3)0.004 (3)
N540.064 (3)0.046 (3)0.070 (3)0.009 (2)0.009 (3)0.000 (2)
C550.071 (4)0.088 (5)0.086 (5)0.005 (4)0.010 (4)0.017 (4)
C560.100 (7)0.150 (10)0.086 (6)0.009 (6)0.030 (5)0.008 (5)
O10.133 (7)0.163 (8)0.291 (12)0.067 (6)0.082 (8)0.123 (9)
O20.173 (9)0.171 (10)0.213 (10)0.032 (7)0.049 (8)0.058 (9)
Geometric parameters (Å, º) top
Cu1—C31.904 (7)C26A—H26C0.9600
Cu1—C11.930 (7)C25B—C26B1.43 (3)
Cu1—C2i1.949 (6)C25B—H25C0.9700
Cu2—N21.912 (7)C25B—H25D0.9700
Cu2—N1ii1.915 (7)C26B—H26D0.9600
Cu2—C41.954 (7)C26B—H26E0.9600
Cu3—C61.912 (8)C26B—H26F0.9600
Cu3—C51.922 (8)O31—C321.427 (9)
Cu3—N31.947 (7)O31—H310.80 (3)
Cu4—N41.897 (7)C32—C331.486 (11)
Cu4—N51.929 (8)C32—H32A0.9700
Cu4—N6iii1.945 (7)C32—H32B0.9700
Cu5—O211.901 (4)C33—N341.483 (9)
Cu5—O111.904 (4)C33—C351.578 (14)
Cu5—N141.984 (6)C33—H330.9800
Cu5—N241.994 (5)N34—H34A0.8900
Cu5—O22.582 (12)N34—H34B0.8900
Cu6—O311.956 (4)C35—C361.443 (16)
Cu6—N342.015 (6)C35—H35A0.9700
Cu6—N542.025 (5)C35—H35B0.9700
Cu6—N442.027 (5)C36—H36A0.9600
Cu6—O512.453 (5)C36—H36B0.9600
Cu6—O412.508 (6)C36—H36C0.9600
C1—N11.135 (8)O41—C421.429 (10)
C2—N21.150 (8)O41—H410.86 (3)
C3—N31.158 (8)C42—C431.483 (11)
C4—N41.141 (8)C42—H42A0.9700
C5—N51.142 (8)C42—H42B0.9700
C6—N61.144 (8)C43—N441.485 (8)
O11—C121.422 (8)C43—C451.538 (11)
C12—C131.506 (10)C43—H430.9800
C12—H12A0.9700N44—H44A0.8900
C12—H12B0.9700N44—H44B0.8900
C13—N141.484 (9)C45—C461.501 (13)
C13—C151.540 (11)C45—H45A0.9700
C13—H130.9800C45—H45B0.9700
N14—H14A0.8900C46—H46A0.9600
N14—H14B0.8900C46—H46B0.9600
C15—C161.492 (14)C46—H46C0.9600
C15—H15A0.9700O51—C521.424 (7)
C15—H15B0.9700O51—H510.83 (2)
C16—H16A0.9600C52—C531.503 (9)
C16—H16B0.9600C52—H52A0.9700
C16—H16C0.9600C52—H52B0.9700
O21—C221.430 (8)C53—N541.500 (8)
C22—C231.489 (9)C53—C551.506 (9)
C22—H22A0.9700C53—H530.9800
C22—H22B0.9700N54—H54A0.8900
C23—N241.447 (8)N54—H54B0.8900
C23—C25B1.509 (10)C55—C561.498 (12)
C23—C25A1.509 (10)C55—H55A0.9700
C23—H230.9800C55—H55B0.9700
N24—H24A0.8900C56—H56A0.9600
N24—H24B0.8900C56—H56B0.9600
C25A—C26A1.471 (15)C56—H56C0.9600
C25A—H25A0.9700O1—H1A0.84 (3)
C25A—H25B0.9700O1—H1B0.84 (3)
C26A—H26A0.9600O2—H2A0.90 (3)
C26A—H26B0.9600O2—H2B0.89 (3)
C3—Cu1—C1128.4 (2)C26B—C25B—H25C109.0
C3—Cu1—C2i117.1 (3)C23—C25B—H25C109.0
C1—Cu1—C2i114.3 (2)C26B—C25B—H25D109.0
N2—Cu2—N1ii126.2 (2)C23—C25B—H25D109.0
N2—Cu2—C4117.2 (2)H25C—C25B—H25D107.8
N1ii—Cu2—C4116.6 (2)C25B—C26B—H26D109.5
C6—Cu3—C5129.4 (3)C25B—C26B—H26E109.5
C6—Cu3—N3118.2 (3)H26D—C26B—H26E109.5
C5—Cu3—N3112.3 (3)C25B—C26B—H26F109.5
N4—Cu4—N5128.5 (3)H26D—C26B—H26F109.5
N4—Cu4—N6iii119.3 (3)H26E—C26B—H26F109.5
N5—Cu4—N6iii111.8 (3)C32—O31—Cu6110.9 (4)
O21—Cu5—O1193.70 (19)C32—O31—H31114 (3)
O21—Cu5—N14173.1 (3)Cu6—O31—H31104 (3)
O11—Cu5—N1485.8 (2)O31—C32—C33108.8 (7)
O21—Cu5—N2483.0 (2)O31—C32—H32A109.9
O11—Cu5—N24176.0 (3)C33—C32—H32A109.9
N14—Cu5—N2497.2 (2)O31—C32—H32B109.9
O21—Cu5—O294.2 (3)C33—C32—H32B109.9
O11—Cu5—O289.9 (3)H32A—C32—H32B108.3
N14—Cu5—O292.7 (4)N34—C33—C32105.7 (6)
N24—Cu5—O292.6 (3)N34—C33—C35114.1 (7)
O31—Cu6—N3482.5 (2)C32—C33—C35111.1 (8)
O31—Cu6—N54169.3 (2)N34—C33—H33108.6
N34—Cu6—N5491.7 (2)C32—C33—H33108.6
O31—Cu6—N4491.45 (19)C35—C33—H33108.6
N34—Cu6—N44172.1 (3)C33—N34—Cu6111.0 (4)
N54—Cu6—N4495.1 (2)C33—N34—H34A109.4
O31—Cu6—O5193.57 (19)Cu6—N34—H34A109.4
N34—Cu6—O5196.3 (2)C33—N34—H34B109.4
N54—Cu6—O5178.11 (17)Cu6—N34—H34B109.4
N44—Cu6—O5189.00 (17)H34A—N34—H34B108.0
O31—Cu6—O4191.4 (2)C36—C35—C33113.4 (13)
N34—Cu6—O41100.9 (3)C36—C35—H35A108.9
N54—Cu6—O4198.56 (19)C33—C35—H35A108.9
N44—Cu6—O4174.1 (2)C36—C35—H35B108.9
O51—Cu6—O41162.51 (17)C33—C35—H35B108.9
N1—C1—Cu1178.6 (6)H35A—C35—H35B107.7
C1—N1—Cu2iv175.5 (6)C35—C36—H36A109.5
N2—C2—Cu1v170.1 (6)C35—C36—H36B109.5
C2—N2—Cu2175.7 (7)H36A—C36—H36B109.5
N3—C3—Cu1178.4 (5)C35—C36—H36C109.5
C3—N3—Cu3178.8 (6)H36A—C36—H36C109.5
N4—C4—Cu2178.5 (6)H36B—C36—H36C109.5
C4—N4—Cu4177.0 (6)C42—O41—Cu6105.5 (5)
N5—C5—Cu3177.0 (7)C42—O41—H41111 (3)
C5—N5—Cu4179.3 (6)Cu6—O41—H4185 (6)
N6—C6—Cu3177.6 (6)O41—C42—C43113.2 (7)
C6—N6—Cu4vi175.7 (7)O41—C42—H42A108.9
C12—O11—Cu5111.5 (4)C43—C42—H42A108.9
O11—C12—C13110.4 (6)O41—C42—H42B108.9
O11—C12—H12A109.6C43—C42—H42B108.9
C13—C12—H12A109.6H42A—C42—H42B107.7
O11—C12—H12B109.6C42—C43—N44108.6 (6)
C13—C12—H12B109.6C42—C43—C45110.7 (7)
H12A—C12—H12B108.1N44—C43—C45111.6 (6)
N14—C13—C12105.3 (6)C42—C43—H43108.6
N14—C13—C15113.4 (7)N44—C43—H43108.6
C12—C13—C15112.3 (7)C45—C43—H43108.6
N14—C13—H13108.6C43—N44—Cu6113.9 (4)
C12—C13—H13108.6C43—N44—H44A108.8
C15—C13—H13108.6Cu6—N44—H44A108.8
C13—N14—Cu5107.1 (4)C43—N44—H44B108.8
C13—N14—H14A110.3Cu6—N44—H44B108.8
Cu5—N14—H14A110.3H44A—N44—H44B107.7
C13—N14—H14B110.3C46—C45—C43115.3 (7)
Cu5—N14—H14B110.3C46—C45—H45A108.4
H14A—N14—H14B108.5C43—C45—H45A108.4
C16—C15—C13112.4 (9)C46—C45—H45B108.4
C16—C15—H15A109.1C43—C45—H45B108.4
C13—C15—H15A109.1H45A—C45—H45B107.5
C16—C15—H15B109.1C45—C46—H46A109.5
C13—C15—H15B109.1C45—C46—H46B109.5
H15A—C15—H15B107.9H46A—C46—H46B109.5
C15—C16—H16A109.5C45—C46—H46C109.5
C15—C16—H16B109.5H46A—C46—H46C109.5
H16A—C16—H16B109.5H46B—C46—H46C109.5
C15—C16—H16C109.5C52—O51—Cu6101.1 (3)
H16A—C16—H16C109.5C52—O51—H51110 (2)
H16B—C16—H16C109.5Cu6—O51—H5192 (4)
C22—O21—Cu5114.1 (4)O51—C52—C53111.0 (5)
O21—C22—C23109.3 (5)O51—C52—H52A109.4
O21—C22—H22A109.8C53—C52—H52A109.4
C23—C22—H22A109.8O51—C52—H52B109.4
O21—C22—H22B109.8C53—C52—H52B109.4
C23—C22—H22B109.8H52A—C52—H52B108.0
H22A—C22—H22B108.3N54—C53—C52107.5 (5)
N24—C23—C22106.4 (5)N54—C53—C55112.6 (5)
N24—C23—C25B112.6 (6)C52—C53—C55112.2 (5)
C22—C23—C25B114.4 (6)N54—C53—H53108.1
N24—C23—C25A112.6 (6)C52—C53—H53108.1
C22—C23—C25A114.4 (6)C55—C53—H53108.1
N24—C23—H23107.7C53—N54—Cu6113.7 (4)
C22—C23—H23107.7C53—N54—H54A108.8
C25A—C23—H23107.7Cu6—N54—H54A108.8
C23—N24—Cu5110.2 (4)C53—N54—H54B108.8
C23—N24—H24A109.6Cu6—N54—H54B108.8
Cu5—N24—H24A109.6H54A—N54—H54B107.7
C23—N24—H24B109.6C56—C55—C53114.9 (7)
Cu5—N24—H24B109.6C56—C55—H55A108.5
H24A—N24—H24B108.1C53—C55—H55A108.5
C26A—C25A—C23118.5 (8)C56—C55—H55B108.5
C26A—C25A—H25A107.7C53—C55—H55B108.5
C23—C25A—H25A107.7H55A—C55—H55B107.5
C26A—C25A—H25B107.7C55—C56—H56A109.5
C23—C25A—H25B107.7C55—C56—H56B109.5
H25A—C25A—H25B107.1H56A—C56—H56B109.5
C25A—C26A—H26A109.5C55—C56—H56C109.5
C25A—C26A—H26B109.5H56A—C56—H56C109.5
H26A—C26A—H26B109.5H56B—C56—H56C109.5
C25A—C26A—H26C109.5H1A—O1—H1B106 (5)
H26A—C26A—H26C109.5Cu5—O2—H2A108 (10)
H26B—C26A—H26C109.5Cu5—O2—H2B103 (10)
C26B—C25B—C23112.8 (14)H2A—O2—H2B96 (4)
Cu5—O11—C12—C1331.8 (8)O31—C32—C33—C35173.5 (8)
O11—C12—C13—N1448.1 (9)C32—C33—N34—Cu632.6 (9)
O11—C12—C13—C15171.9 (8)C35—C33—N34—Cu6155.1 (7)
C12—C13—N14—Cu541.0 (7)N34—C33—C35—C3672.6 (14)
C15—C13—N14—Cu5164.1 (7)C32—C33—C35—C36167.9 (11)
N14—C13—C15—C1665.2 (13)Cu6—O41—C42—C4321.0 (8)
C12—C13—C15—C16175.6 (10)O41—C42—C43—N4448.5 (9)
Cu5—O21—C22—C2330.5 (7)O41—C42—C43—C45171.4 (7)
O21—C22—C23—N2444.1 (8)C42—C43—N44—Cu656.3 (7)
O21—C22—C23—C25B169.0 (6)C45—C43—N44—Cu6178.6 (5)
O21—C22—C23—C25A169.0 (6)C42—C43—C45—C46176.9 (8)
C22—C23—N24—Cu538.3 (7)N44—C43—C45—C4655.8 (10)
C25B—C23—N24—Cu5164.4 (6)Cu6—O51—C52—C5343.5 (5)
C25A—C23—N24—Cu5164.4 (6)O51—C52—C53—N5461.6 (6)
N24—C23—C25A—C26A175.4 (10)O51—C52—C53—C55174.1 (5)
C22—C23—C25A—C26A62.9 (12)C52—C53—N54—Cu645.2 (5)
N24—C23—C25B—C26B63 (2)C55—C53—N54—Cu6169.3 (5)
C22—C23—C25B—C26B175 (2)N54—C53—C55—C5659.6 (9)
Cu6—O31—C32—C3344.0 (8)C52—C53—C55—C56179.0 (7)
O31—C32—C33—N3449.2 (10)
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1, z; (iii) x+1, y1/2, z; (iv) x, y+1, z; (v) x, y1/2, z+1; (vi) x+1, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O210.80 (3)1.66 (2)2.393 (6)152 (4)
O51—H51···O110.83 (2)1.74 (3)2.562 (6)174 (5)
N44—H44B···O110.892.102.950 (7)159
O41—H41···O1vii0.86 (3)1.93 (5)2.726 (10)154 (9)
N54—H54A···C2i0.892.513.180 (7)133
O1—H1A···O510.84 (3)1.93 (10)2.669 (9)146 (16)
O2—H2B···N3viii0.89 (3)2.47 (12)3.125 (13)130 (13)
Symmetry codes: (i) x, y+1/2, z+1; (vii) x+1, y+1/2, z+1; (viii) x+1, y1/2, z+1.
 

Acknowledgements

We gratefully acknowledge support from the Chemistry Department at Fordham University

References

First citationBenmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308–1314.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationColacio, E., Kivekäs, R., Lloret, F., Sunberg, M., Suarez-Varela, J., Bardají, M. & Laguna, A. (2002). Inorg. Chem. 41, 5141–5149.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCorfield, P., Carlson, A., DaCunha, T., Eisha, N., Varona, A. M. F. & Garcia, D. (2022). Acta Cryst. A78, a192.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCorfield, P. W. R., Elsayed, A., DaCunha, T. & Bender, C. (2024). Acta Cryst. C80, 212–220.  CrossRef IUCr Journals Google Scholar
First citationCorfield, P. W. R. & Sabatino, A. (2017). Acta Cryst. E73, 141–146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtaiw, S. H., Abdou, S. N. & Badr El-din, A. S. (2015). J. Inorg. Organomet. Polym. 25, 1394–1406.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIwai, Y., Imamura, Y., Nakaya, M., Inada, M., Le Ouay, B., Ohba, M. & Ohtani, R. (2023). Inorg. Chem. 62, 18707–18713.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLim, M. J., Murray, C. A., Tronic, T. A., deKrafft, K. E., Ley, A. N., deButts, J. C., Pike, R. D., Lu, H. & Patterson, H. H. (2008). Inorg. Chem. 47, 6931–6947.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1997). KappaCCD Server Software for Windows. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPike, R. D. (2012). Organometallics, 31, 7647–7660.  Web of Science CrossRef CAS Google Scholar
First citationPretsch, T. & Hartl, H. (2004). Z. Anorg. Allge Chem. 630, 1581–1588.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, R. J., Larson, A. C. & Cromer, D. T. (1972). Acta Cryst. B28, 858–864.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146