metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[1-(Anthracen-9-ylmeth­yl)-1,4,7,10-tetra­aza­cyclododeca­ne]chlorido­zinc(II) nitrate

crossmark logo

aFaculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan, and bCollege of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
*Correspondence e-mail: h-kurosaki@kinjo-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 July 2024; accepted 5 July 2024; online 12 July 2024)

In the title salt, [ZnCl(C23H30N4)]NO3, the central ZnII atom of the complex cation is coordinated in a square-pyramidal arrangement by four nitro­gen atoms from cyclen (1,4,7,10-tetra­aza­cyclo­dodeca­ne) in the basal plane and one chlorido ligand in the apical position. The anthracene group attached to cyclen contributes to the crystal packing through inter­molecular T-shaped π inter­actions. Additionally, the nitrate anion participates in inter­molecular N—H⋯O hydrogen bonds with cyclen.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Complexes of 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen or [12]aneN4) derivatives with ZnII have been used as biological probes to elucidate the intrinsic roles of ZnII in enzyme models such as phosphatase, alcohol de­hydrogenase, and β-lactamase (Koike & Kimura, 1991[Koike, T. & Kimura, E. (1991). J. Am. Chem. Soc. 113, 8935-8941.]; Koike et al., 1994[Koike, T., Takamura, M. & Kimura, E. (1994). J. Am. Chem. Soc. 116, 8443-8449.]; Kimura et al., 1992[Kimura, E., Shionoya, M., Hoshino, A., Ikeda, T. & Yamada, Y. (1992). J. Am. Chem. Soc. 114, 10134-10137.]). Cyclen conjugated with the anthracenyl methyl group, 1-(anthracen-9-ylmeth­yl)-1,4,7,10-tetra­aza­cyclo­dodecane, has been developed as a fluorescent chemosensor for detecting pH and transition-metal cations in aqueous solution (Akkaya et al., 1990[Akkaya, E. U., Huston, M. E. & Czarnik, A. W. (1990). J. Am. Chem. Soc. 112, 3590-3593.]; Huston et al., 1990[Huston, M. E., Engleman, C. & Czarnik, A. W. (1990). J. Am. Chem. Soc. 112, 7054-7056.]). In this context, we present the crystal structure of the title salt, [ZnCl(C23H30N4)]NO3.

The crystal structure of the title compound comprises a [Zn(C23H30N4)Cl]+ complex cation and a nitrate anion (Fig. 1[link]). The coordination environment around the ZnII atom is slightly distorted square-pyramidal, with the coordination geometry index (Addison et al., 1984[Addison, W. A., Rao, N. T., van Reedijk, J., Rijn, J. & Verschoor, C. G. (1984). J. Chem. Soc. Dalton Trans. 7, 349-1356.]), τ = (β − α) / 60° = 0.08, where α [132.23 (9)°] and β [136.98 (8)°] are the second-largest and largest angles around the central ZnII atom, respectively. A τ value of 0 corresponds to an ideal square pyramid, while a value of 1 corresponds to an ideal trigonal bipyramid. The four nitro­gen atoms N1, N2, N3, and N4 of cyclen form the basal plane, with the chlorido ligand occupying the apical position. The mean Zn1—N bond length of 2.16 Å (Fig. 2[link]) is comparable to that (2.13 Å) observed in the crystal structure of the salt Zn(C23H30N4)]+(ClO4)2− (Ichimaru et al., 2021[Ichimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCrData, 6, x210397.]). The ZnII atom is displaced by 0.8306 (12) Å above the mean basal plane toward the apical chlorido ligand. The Zn—Cl bond length of 2.2464 (7) Å is comparable to that found in other ZnII–polyamine complexes with chlorido ligands, such as chlorido­(1,4,7,11-tetra­aza­cyclo­tetra­decane-N,N′,N′′,N′′′)zinc(II) perchlorate [2.2734 (8) Å; Lu et al., 1997[Lu, T.-H., Panneerselvam, K., Tung, S.-F., Chi, T.-Y. & Chung, C.-S. (1997). Acta Cryst. C53, 1780-1782.]] or bis­[μ-chlorido-(1,4,8,11-tetra­cyclo­tetra­deca­ne)zinc(II)] tetra­chlor­ido­zincate(II) hemihydrate [2.288 (5) Å; Alcock et al., 1992[Alcock, N. W., Berry, A. & Moore, P. (1992). Acta Cryst. C48, 16-19.]]. The presence of Cl as a ligand can be deduced from the synthesis conditions (see Synthesis and crystallization). The bromine salt of the ligand was freed by an anion-exchange resin. In this process, hydro­chloric acid was employed to regenerate the resin to its chloride anion form, which is the source of Cl binding to the ZnII atom.

[Figure 1]
Figure 1
The mol­ecular structures of the complex cation and the anion in the title salt with displacement ellipsoids drawn at the 50% probability level. C-bound H atoms are omitted for clarity; the hydrogen bond is represented as a red dotted line.
[Figure 2]
Figure 2
The coordination polyhedron around Zn1, with displacement ellipsoids drawn at the 50% probability level. Bond angles are depicted in red, whereas bond lengths are shown in black.

The anthracene group exhibits a slight deviation from planarity, with fold angles of 4.69 (10)° between the A (C2–C7) and B (C1, C2, C7, C8, C9, C14) rings and 2.78 (11)° between the B and C (C9–C14) rings. The torsion angle defined by Zn1—N1—C15—C1 is 170.33 (18)°, positioning the anthracene group away from the macrocyclic ring, thereby preventing repulsive inter­actions with the Cl atom. In the crystal, nitrate O1 forms inter­molecular hydrogen bonds with H2 of the ZnII complex and H3 of a neighboring mol­ecule. The hydrogen-bond distances O1⋯H2 and O1i⋯H3 are 1.985 and 2.16 Å (Table 1[link]). These inter­actions contribute to the formation of a spiral structure extending parallel to the b axis direction of the crystal. Additionally, inter­molecular T-shaped π inter­actions (Jin et al., 2022[Jin, M. Y., Zhen, Q., Xiao, D., Tao, G., Xing, X. Yu. P., Yu, P. & Xu, C. (2022). Nat. Commun. 13, 3276.]) occur between the anthracene ring and a neighboring anthracene ring [symmetry code: (ii): −x, [{1\over 2}] + y, [{1\over 2}] − z] (Fig. 3[link]). The distance between H8 and the centroid (Cg) of the middle ring of the neighboring anthracene ring is 2.96 Å, and the angle C8—H8⋯Cg is 152°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 1.00 1.98 2.983 (3) 175
N3—H3⋯O1i 1.00 2.16 3.025 (3) 144
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A schematic drawing of the T-shaped ππ inter­actions, with displacement ellipsoids drawn at the 50% probability level. Methyl­ene H atoms of cyclen rings and nitrate ions were omitted for clarity; T-shaped ππ inter­actions are depicted as green dotted lines.

Synthesis and crystallization

Under a nitro­gen atmosphere, 9-chloro­methyl­anthracene (2.40 g, 10.6 mmol) and 1,4,7-tris­(tert-butyl­oxycarbon­yl)-1,4,7,10-tetra­aza­cyclo­dodecane (3Boc-cyclen) (5.0 g, 10.6 mmol) (Kimura et al., 1997[Kimura, E., Aoki, S., Koike, T. & Shiro, M. (1997). J. Am. Chem. Soc. 119, 3068-3076.]) were dissolved in a mixture of aceto­nitrile (130 ml) and DMF (40 ml) and stirred at 373 K for 18 h in the presence of Na2CO3 (2.20 g, 12.1 mmol). After the reaction, CH2Cl2 (150 ml) was added to the reaction solution and extracted, the organic layer was washed with water (200 ml × 3) and dried with anhydrous Na2SO4, and the organic solvent was removed in vacuo to obtain the crude product. The residue was purified by silica gel column chromatography (3% MeOH–CH2Cl2) to obtain N-(9-anthra­cenylmeth­yl)-N′,N′′,N′′′-tris­(tert-butyl­oxycarbon­yl)-1,4,7,10-tetra­aza­cyclo­dodecane, N-Ant-(3Boc-cyclen), as a yellow solid (3.27 g, 47%). To an EtOH solution (30 ml) of N-Ant-(3Boc-cyclen) (1.00 g, 1.5 mmol), aqueous HBr (47%wt, 6 ml) was added and stirred at 273 K overnight. The resulting mixture was concentrated in vacuo below 308 K. The obtained residue was dissolved in water (2 ml) and washed with Et2O (10 ml × 3). Then, the aqueous layer was evaporated to dryness. The residue was neutralized by anion-exchange resin (Amberlite IRA-400, OH form), and the eluant was evaporated to obtain the desired ligand, N-Ant-cyclen, as a yellow amorphous solid (287 mg, 53%).

The title complex was prepared by adding a MeOH solution (1 ml) of Zn(NO3)2·6H2O (235 mg, 0.8 mmol) to a MeOH solution (5 ml) of N-Ant-cyclen (287 mg, 0.8 mmol). The mixture was heated, with stirring, at 323 K for 2 h and then concentrated. After the resulting residue was dissolved in a MeOH–water mixture (v/v = 1/1; 2 ml each) and filtrated, the filtrate was allowed to stand for 10 days at room temperature to obtain the title salt (286 mg, 84%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [ZnCl(C23H30N4)]NO3
Mr 525.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 93
a, b, c (Å) 15.9086 (1), 7.8088 (1), 19.5342 (2)
β (°) 106.157 (1)
V3) 2330.83 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.81
Crystal size (mm) 0.35 × 0.25 × 0.12
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-i
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.619, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21217, 4271, 4097
Rint 0.027
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.05
No. of reflections 4271
No. of parameters 298
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.65, −0.68
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

[1-(Anthracen-9-ylmethyl)-1,4,7,10-tetraazacyclododecane]chloridozinc(II) nitrate top
Crystal data top
C23H30ClN4Zn+·NO3F(000) = 1096
Mr = 525.34Dx = 1.497 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.9086 (1) ÅCell parameters from 16543 reflections
b = 7.8088 (1) Åθ = 2.4–68.3°
c = 19.5342 (2) ŵ = 2.81 mm1
β = 106.157 (1)°T = 93 K
V = 2330.83 (4) Å3Plate, yellow
Z = 40.35 × 0.25 × 0.12 mm
Data collection top
Rigaku XtaLAB Synergy-i
diffractometer
4097 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.027
ω scansθmax = 68.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 1919
Tmin = 0.619, Tmax = 1.000k = 99
21217 measured reflectionsl = 2322
4271 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0537P)2 + 5.0389P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4271 reflectionsΔρmax = 1.65 e Å3
298 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.38731 (2)0.45659 (4)0.35923 (2)0.01650 (12)
Cl10.48909 (4)0.66348 (8)0.38926 (4)0.02646 (17)
O10.38618 (12)0.6627 (3)0.16411 (10)0.0250 (4)
O20.35799 (13)0.6797 (3)0.04891 (10)0.0283 (4)
N10.24737 (14)0.5751 (3)0.32627 (12)0.0179 (4)
N20.34428 (15)0.3815 (3)0.25262 (12)0.0210 (5)
H20.3547590.4759400.2213850.025*
N30.44297 (14)0.2069 (3)0.37340 (13)0.0234 (5)
H30.5077150.2165240.3816550.028*
O30.27592 (15)0.5258 (4)0.09680 (12)0.0425 (6)
N40.34614 (15)0.3897 (3)0.44943 (12)0.0233 (5)
H40.3933280.4234020.4929370.028*
N50.33966 (14)0.6225 (3)0.10271 (12)0.0223 (5)
C10.18291 (16)0.8823 (3)0.30190 (14)0.0178 (5)
C20.13492 (16)0.9487 (3)0.34735 (14)0.0183 (5)
C70.06198 (17)1.0620 (3)0.31847 (15)0.0194 (5)
C170.24931 (17)0.3503 (3)0.23785 (15)0.0213 (5)
H17A0.2386130.2570670.2687440.026*
H17B0.2245180.3155130.1875160.026*
C150.26134 (16)0.7645 (3)0.33143 (14)0.0173 (5)
H15A0.3060940.7929980.3067410.021*
H15B0.2865790.7932430.3823890.021*
C80.03866 (17)1.1046 (3)0.24673 (15)0.0209 (5)
H80.0109011.1756290.2279580.025*
C90.08644 (17)1.0455 (3)0.20166 (15)0.0205 (5)
C140.16158 (17)0.9372 (3)0.22978 (14)0.0192 (5)
C60.01563 (17)1.1335 (3)0.36509 (15)0.0234 (6)
H60.0334181.2055010.3458670.028*
C160.20644 (18)0.5133 (4)0.25238 (15)0.0236 (6)
H16A0.2121980.6024080.2179200.028*
H16B0.1432950.4925200.2458180.028*
C100.06288 (19)1.0952 (4)0.12807 (15)0.0270 (6)
H100.0125701.1644270.1096070.032*
C130.21288 (19)0.8961 (3)0.18199 (15)0.0241 (6)
H130.2652760.8320900.1993110.029*
C30.15766 (17)0.9180 (4)0.42258 (14)0.0218 (5)
H3A0.2053600.8441300.4434900.026*
C50.04022 (18)1.1008 (4)0.43543 (16)0.0267 (6)
H50.0090871.1505590.4654720.032*
C190.40575 (18)0.1105 (4)0.30722 (16)0.0257 (6)
H19A0.3481530.0626040.3072870.031*
H19B0.4449450.0142390.3039470.031*
C40.11287 (18)0.9915 (4)0.46489 (15)0.0262 (6)
H4A0.1302870.9697050.5146990.031*
C200.4252 (2)0.1301 (4)0.43712 (16)0.0287 (6)
H20A0.4742310.1556580.4797270.034*
H20B0.4205190.0041670.4314760.034*
C210.34052 (19)0.2010 (4)0.44747 (16)0.0276 (6)
H21A0.2902320.1639870.4077470.033*
H21B0.3318150.1575110.4926070.033*
C180.39519 (19)0.2283 (4)0.24406 (16)0.0270 (6)
H18A0.4535010.2635820.2402780.032*
H18B0.3645690.1672010.1997240.032*
C220.26506 (19)0.4805 (4)0.45083 (15)0.0253 (6)
H22A0.2802050.5949580.4725240.030*
H22B0.2351270.4156360.4807640.030*
C230.20380 (17)0.5006 (4)0.37670 (16)0.0233 (6)
H23A0.1796880.3870980.3588800.028*
H23B0.1542740.5750600.3789890.028*
C120.1885 (2)0.9464 (4)0.11281 (17)0.0316 (7)
H120.2235740.9152330.0826040.038*
C110.1111 (2)1.0449 (4)0.08451 (17)0.0326 (7)
H110.0936601.0751280.0354680.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01667 (19)0.01153 (19)0.0223 (2)0.00095 (12)0.00709 (14)0.00115 (12)
Cl10.0282 (3)0.0217 (3)0.0285 (3)0.0034 (3)0.0061 (3)0.0003 (3)
O10.0227 (9)0.0308 (11)0.0192 (9)0.0042 (8)0.0023 (8)0.0008 (8)
O20.0308 (11)0.0339 (11)0.0207 (10)0.0004 (9)0.0078 (8)0.0065 (8)
N10.0166 (10)0.0125 (10)0.0242 (11)0.0007 (8)0.0053 (9)0.0022 (9)
N20.0226 (11)0.0188 (11)0.0233 (11)0.0027 (9)0.0092 (9)0.0002 (9)
N30.0175 (11)0.0171 (11)0.0329 (13)0.0024 (9)0.0026 (9)0.0025 (10)
O30.0292 (12)0.0666 (17)0.0279 (11)0.0246 (11)0.0017 (9)0.0031 (11)
N40.0245 (12)0.0216 (12)0.0244 (12)0.0023 (10)0.0079 (9)0.0047 (9)
N50.0195 (11)0.0242 (12)0.0229 (12)0.0011 (9)0.0052 (9)0.0005 (9)
C10.0161 (12)0.0106 (11)0.0259 (13)0.0026 (9)0.0043 (10)0.0008 (10)
C20.0144 (12)0.0138 (12)0.0253 (13)0.0024 (9)0.0033 (10)0.0015 (10)
C70.0154 (12)0.0138 (12)0.0272 (14)0.0021 (10)0.0027 (10)0.0019 (10)
C170.0224 (13)0.0163 (13)0.0246 (13)0.0023 (10)0.0055 (11)0.0013 (10)
C150.0152 (11)0.0123 (12)0.0246 (13)0.0003 (9)0.0056 (10)0.0015 (10)
C80.0165 (12)0.0133 (12)0.0309 (14)0.0004 (10)0.0029 (10)0.0015 (11)
C90.0190 (13)0.0137 (12)0.0267 (14)0.0025 (10)0.0030 (11)0.0026 (10)
C140.0195 (12)0.0109 (11)0.0268 (14)0.0032 (10)0.0060 (11)0.0005 (10)
C60.0176 (12)0.0173 (13)0.0343 (15)0.0012 (10)0.0056 (11)0.0037 (11)
C160.0223 (13)0.0164 (13)0.0277 (14)0.0004 (11)0.0002 (11)0.0010 (11)
C100.0258 (14)0.0223 (14)0.0309 (15)0.0005 (11)0.0047 (12)0.0077 (12)
C130.0289 (14)0.0153 (13)0.0300 (15)0.0029 (11)0.0111 (12)0.0036 (11)
C30.0157 (12)0.0226 (13)0.0249 (14)0.0010 (10)0.0022 (10)0.0006 (11)
C50.0208 (13)0.0277 (15)0.0324 (15)0.0011 (12)0.0084 (11)0.0086 (12)
C190.0216 (13)0.0184 (13)0.0363 (16)0.0023 (11)0.0066 (12)0.0066 (12)
C40.0215 (14)0.0308 (15)0.0244 (14)0.0004 (12)0.0032 (11)0.0030 (12)
C200.0331 (15)0.0173 (13)0.0297 (15)0.0034 (12)0.0012 (12)0.0033 (11)
C210.0303 (15)0.0228 (14)0.0285 (15)0.0033 (12)0.0062 (12)0.0079 (12)
C180.0262 (14)0.0263 (15)0.0327 (15)0.0018 (12)0.0151 (12)0.0081 (12)
C220.0295 (15)0.0220 (14)0.0284 (15)0.0003 (11)0.0146 (12)0.0009 (11)
C230.0193 (13)0.0188 (13)0.0356 (15)0.0001 (11)0.0138 (12)0.0035 (12)
C120.0414 (18)0.0260 (15)0.0320 (16)0.0036 (13)0.0177 (14)0.0051 (12)
C110.0415 (18)0.0297 (16)0.0260 (15)0.0025 (13)0.0084 (13)0.0092 (12)
Geometric parameters (Å, º) top
Zn1—Cl12.2466 (7)C9—C141.442 (4)
Zn1—N12.330 (2)C9—C101.435 (4)
Zn1—N22.087 (2)C14—C131.437 (4)
Zn1—N32.127 (2)C6—H60.9500
Zn1—N42.109 (2)C6—C51.344 (4)
O1—N51.261 (3)C16—H16A0.9900
O2—N51.249 (3)C16—H16B0.9900
N1—C151.495 (3)C10—H100.9500
N1—C161.489 (3)C10—C111.353 (4)
N1—C231.473 (3)C13—H130.9500
N2—H21.0000C13—C121.356 (4)
N2—C171.477 (3)C3—H3A0.9500
N2—C181.480 (4)C3—C41.359 (4)
N3—H31.0000C5—H50.9500
N3—C191.471 (4)C5—C41.423 (4)
N3—C201.478 (4)C19—H19A0.9900
O3—N51.244 (3)C19—H19B0.9900
N4—H41.0000C19—C181.510 (4)
N4—C211.476 (4)C4—H4A0.9500
N4—C221.479 (4)C20—H20A0.9900
C1—C21.420 (4)C20—H20B0.9900
C1—C151.528 (3)C20—C211.521 (4)
C1—C141.420 (4)C21—H21A0.9900
C2—C71.443 (4)C21—H21B0.9900
C2—C31.433 (4)C18—H18A0.9900
C7—C81.387 (4)C18—H18B0.9900
C7—C61.435 (4)C22—H22A0.9900
C17—H17A0.9900C22—H22B0.9900
C17—H17B0.9900C22—C231.512 (4)
C17—C161.508 (4)C23—H23A0.9900
C15—H15A0.9900C23—H23B0.9900
C15—H15B0.9900C12—H120.9500
C8—H80.9500C12—C111.426 (4)
C8—C91.392 (4)C11—H110.9500
Cl1—Zn1—N1110.50 (6)C7—C6—H6119.3
N2—Zn1—Cl1118.36 (6)C5—C6—C7121.3 (3)
N2—Zn1—N179.22 (8)C5—C6—H6119.3
N2—Zn1—N383.20 (9)N1—C16—C17110.9 (2)
N2—Zn1—N4132.23 (9)N1—C16—H16A109.4
N3—Zn1—Cl1112.42 (6)N1—C16—H16B109.5
N3—Zn1—N1136.98 (8)C17—C16—H16A109.4
N4—Zn1—Cl1109.19 (7)C17—C16—H16B109.4
N4—Zn1—N180.46 (8)H16A—C16—H16B108.0
N4—Zn1—N383.05 (9)C9—C10—H10119.5
C15—N1—Zn1105.17 (14)C11—C10—C9121.1 (3)
C16—N1—Zn1105.40 (15)C11—C10—H10119.5
C16—N1—C15113.8 (2)C14—C13—H13119.1
C23—N1—Zn1104.45 (15)C12—C13—C14121.7 (3)
C23—N1—C15115.8 (2)C12—C13—H13119.1
C23—N1—C16111.1 (2)C2—C3—H3A119.1
Zn1—N2—H2109.7C4—C3—C2121.8 (3)
C17—N2—Zn1105.96 (16)C4—C3—H3A119.1
C17—N2—H2109.7C6—C5—H5120.0
C17—N2—C18114.0 (2)C6—C5—C4120.0 (3)
C18—N2—Zn1107.57 (17)C4—C5—H5120.0
C18—N2—H2109.7N3—C19—H19A109.8
Zn1—N3—H3109.0N3—C19—H19B109.8
C19—N3—Zn1107.67 (16)N3—C19—C18109.4 (2)
C19—N3—H3109.0H19A—C19—H19B108.2
C19—N3—C20114.1 (2)C18—C19—H19A109.8
C20—N3—Zn1108.13 (17)C18—C19—H19B109.8
C20—N3—H3109.0C3—C4—C5120.8 (3)
Zn1—N4—H4108.1C3—C4—H4A119.6
C21—N4—Zn1104.84 (17)C5—C4—H4A119.6
C21—N4—H4108.1N3—C20—H20A109.6
C21—N4—C22115.6 (2)N3—C20—H20B109.6
C22—N4—Zn1111.83 (17)N3—C20—C21110.4 (2)
C22—N4—H4108.1H20A—C20—H20B108.1
O2—N5—O1119.9 (2)C21—C20—H20A109.6
O3—N5—O1119.1 (2)C21—C20—H20B109.6
O3—N5—O2121.0 (2)N4—C21—C20108.5 (2)
C2—C1—C15120.5 (2)N4—C21—H21A110.0
C2—C1—C14119.2 (2)N4—C21—H21B110.0
C14—C1—C15120.0 (2)C20—C21—H21A110.0
C1—C2—C7119.5 (2)C20—C21—H21B110.0
C1—C2—C3123.6 (2)H21A—C21—H21B108.4
C3—C2—C7116.7 (2)N2—C18—C19109.9 (2)
C8—C7—C2120.1 (2)N2—C18—H18A109.7
C8—C7—C6120.5 (2)N2—C18—H18B109.7
C6—C7—C2119.3 (2)C19—C18—H18A109.7
N2—C17—H17A110.0C19—C18—H18B109.7
N2—C17—H17B110.0H18A—C18—H18B108.2
N2—C17—C16108.4 (2)N4—C22—H22A109.3
H17A—C17—H17B108.4N4—C22—H22B109.3
C16—C17—H17A110.0N4—C22—C23111.4 (2)
C16—C17—H17B110.0H22A—C22—H22B108.0
N1—C15—C1118.7 (2)C23—C22—H22A109.3
N1—C15—H15A107.6C23—C22—H22B109.3
N1—C15—H15B107.6N1—C23—C22112.6 (2)
C1—C15—H15A107.6N1—C23—H23A109.1
C1—C15—H15B107.6N1—C23—H23B109.1
H15A—C15—H15B107.1C22—C23—H23A109.1
C7—C8—H8119.3C22—C23—H23B109.1
C7—C8—C9121.3 (2)H23A—C23—H23B107.8
C9—C8—H8119.3C13—C12—H12119.4
C8—C9—C14119.6 (2)C13—C12—C11121.3 (3)
C8—C9—C10120.5 (2)C11—C12—H12119.4
C10—C9—C14119.9 (3)C10—C11—C12119.5 (3)
C1—C14—C9119.9 (2)C10—C11—H11120.3
C1—C14—C13123.7 (2)C12—C11—H11120.3
C13—C14—C9116.4 (2)
Zn1—N1—C15—C1170.33 (18)C15—C1—C2—C32.8 (4)
Zn1—N1—C16—C1723.5 (2)C15—C1—C14—C9178.7 (2)
Zn1—N1—C23—C2237.1 (2)C15—C1—C14—C133.6 (4)
Zn1—N2—C17—C1658.9 (2)C8—C7—C6—C5176.5 (3)
Zn1—N2—C18—C1940.9 (2)C8—C9—C14—C14.2 (4)
Zn1—N3—C19—C1837.5 (2)C8—C9—C14—C13173.7 (2)
Zn1—N3—C20—C2129.3 (3)C8—C9—C10—C11176.9 (3)
Zn1—N4—C21—C2049.6 (2)C9—C14—C13—C124.5 (4)
Zn1—N4—C22—C2336.5 (3)C9—C10—C11—C122.3 (5)
N2—C17—C16—N155.4 (3)C14—C1—C2—C73.9 (4)
N3—C19—C18—N253.5 (3)C14—C1—C2—C3172.3 (2)
N3—C20—C21—N454.3 (3)C14—C1—C15—N190.1 (3)
N4—C22—C23—N151.2 (3)C14—C9—C10—C111.4 (4)
C1—C2—C7—C80.4 (4)C14—C13—C12—C111.0 (5)
C1—C2—C7—C6177.8 (2)C6—C7—C8—C9175.7 (2)
C1—C2—C3—C4176.3 (3)C6—C5—C4—C30.6 (5)
C1—C14—C13—C12177.7 (3)C16—N1—C15—C155.5 (3)
C2—C1—C15—N194.8 (3)C16—N1—C23—C22150.2 (2)
C2—C1—C14—C96.2 (4)C10—C9—C14—C1177.5 (2)
C2—C1—C14—C13171.5 (2)C10—C9—C14—C134.7 (4)
C2—C7—C8—C92.5 (4)C13—C12—C11—C102.6 (5)
C2—C7—C6—C51.8 (4)C3—C2—C7—C8176.9 (2)
C2—C3—C4—C51.0 (4)C3—C2—C7—C61.4 (4)
C7—C2—C3—C40.1 (4)C19—N3—C20—C2190.4 (3)
C7—C8—C9—C140.2 (4)C20—N3—C19—C18157.5 (2)
C7—C8—C9—C10178.1 (2)C21—N4—C22—C2383.4 (3)
C7—C6—C5—C40.8 (4)C18—N2—C17—C16177.0 (2)
C17—N2—C18—C1976.3 (3)C22—N4—C21—C20173.2 (2)
C15—N1—C16—C17138.2 (2)C23—N1—C15—C175.0 (3)
C15—N1—C23—C2278.0 (3)C23—N1—C16—C1789.0 (3)
C15—C1—C2—C7179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O11.001.982.983 (3)175
N3—H3···O1i1.002.163.025 (3)144
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (JSPS) JSPS KAKENHI Grants (grant No. JP21K06500 to Kurosaki, H.; grant No. JP23K14339 to Ichimaru, Y.); Kinjo Gakuin University-Parent Teacher Association Research Grants (award to Sugiura, K.).

References

First citationAddison, W. A., Rao, N. T., van Reedijk, J., Rijn, J. & Verschoor, C. G. (1984). J. Chem. Soc. Dalton Trans. 7, 349–1356.  Google Scholar
First citationAkkaya, E. U., Huston, M. E. & Czarnik, A. W. (1990). J. Am. Chem. Soc. 112, 3590–3593.  CrossRef CAS Web of Science Google Scholar
First citationAlcock, N. W., Berry, A. & Moore, P. (1992). Acta Cryst. C48, 16–19.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuston, M. E., Engleman, C. & Czarnik, A. W. (1990). J. Am. Chem. Soc. 112, 7054–7056.  CrossRef CAS Web of Science Google Scholar
First citationIchimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCrData, 6, x210397.  Google Scholar
First citationJin, M. Y., Zhen, Q., Xiao, D., Tao, G., Xing, X. Yu. P., Yu, P. & Xu, C. (2022). Nat. Commun. 13, 3276.  Web of Science CrossRef PubMed Google Scholar
First citationKimura, E., Aoki, S., Koike, T. & Shiro, M. (1997). J. Am. Chem. Soc. 119, 3068–3076.  CSD CrossRef CAS Web of Science Google Scholar
First citationKimura, E., Shionoya, M., Hoshino, A., Ikeda, T. & Yamada, Y. (1992). J. Am. Chem. Soc. 114, 10134–10137.  CrossRef CAS Web of Science Google Scholar
First citationKoike, T. & Kimura, E. (1991). J. Am. Chem. Soc. 113, 8935–8941.  CrossRef CAS Web of Science Google Scholar
First citationKoike, T., Takamura, M. & Kimura, E. (1994). J. Am. Chem. Soc. 116, 8443–8449.  CrossRef CAS Web of Science Google Scholar
First citationLu, T.-H., Panneerselvam, K., Tung, S.-F., Chi, T.-Y. & Chung, C.-S. (1997). Acta Cryst. C53, 1780–1782.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146