metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[μ3-2-(benzotriazol-1-yl)acetato-κ3O:O′:N3]chlorido­(ethanol-κO)cobalt(II)]

crossmark logo

aFujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, 247 Wu-Si Rd, Fuzhou, People's Republic of China
*Correspondence e-mail: yyzheng@xmu.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 6 June 2024; accepted 27 June 2024; online 5 July 2024)

In the title compound, [Co(C8H6N3O2)Cl(C2H5OH)]n, the CoII atoms adopt octa­hedral trans-CoN2O4 and tetra­hedral CoCl2O2 coordination geometries (site symmetries [\overline{1}] and m, respectively). The bridging μ3-O:O:N 2-(benzotriazol-1-yl)acetato ligands connect the octa­hedral cobalt nodes into (010) sheets and the CoCl2 fragments link the sheets into a tri-periodic network. The structure displays O—H⋯O hydrogen bonding and the ethanol mol­ecule is disordered over two orientations.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a ligand with multiple coordination sites, benzotriazole is a good linker in the generation of metal–organic frameworks (MOFs) as it can bridge different metal cations to afford coordination polymers that exhibit structural diversity and facile accessibility of functionalized new magnetic materials (Bai et al., 2008[Bai, Y. L., Tao, J., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 5344-5347.]; Shao et al., 2008[Shao, K. Z., Zhao, Y. H., Xing, Y., Lan, Y. Q., Wang, X. L., Su, Z. M. & Wang, R. S. (2008). Cryst. Growth Des. 8, 2986-2989.]; Müller-Buschbaum & Mokaddem, 2006[Müller-Buschbaum, K. & Mokaddem, Y. (2006). Eur. J. Inorg. Chem. pp. 2000-2010.]). Functional groups such as carboxyl­ate, hy­droxy and pyridyl can be added to the benzotriazole core, increasing its coordination possibilities (Stoumpos et al., 2008[Stoumpos, C. C., Diamantopoulou, E., Raptopoulou, C. P., Terzis, A., Perlepes, S. P. & Lalioti, N. (2008). Inorg. Chim. Acta, 361, 3638-3645.]; Zhang et al., 2007[Zhang, X. M., Hao, Z. M., Zhang, W. X. & Chen, X. M. (2007). Angew. Chem. Int. Ed. 46, 3456-3459.]; Hu et al., 2008[Hu, T. L., Du, W. P., Hu, B. W., Li, J. R., Bu, X. H. & Cao, R. (2008). CrystEngComm, 10, 1037-1043.]; Hang & Ye, 2008[Hang, T. & Ye, Q. (2008). Acta Cryst. E64, m758.]). 1H-Benzotriazole-1-acetic acid (Hbtaa), a flexible ligand, containing a carboxyl­ate group (when deprotonated) and a triazole unit has been used to construct MOFs (Zheng et al., 2010[Zheng, Z., Wu, R., Li, J., Han, Y. & Lu, J. (2010). J. Coord. Chem. 63, 1118-1129.]; Zeng, 2013[Zeng, L. (2013). Chin. J. Inorg. Chem. 29, 1149-1156.]). As part of our work in this area, we now report the synthesis and crystal structure of the title coordination polymer, [Co(C8H6N3O2)Cl(C2H5OH)]n, where C8H6N3O2 (L) is the 2-benzotriazol-1-yl)acetate anion.

Single-crystal structural analysis reveals that the asymmetric unit consists of two CoII cations (one with site symmetry m and one with site symmetry [\overline{1}]), one L ligand, two chloride ions (both site symmetry m) and one disordered ethanol mol­ecule (Fig. 1[link]). Co1 is four-coordinated by two L ligands in O-monodentate mode and two μ1-chloride ions in a tetra­hedral coordination geometry, whereas Co2 is six-coordinated by four L ligands (two in N-monodentate mode and two in O-monodentate mode) and two ethanol mol­ecules. In the extended structure, the μ3-O,O,N bridging L ligand links the Co2 nodes into (010) sheets (Fig. 2[link]) and the Co1Cl2 fragments link the sheets into a tri-periodic network (Fig. 3[link]). An O—H⋯O hydrogen bond (Table 1[link]) occurs.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.86 (1) 2.01 (2) 2.734 (3) 141 (2)
[Figure 1]
Figure 1
The asymmetric unit of the title compound showing 50% displacement ellipsoids. Only one orientation of the disordered ethanol mol­ecule is shown.
[Figure 2]
Figure 2
Part of a (010) sheet in the title compound.
[Figure 3]
Figure 3
The three-dimensional network in the title compound.

Synthesis and crystallization

CoCl2 (1.00 mmol) and 2-(benzotriazol-1-yl) acetic acid (1.00 mmol) were mixed in 10.0 ml of ethanol with stirring for about 30 min at room temperature. Blue block-shaped crystals of the title compound were collected by filtration in 40% yield. Analysis (%) calculated (Found) for C10H12O3N3ClCo: C, 37.94 (37.72); H, 3.82 (3.89); N, 13.27 (13.32).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Co(C8H6N3O2)Cl(C2H5OH)]
Mr 316.61
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 223
a, b, c (Å) 9.681 (2), 18.411 (4), 13.163 (3)
V3) 2346.1 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.69
Crystal size (mm) 0.25 × 0.15 × 0.09
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.745, 0.859
No. of measured, independent and observed [I > 2σ(I)] reflections 13580, 3058, 2337
Rint 0.037
(sin θ/λ)max−1) 0.672
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.09
No. of reflections 3058
No. of parameters 184
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.71, −0.38
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXD1997 and SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Poly[[µ3-2-(benzotriazol-1-yl)acetato-κ3O:O':N3]chlorido(ethanol-κO)cobalt(II)] top
Crystal data top
[Co(C8H6N3O2)Cl(C2H6O)]Dx = 1.793 Mg m3
Mr = 316.61Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 39979 reflections
a = 9.681 (2) Åθ = 2.6–27.6°
b = 18.411 (4) ŵ = 1.69 mm1
c = 13.163 (3) ÅT = 223 K
V = 2346.1 (9) Å3Block, blue
Z = 80.25 × 0.15 × 0.09 mm
F(000) = 1288
Data collection top
Bruker SMART CCD
diffractometer
2337 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.5°, θmin = 1.9°
Tmin = 0.745, Tmax = 0.859h = 1213
13580 measured reflectionsk = 2324
3058 independent reflectionsl = 1117
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0582P)2 + 2.3224P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3058 reflectionsΔρmax = 0.71 e Å3
184 parametersΔρmin = 0.38 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.43288 (6)0.25000.34271 (4)0.03019 (17)
Co20.50000.50000.50000.02529 (16)
Cl10.34331 (13)0.25000.18726 (8)0.0404 (3)
Cl20.27129 (14)0.25000.46492 (10)0.0472 (3)
O10.5318 (2)0.33968 (11)0.37700 (15)0.0296 (4)
O20.5907 (2)0.45529 (11)0.36795 (15)0.0288 (4)
O30.4442 (3)0.40048 (12)0.55516 (16)0.0404 (6)
H30.448 (4)0.3656 (8)0.5120 (12)0.061*
N10.6491 (2)0.44636 (13)0.16425 (17)0.0279 (5)
N20.7812 (3)0.44389 (13)0.13833 (18)0.0303 (5)
N30.8091 (3)0.50073 (13)0.08376 (18)0.0296 (5)
C10.5701 (3)0.39542 (15)0.3296 (2)0.0245 (6)
C20.4659 (6)0.3692 (2)0.6509 (3)0.0657 (13)
H2AA0.47210.40930.69860.079*0.507 (11)
H2AB0.38170.34320.66740.079*0.507 (11)
H2BC0.53430.33140.64150.079*0.493 (11)
H2BD0.50900.40630.69250.079*0.493 (11)
C30.5741 (13)0.3227 (7)0.6741 (10)0.095 (4)0.507 (11)
H3A0.65990.34870.66950.143*0.507 (11)
H3B0.57470.28290.62700.143*0.507 (11)
H3C0.56260.30450.74190.143*0.507 (11)
C40.5894 (3)0.38538 (16)0.2171 (2)0.0303 (6)
H4A0.64800.34330.20620.036*
H4B0.50020.37480.18700.036*
C50.6926 (3)0.54205 (16)0.0755 (2)0.0297 (6)
C60.5883 (3)0.50689 (16)0.1263 (2)0.0303 (6)
C70.4538 (3)0.5326 (2)0.1284 (3)0.0388 (7)
H70.38350.50790.16190.047*
C80.4311 (4)0.5955 (2)0.0789 (3)0.0464 (9)
H80.34220.61460.07760.056*
C90.5380 (4)0.6334 (2)0.0290 (3)0.0446 (8)
H90.51810.67750.00220.053*
C100.6678 (4)0.60771 (17)0.0254 (2)0.0389 (7)
H100.73760.63240.00870.047*
C3A0.3657 (10)0.3405 (5)0.7065 (6)0.061 (3)0.493 (11)
H3AA0.31690.30500.66700.092*0.493 (11)
H3AB0.30300.37810.72720.092*0.493 (11)
H3AC0.40470.31780.76550.092*0.493 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0432 (4)0.0220 (3)0.0254 (3)0.0000.0007 (2)0.000
Co20.0336 (3)0.0231 (3)0.0191 (3)0.0040 (2)0.0011 (2)0.0030 (2)
Cl10.0500 (7)0.0401 (6)0.0310 (6)0.0000.0062 (5)0.000
Cl20.0544 (7)0.0450 (7)0.0423 (6)0.0000.0154 (6)0.000
O10.0409 (11)0.0250 (10)0.0230 (10)0.0056 (9)0.0008 (9)0.0008 (8)
O20.0389 (11)0.0259 (10)0.0217 (9)0.0043 (8)0.0033 (8)0.0050 (8)
O30.0704 (16)0.0263 (11)0.0245 (11)0.0106 (11)0.0037 (11)0.0014 (9)
N10.0327 (12)0.0291 (12)0.0220 (11)0.0024 (10)0.0040 (10)0.0015 (9)
N20.0369 (13)0.0287 (12)0.0252 (12)0.0001 (11)0.0060 (10)0.0035 (10)
N30.0351 (13)0.0273 (12)0.0265 (12)0.0005 (10)0.0046 (11)0.0059 (10)
C10.0249 (13)0.0263 (14)0.0223 (13)0.0001 (11)0.0018 (11)0.0015 (10)
C20.112 (4)0.047 (2)0.038 (2)0.001 (2)0.014 (2)0.0075 (18)
C30.111 (10)0.079 (8)0.096 (9)0.013 (7)0.004 (7)0.027 (6)
C40.0430 (16)0.0242 (13)0.0238 (13)0.0065 (12)0.0059 (12)0.0004 (11)
C50.0386 (16)0.0295 (14)0.0210 (13)0.0006 (12)0.0021 (12)0.0013 (11)
C60.0385 (15)0.0307 (15)0.0217 (13)0.0012 (12)0.0007 (12)0.0015 (11)
C70.0369 (16)0.0463 (19)0.0332 (17)0.0021 (15)0.0027 (14)0.0039 (15)
C80.047 (2)0.054 (2)0.0388 (19)0.0146 (17)0.0046 (16)0.0047 (16)
C90.062 (2)0.0367 (18)0.0351 (18)0.0117 (16)0.0053 (16)0.0043 (15)
C100.055 (2)0.0334 (16)0.0281 (15)0.0023 (15)0.0004 (15)0.0046 (13)
C3A0.082 (6)0.069 (6)0.033 (4)0.019 (5)0.003 (4)0.007 (4)
Geometric parameters (Å, º) top
Co1—Cl12.2223 (13)C2—H2BC0.9700
Co1—Cl22.2439 (14)C2—H2BD0.9700
Co1—O1i1.961 (2)C2—C31.387 (12)
Co1—O11.961 (2)C2—C3A1.324 (9)
Co2—O22.114 (2)C3—H3A0.9600
Co2—O2ii2.114 (2)C3—H3B0.9600
Co2—O3ii2.043 (2)C3—H3C0.9600
Co2—O32.043 (2)C4—H4A0.9700
Co2—N3iii2.152 (3)C4—H4B0.9700
Co2—N3iv2.152 (3)C5—C61.373 (4)
O1—C11.257 (3)C5—C101.397 (4)
O2—C11.228 (3)C6—C71.386 (5)
O3—H30.859 (9)C7—H70.9300
O3—C21.401 (4)C7—C81.347 (5)
N1—N21.324 (3)C8—H80.9300
N1—C41.441 (4)C8—C91.410 (5)
N1—C61.356 (4)C9—H90.9300
N2—N31.298 (3)C9—C101.344 (5)
N3—Co2v2.152 (2)C10—H100.9300
N3—C51.365 (4)C3A—H3AA0.9600
C1—C41.505 (4)C3A—H3AB0.9600
C2—H2AA0.9700C3A—H3AC0.9600
C2—H2AB0.9700
Cl1—Co1—Cl2112.83 (6)C3—C2—O3124.4 (7)
O1—Co1—Cl1113.73 (6)C3—C2—H2AA106.2
O1i—Co1—Cl1113.73 (6)C3—C2—H2AB106.2
O1—Co1—Cl2100.10 (7)C3A—C2—O3123.4 (6)
O1i—Co1—Cl2100.10 (7)C3A—C2—H2BC106.5
O1—Co1—O1i114.66 (13)C3A—C2—H2BD106.5
O2ii—Co2—O2180.0C2—C3—H3A109.5
O2ii—Co2—N3iii93.56 (9)C2—C3—H3B109.5
O2—Co2—N3iii86.44 (9)C2—C3—H3C109.5
O2ii—Co2—N3iv86.44 (9)H3A—C3—H3B109.5
O2—Co2—N3iv93.56 (9)H3A—C3—H3C109.5
O3—Co2—O293.03 (8)H3B—C3—H3C109.5
O3ii—Co2—O2ii93.03 (8)N1—C4—C1115.4 (2)
O3ii—Co2—O286.97 (8)N1—C4—H4A108.4
O3—Co2—O2ii86.97 (8)N1—C4—H4B108.4
O3ii—Co2—O3180.0C1—C4—H4A108.4
O3—Co2—N3iii87.74 (10)C1—C4—H4B108.4
O3—Co2—N3iv92.26 (10)H4A—C4—H4B107.5
O3ii—Co2—N3iii92.25 (10)N3—C5—C6107.8 (2)
O3ii—Co2—N3iv87.75 (10)N3—C5—C10131.4 (3)
N3iii—Co2—N3iv180.0C6—C5—C10120.8 (3)
C1—O1—Co1135.83 (19)N1—C6—C5104.4 (3)
C1—O2—Co2128.27 (18)N1—C6—C7133.0 (3)
Co2—O3—H3115.0 (14)C5—C6—C7122.6 (3)
C2—O3—Co2130.4 (2)C6—C7—H7122.0
C2—O3—H3106.3 (14)C8—C7—C6115.9 (3)
N2—N1—C4119.0 (2)C8—C7—H7122.0
N2—N1—C6110.6 (2)C7—C8—H8119.0
C6—N1—C4130.1 (3)C7—C8—C9122.1 (3)
N3—N2—N1108.4 (2)C9—C8—H8119.0
N2—N3—Co2v117.20 (19)C8—C9—H9119.0
N2—N3—C5108.8 (2)C10—C9—C8121.9 (3)
C5—N3—Co2v132.23 (19)C10—C9—H9119.0
O1—C1—C4115.1 (2)C5—C10—H10121.7
O2—C1—O1125.2 (3)C9—C10—C5116.6 (3)
O2—C1—C4119.6 (2)C9—C10—H10121.7
O3—C2—H2AA106.2C2—C3A—H3AA109.5
O3—C2—H2AB106.2C2—C3A—H3AB109.5
O3—C2—H2BC106.5C2—C3A—H3AC109.5
O3—C2—H2BD106.5H3AA—C3A—H3AB109.5
H2AA—C2—H2AB106.4H3AA—C3A—H3AC109.5
H2BC—C2—H2BD106.5H3AB—C3A—H3AC109.5
Co1—O1—C1—O2154.9 (2)N2—N3—C5—C10179.9 (3)
Co1—O1—C1—C424.5 (4)N3—C5—C6—N11.1 (3)
Co2—O2—C1—O127.3 (4)N3—C5—C6—C7176.7 (3)
Co2—O2—C1—C4152.1 (2)N3—C5—C10—C9177.7 (3)
Co2—O3—C2—C396.0 (8)C4—N1—N2—N3174.0 (2)
Co2—O3—C2—C3A127.9 (6)C4—N1—C6—C5174.1 (3)
Co2v—N3—C5—C6162.5 (2)C4—N1—C6—C73.3 (5)
Co2v—N3—C5—C1016.0 (5)C5—C6—C7—C81.3 (5)
O1—C1—C4—N1172.8 (3)C6—N1—N2—N30.5 (3)
O2—C1—C4—N17.8 (4)C6—N1—C4—C184.3 (4)
N1—N2—N3—Co2v165.54 (18)C6—C5—C10—C90.7 (5)
N1—N2—N3—C51.1 (3)C6—C7—C8—C90.8 (5)
N1—C6—C7—C8178.3 (3)C7—C8—C9—C102.1 (6)
N2—N1—C4—C1102.4 (3)C8—C9—C10—C51.3 (5)
N2—N1—C6—C50.4 (3)C10—C5—C6—N1179.8 (3)
N2—N1—C6—C7177.0 (3)C10—C5—C6—C72.0 (5)
N2—N3—C5—C61.4 (3)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1, z+1; (iii) x1/2, y, z+1/2; (iv) x+3/2, y+1, z+1/2; (v) x+3/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.86 (1)2.01 (2)2.734 (3)141 (2)
 

Funding information

Funding for this research was provided by: the Program for Public Welfare Sciedtific Research Institute in Fujian Province (grant No. 2020R1022003); the Project for Youth Innovation Team in Fujian Academy of Agricultural Sciences (grant No. STIT 2021011-3); Collaborative innovation project in Fujian Province (grant No. XTCXGC2021020).

References

First citationBai, Y. L., Tao, J., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 5344–5347.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHu, T. L., Du, W. P., Hu, B. W., Li, J. R., Bu, X. H. & Cao, R. (2008). CrystEngComm, 10, 1037–1043.  Web of Science CSD CrossRef CAS Google Scholar
First citationHang, T. & Ye, Q. (2008). Acta Cryst. E64, m758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMüller-Buschbaum, K. & Mokaddem, Y. (2006). Eur. J. Inorg. Chem. pp. 2000–2010.  Google Scholar
First citationShao, K. Z., Zhao, Y. H., Xing, Y., Lan, Y. Q., Wang, X. L., Su, Z. M. & Wang, R. S. (2008). Cryst. Growth Des. 8, 2986–2989.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoumpos, C. C., Diamantopoulou, E., Raptopoulou, C. P., Terzis, A., Perlepes, S. P. & Lalioti, N. (2008). Inorg. Chim. Acta, 361, 3638–3645.  Web of Science CSD CrossRef CAS Google Scholar
First citationZeng, L. (2013). Chin. J. Inorg. Chem. 29, 1149–1156.  CAS Google Scholar
First citationZhang, X. M., Hao, Z. M., Zhang, W. X. & Chen, X. M. (2007). Angew. Chem. Int. Ed. 46, 3456–3459.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Z., Wu, R., Li, J., Han, Y. & Lu, J. (2010). J. Coord. Chem. 63, 1118–1129.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146