metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis{(S)-(−)-N-[(2-biphen­yl)methyl­­idene]-1-(4-meth­­oxy­phen­yl)ethyl­amine-κN}di­chlorido­palladium(II)

crossmark logo

aLab. Síntesis de Complejos, Fac. Cs. Quím.-BUAP, Ciudad Universitaria, PO Box, 72592 Puebla, Mexico
*Correspondence e-mail: gloria.moreno@correo.buap.mx

Edited by I. Brito, University of Antofagasta, Chile (Received 11 March 2024; accepted 10 June 2024; online 16 June 2024)

The PdII complex bis­{(S)-(−)-N-[(biphenyl-2-yl)methyl­idene]1-(4-meth­oxy­phen­yl)ethanamine-κN}di­chlorido­palladium(II), [PdCl2(C22H21NO)2], crystallizes in the monoclinic Sohncke space group P21 with a single mol­ecule in the asymmetric unit. The coordination environment around the palladium is slightly distorted square planar. The N—Pd—Cl bond angles are 91.85 (19), 88.10 (17), 89.96 (18), and 90.0 (2)°, while the Pd—Cl and Pd—N bond lengths are 2.310 (2) and 2.315 (2) Å and 2.015 (2) and 2.022 (6) Å, respectively. The crystal structure features inter­molecular N—H⋯Cl and intramolecular C—H⋯Pd inter­actions, which lead to the formation of a supramolecular framework structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff bases, derived from the condensation of primary amines and aldehydes, are well established and versatile ligands in coordination chemistry. Their flexibility has led to a diverse range of coordination complexes (Boulechfar et al., 2023[Boulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Kahlouche, A., Boublia, A., Darwish, A. S., Lemaoui, T., Verma, R. & Benguerba, Y. (2023). Inorg. Chem. Commun. 150, 110451.]). Metal complexes with Schiff base ligands play crucial roles in enhancing catalytic efficiency in various chemical reactions, including oxidation, hy­droxy­lation, aldol condensation, and epoxidation (Gupta & Sutar, 2008[Gupta, K. C. & Sutar, A. K. (2008). Chem. Rev. 252, 1420-1450.]; Brayton et al., 2009[Brayton, D. F., Larkin, T. M., Vicic, D. A. & Navarro, O. (2009). J. Organomet. Chem. 694, 3008-3011.]; Bowes et al., 2011[Bowes, E. G., Lee, G. M., Vogels, C. M., Decken, A. & Westcott, S. A. (2011). Inorg. Chim. Acta, 377, 84-90.]). In addition to their catalytic capabilities, palladium(II) imine complexes exhibit significant biological potential. Their reactivity, influenced by electronic and steric factors, is highly tunable through substituent modifications, particularly with the introduction of chirality. Herein, we report the crystal structure of a novel palladium(II) complex [PdCl2(C22H21NO)2].

The title PdII complex crystallizes in the monoclinic system with the P21 space group. The structure of the trans complex, which contains a single mol­ecule in the asymmetric unit, is shown in Fig. 1[link]. Inspection of the molecular structure confirms the expected square-planar coordination environment around the central palladium(II) atom. The two imine ligands coordinated to the PdII atom through their nitro­gen atoms in a trans configuration, with Pd1—N1 and Pd1—N2 bond lengths of 2.015 (6) and 2.022 (6) Å, respectively. The Pd—Cl bond lengths [Pd1—Cl1 = 2.310 (2) Å and Pd1—Cl2 = 2.315 (2) Å] fall within the expected ranges for this type of complex, which confirms the nature of the bonds. There is a slight distortion from the ideal square-planar geometry, as revealed by a deviation of 0.054 Å of the PdII atom from the plane defined by atoms Cl2–N2–Cl1–N1. The steric effects in the PdII complex are evident in the torsion angles C26—C23—N2—C24 [−175.5 (7)°] and C2—N1—C1—C4 [175.4 (7)°]. The N1—Pd1—Cl1 [91.85 (19)°] and N1—Pd1—Cl2 [88.10 (17)°] bond angles also deviate slightly from 90°, demonstrating steric influence. The bond lengths of the imine group are N2=C23 = 1.299 (9) Å and N1=C1 = 1.238 (10) Å. The bond angles [C1—N1—Pd1 = 124.5 (5)° and C23—N2—Pd1 = 122.7 (5)°] are slightly different. These bond lengths and angles, however, confirm the sp2 hybridization of the C and N atoms.

[Figure 1]
Figure 1
Mol­ecular structure of [PdCl2(C22H21NO)2]. Displacement ellipsoids are drawn at the 40% probability level.

The closest inter­molecular ππ stacking contact between the arene rings is 4.494 Å, which is above the typical range of 3.3–3.8 Å for favorable ππ inter­actions. Therefore, this inter­action does not significantly contribute to the cohesion of the crystal structure. The imine mean planes (C24—N2—C23 and C2—N1—C1) are twisted by 86 (2) and 85 (2)°, respectively, relative to the square-planar coordination mean plane (Cl2/Pd/Cl1). The two attached phenyl rings are not coplanar, as evidenced by the rotation of the mean plane C32–C37 with respect to the mean plane C26–C31 by an angle of 52.8 (4)°. Similarly, the mean plane C10–C15 is rotated with respect to the mean plane C4–C9 by an angle of 43.4 (6)°.

The complex mol­ecules are are stacked parallel to [001]. This arrangement is primarily driven by short-range van der Waals inter­actions and inter­molecular hydrogen bonds, particularly C—H⋯Cl inter­actions (Kinzhalov et al., 2019[Kinzhalov, M. A., Baykov, S. V., Novikov, A. S., Haukka, M. & Boyarskiy, V. P. (2019). Z. Kristallogr. Cryst. Mater. 234, 155-164.]), detailed in Table 1[link], which lead to a tri-periodic supramolecular framework (Fig. 2[link]). The square-planar shape of the complex prevents the formation of Pd–Pd or ππ inter­molecular inter­actions, as evidenced by the shortest Pd⋯Pd distance of 10.634 Å and the shortest ππ distance of 4.494 Å, both exceeding van der Waals radii.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Cl1 0.96 2.90 3.662 (6) 138
C22—H22A⋯Cl1i 0.96 2.87 3.765 (10) 155
C25—H25A⋯Cl2 0.96 2.71 3.460 (6) 135
C44—H44C⋯Cl2ii 0.96 2.82 3.757 (9) 165
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+2].
[Figure 2]
Figure 2
The crystal packing of the palladium(II) complex ialong [201]. The dashed lines indicate inter­molecular contacts. All H atoms not involved in these inter­actions have been omitted for clarity. Displacement ellipsoids are at the 40% probability level.

While the Pd⋯Pd distances exceed 10 Å, indicating minimal direct inter­action between palladium atoms, intra­molecular Pd⋯H inter­actions are observed (Fig. 3[link]). These inter­actions are due to the specific orientations adopted by the phenyl rings (C26–C31 and C4–C9). The distances from the ortho-H atoms in these phenyl rings to the central PdII atom range from 2.67 Å (H27⋯Pd1) to 2.84 Å (H5⋯Pd1), suggesting a directional inter­action where the ortho-H atoms are oriented towards the PdII atom. These distances are shorter compared to the Pd⋯H distances involving the CH groups and CH3 groups within the complex.

[Figure 3]
Figure 3
Pd⋯H inter­actions.

A search of the Cambridge Structural Database (CSD, version 5.42, current as of February 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed previously reported structures related to the PdII complex. UQUFIW (Duong et al., 2011[Duong, A., Wuest, J. D. & Maris, T. (2011). Acta Cryst. E67, m518.]) crystallizes in space group P1. The chloride and (pyridin-4-yl)boronic acid ligands adopt a trans arrangement due to mol­ecular symmetry, with angles around 90°. FATQAU and FATPUN (Motswainyana et al., 2012b[Motswainyana, W. M., Onani, M. O. & Madiehe, A. M. (2012b). Polyhedron, 41, 44-51.]) crystallize in space group P21/n. The two mol­ecular structures both exhibit a square-planar environment around the palladium atom. In each mol­ecule, the palladium(II) atom is coordinated by two trans-ferrocenyl­imine mol­ecules via their imine nitro­gen atoms, and either two chlorine atoms or a chlorine atom and a methyl group. The structure of LATNAV (Rochon et al., 1993[Rochon, F. D., Melanson, R. & Farrell, N. (1993). Acta Cryst. C49, 1703-1706.]) exhibits hydrogen-bonding inter­actions between the hydroxyl groups and the chlorido ligands, with the PdII ion exhibiting a square-planar coordination environment around the central metal atom. YATQAN (Motswainyana et al., 2012a[Motswainyana, W. M., Onani, M. O. & Lalancette, R. A. (2012a). Acta Cryst. E68, m387.]) in P21/n exhibits a square-planar coordination environment around the palladium(II) atom, coordinated by two ferrocenyl­imine ligands via the imine nitro­gen atoms and chlorine atoms. The ferrocenyl­imine mol­ecules are trans to each other across the center of symmetry. The POCWEN (Anzaldo et al., 2024[Anzaldo, B., Moreno Morales, G. E., Villamizar, C. C. P., Mendoza, Á. & Hernández Téllez, G. (2024). Acta Cryst. E80, 213-217.]) complex crystallizes in space group P21, with the central atom tetra­coordinated by two nitro­gen atoms and two chlorine atoms, resulting in a square-planar configuration.

Synthesis and crystallization

A solution of (S)-(−)-[1-(4-meth­oxy­phen­yl)-N-(2-biphen­yl)methyl­idene]ethyl­amine (0.100 g, 0.31 mmol) in di­chloro­methane (10 ml) was treated with bis­(benzo­nitrile)­palladium(II) chloride (0.060 g, 0.15 mmol) with stirring at room temperature for 8 h. After a few days, orange crystals of the title palladium(II) complex were obtained upon crystallization from a di­chloro­methane solution (yield 26%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [PdCl2(C22H21NO)2]
Mr 808.09
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 10.2505 (4), 18.6165 (9), 10.6345 (5)
β (°) 96.388 (4)
V3) 2016.77 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.63
Crystal size (mm) 0.27 × 0.15 × 0.09
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini
Absorption correction Analytical CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.938, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 25419, 10009, 6673
Rint 0.040
(sin θ/λ)max−1) 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.077, 1.02
No. of reflections 10009
No. of parameters 464
No. of restraints 108
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.30
Absolute structure Flack x determined using 2435 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (3)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), olex2.solve (Bourhis et al 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

(I) top
Crystal data top
[PdCl2(C22H21NO)2]F(000) = 832
Mr = 808.09Dx = 1.331 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.2505 (4) ÅCell parameters from 5972 reflections
b = 18.6165 (9) Åθ = 3.4–25.6°
c = 10.6345 (5) ŵ = 0.63 mm1
β = 96.388 (4)°T = 293 K
V = 2016.77 (16) Å3Prism, clear gold
Z = 20.27 × 0.14 × 0.09 mm
Data collection top
Xcalibur, Atlas, Gemini
diffractometer
6673 reflections with I > 2σ(I)
Detector resolution: 10.5564 pixels mm-1Rint = 0.040
ω scansθmax = 30.1°, θmin = 2.9°
Absorption correction: analytical
(CrysAlisPro; Agilent, 2013)
h = 1414
Tmin = 0.938, Tmax = 0.976k = 2625
25419 measured reflectionsl = 1514
10009 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0246P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.53 e Å3
10009 reflectionsΔρmin = 0.30 e Å3
464 parametersAbsolute structure: Flack x determined using 2435 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
108 restraintsAbsolute structure parameter: 0.00 (3)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.24859 (6)0.40648 (10)0.75111 (6)0.03890 (9)
Cl10.43721 (19)0.47538 (12)0.7684 (2)0.0604 (6)
Cl20.05859 (18)0.33839 (10)0.7241 (2)0.0550 (6)
O10.1719 (6)0.0486 (4)0.3702 (8)0.100 (3)
O20.3184 (6)0.7648 (4)1.1169 (7)0.082 (2)
N10.3499 (5)0.3166 (3)0.7207 (6)0.0386 (16)
N20.1404 (6)0.4957 (3)0.7708 (6)0.0395 (16)
C10.3795 (7)0.2697 (5)0.8014 (7)0.052 (2)
H10.4169180.2278480.7737210.062*
C20.3844 (7)0.3062 (4)0.5886 (7)0.0483 (18)
H20.3369770.3434560.5368040.058*
C30.5288 (6)0.3208 (3)0.5841 (6)0.0785 (19)
H3A0.5489300.3687290.6134940.118*
H3B0.5495280.3159220.4987330.118*
H3C0.5796160.2870570.6374100.118*
C40.3616 (7)0.2734 (6)0.9367 (8)0.060 (2)
C50.3996 (7)0.3345 (6)1.0049 (8)0.081 (2)
H50.4318880.3734150.9631320.097*
C60.3909 (8)0.3395 (7)1.1334 (9)0.115 (3)
H60.4144310.3812451.1782520.138*
C70.3454 (11)0.2792 (10)1.1929 (10)0.141 (5)
H70.3406910.2808841.2796510.169*
C80.3086 (10)0.2196 (9)1.1305 (11)0.124 (4)
H80.2761430.1818011.1750990.149*
C90.3161 (11)0.2106 (8)0.9996 (11)0.082 (3)
C100.2782 (10)0.1453 (7)0.9353 (13)0.089 (3)
C110.3238 (11)0.0769 (8)0.9826 (14)0.134 (5)
H110.3799670.0741791.0573970.160*
C120.2858 (15)0.0164 (8)0.9193 (18)0.169 (6)
H120.3201930.0272870.9498170.203*
C130.1997 (12)0.0166 (8)0.8132 (17)0.152 (5)
H130.1702970.0263830.7756140.182*
C140.1561 (10)0.0815 (6)0.7616 (12)0.102 (3)
H140.1010620.0824130.6858950.123*
C150.1929 (10)0.1431 (6)0.8204 (11)0.080 (3)
H150.1612440.1861210.7846040.096*
C160.3373 (7)0.2364 (4)0.5340 (7)0.0430 (18)
C170.2051 (9)0.2281 (6)0.4933 (10)0.061 (3)
H170.1487230.2663250.5031600.073*
C180.1535 (9)0.1657 (6)0.4389 (11)0.083 (3)
H180.0644390.1624420.4109540.100*
C190.2347 (9)0.1088 (5)0.4264 (10)0.062 (3)
C200.3628 (9)0.1128 (5)0.4658 (9)0.069 (3)
H200.4168000.0732190.4583490.083*
C210.4150 (8)0.1764 (5)0.5179 (9)0.063 (3)
H210.5047690.1789800.5428750.075*
C220.2407 (10)0.0145 (6)0.3697 (13)0.112 (4)
H22A0.3048570.0108540.3107640.168*
H22B0.1813980.0531470.3450990.168*
H22C0.2840920.0235450.4529040.168*
C230.1237 (6)0.5452 (4)0.6844 (7)0.0441 (19)
H230.0852830.5880470.7060010.053*
C240.0845 (7)0.5131 (4)0.8931 (6)0.0453 (17)
H240.0095580.5218670.8714820.054*
C250.0971 (6)0.4514 (3)0.9839 (5)0.0641 (15)
H25A0.0524010.4102970.9453650.096*
H25B0.0587290.4642201.0591080.096*
H25C0.1882380.4401391.0054430.096*
C260.1610 (7)0.5390 (5)0.5541 (7)0.051 (2)
C270.1426 (7)0.4738 (5)0.4885 (7)0.0625 (19)
H270.1119140.4334380.5274770.075*
C280.1712 (8)0.4708 (5)0.3644 (7)0.085 (2)
H280.1589340.4280040.3197040.102*
C290.2166 (8)0.5289 (7)0.3072 (8)0.104 (3)
H290.2372390.5256650.2244240.125*
C300.2324 (9)0.5939 (6)0.3724 (8)0.084 (3)
H300.2626540.6340920.3324950.100*
C310.2036 (9)0.5990 (6)0.4957 (9)0.058 (2)
C320.2216 (8)0.6702 (5)0.5639 (8)0.056 (2)
C330.1627 (9)0.7300 (6)0.5079 (9)0.079 (3)
H330.1132740.7258900.4294380.095*
C340.1758 (9)0.7962 (6)0.5664 (11)0.097 (3)
H340.1384440.8370680.5272410.116*
C350.2465 (9)0.7998 (6)0.6853 (12)0.093 (3)
H350.2515640.8434070.7283190.111*
C360.3078 (9)0.7422 (6)0.7400 (9)0.082 (3)
H360.3586370.7465730.8177020.099*
C370.2948 (8)0.6752 (6)0.6792 (9)0.063 (2)
H370.3354770.6347640.7168720.075*
C380.1443 (7)0.5827 (4)0.9508 (7)0.0448 (19)
C390.0664 (8)0.6388 (5)0.9723 (8)0.054 (2)
H390.0235260.6355790.9486710.065*
C400.1192 (8)0.7021 (5)1.0298 (9)0.062 (2)
H400.0648080.7403401.0454160.074*
C410.2539 (9)0.7064 (5)1.0629 (9)0.060 (3)
C420.3310 (8)0.6474 (5)1.0453 (9)0.056 (2)
H420.4205530.6486621.0716090.068*
C430.2757 (8)0.5872 (5)0.9893 (9)0.054 (2)
H430.3289900.5480420.9768530.065*
C440.2485 (10)0.8307 (6)1.1136 (10)0.091 (3)
H44A0.2105100.8402091.0285760.136*
H44B0.3075760.8688731.1417850.136*
H44C0.1801160.8275901.1681280.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03554 (14)0.04656 (15)0.03469 (15)0.00173 (13)0.00435 (10)0.00068 (14)
Cl10.0433 (11)0.0668 (16)0.0728 (15)0.0116 (11)0.0139 (10)0.0130 (13)
Cl20.0404 (10)0.0581 (14)0.0670 (14)0.0082 (10)0.0081 (9)0.0118 (12)
O10.065 (4)0.081 (5)0.155 (7)0.000 (4)0.013 (4)0.050 (5)
O20.071 (4)0.063 (5)0.112 (5)0.008 (4)0.015 (4)0.034 (4)
N10.030 (3)0.048 (4)0.036 (4)0.004 (3)0.000 (2)0.003 (3)
N20.041 (3)0.046 (4)0.032 (3)0.001 (3)0.007 (3)0.002 (3)
C10.048 (4)0.065 (6)0.045 (5)0.002 (4)0.017 (4)0.009 (4)
C20.055 (4)0.052 (4)0.040 (4)0.003 (3)0.016 (3)0.001 (3)
C30.078 (4)0.085 (4)0.081 (4)0.029 (3)0.044 (4)0.023 (4)
C40.049 (4)0.088 (5)0.045 (5)0.022 (4)0.013 (3)0.017 (4)
C50.074 (5)0.123 (6)0.044 (4)0.031 (4)0.002 (4)0.002 (4)
C60.093 (6)0.194 (9)0.056 (5)0.043 (7)0.000 (5)0.003 (5)
C70.104 (8)0.278 (14)0.040 (5)0.022 (9)0.002 (5)0.021 (6)
C80.080 (6)0.230 (12)0.062 (6)0.002 (7)0.011 (5)0.071 (6)
C90.047 (5)0.142 (7)0.059 (6)0.016 (5)0.013 (4)0.046 (5)
C100.053 (6)0.102 (7)0.116 (8)0.006 (6)0.031 (5)0.062 (6)
C110.075 (7)0.127 (8)0.199 (12)0.008 (7)0.018 (7)0.112 (9)
C120.136 (12)0.100 (7)0.273 (17)0.021 (8)0.032 (10)0.113 (10)
C130.123 (9)0.089 (6)0.249 (14)0.010 (6)0.043 (9)0.057 (8)
C140.098 (7)0.076 (6)0.138 (8)0.005 (5)0.030 (5)0.027 (5)
C150.066 (5)0.081 (6)0.096 (7)0.003 (5)0.028 (5)0.026 (5)
C160.042 (4)0.048 (4)0.041 (4)0.003 (3)0.013 (3)0.002 (3)
C170.040 (4)0.062 (6)0.081 (6)0.010 (4)0.007 (4)0.021 (5)
C180.053 (5)0.081 (7)0.115 (9)0.003 (5)0.008 (5)0.039 (6)
C190.054 (5)0.053 (6)0.080 (7)0.006 (4)0.014 (4)0.015 (5)
C200.060 (5)0.061 (6)0.087 (7)0.023 (4)0.011 (5)0.012 (5)
C210.041 (4)0.072 (7)0.075 (6)0.006 (4)0.005 (4)0.006 (5)
C220.091 (7)0.059 (7)0.187 (12)0.018 (6)0.016 (7)0.034 (7)
C230.034 (4)0.045 (5)0.051 (5)0.001 (3)0.000 (3)0.014 (4)
C240.043 (3)0.059 (4)0.035 (3)0.006 (3)0.011 (3)0.003 (3)
C250.087 (4)0.063 (4)0.046 (3)0.014 (3)0.021 (3)0.004 (3)
C260.043 (4)0.080 (5)0.030 (4)0.006 (3)0.002 (3)0.008 (4)
C270.075 (5)0.072 (5)0.038 (4)0.003 (4)0.002 (3)0.002 (3)
C280.115 (6)0.103 (6)0.037 (4)0.007 (6)0.004 (4)0.017 (4)
C290.121 (8)0.161 (9)0.032 (4)0.024 (7)0.015 (4)0.007 (5)
C300.093 (6)0.116 (6)0.042 (4)0.029 (5)0.006 (4)0.004 (4)
C310.053 (5)0.076 (5)0.044 (5)0.003 (4)0.000 (4)0.009 (4)
C320.043 (5)0.075 (6)0.052 (5)0.005 (4)0.008 (4)0.023 (4)
C330.064 (5)0.085 (6)0.088 (6)0.021 (5)0.005 (5)0.031 (5)
C340.076 (5)0.080 (7)0.132 (8)0.001 (5)0.005 (5)0.050 (6)
C350.101 (7)0.059 (5)0.124 (8)0.014 (5)0.037 (6)0.002 (5)
C360.086 (5)0.085 (7)0.077 (6)0.015 (5)0.021 (4)0.001 (5)
C370.063 (5)0.069 (6)0.057 (5)0.001 (4)0.008 (4)0.017 (4)
C380.044 (4)0.056 (5)0.036 (4)0.002 (3)0.012 (3)0.001 (3)
C390.047 (4)0.055 (5)0.062 (5)0.003 (4)0.015 (4)0.010 (4)
C400.056 (5)0.051 (5)0.083 (6)0.002 (4)0.023 (4)0.017 (5)
C410.060 (6)0.064 (6)0.061 (6)0.009 (5)0.023 (4)0.018 (5)
C420.041 (4)0.070 (6)0.060 (5)0.009 (4)0.009 (3)0.022 (4)
C430.054 (5)0.060 (6)0.049 (4)0.004 (4)0.013 (4)0.010 (4)
C440.095 (7)0.061 (7)0.122 (8)0.007 (6)0.035 (6)0.018 (6)
Geometric parameters (Å, º) top
Pd1—Cl12.310 (2)C20—H200.9300
Pd1—Cl22.315 (2)C20—C211.388 (12)
Pd1—N12.015 (6)C21—H210.9300
Pd1—N22.022 (6)C22—H22A0.9600
O1—C191.394 (11)C22—H22B0.9600
O1—C221.370 (11)C22—H22C0.9600
O2—C411.364 (11)C23—H230.9300
O2—C441.419 (11)C23—C261.482 (10)
N1—C11.238 (10)C24—H240.9800
N1—C21.500 (8)C24—C251.497 (9)
N2—C231.299 (9)C24—C381.533 (11)
N2—C241.512 (8)C25—H25A0.9600
C1—H10.9300C25—H25B0.9600
C1—C41.472 (11)C25—H25C0.9600
C2—H20.9800C26—C271.402 (11)
C2—C31.511 (8)C26—C311.373 (12)
C2—C161.482 (11)C27—H270.9300
C3—H3A0.9600C27—C281.384 (10)
C3—H3B0.9600C28—H280.9300
C3—H3C0.9600C28—C291.349 (12)
C4—C51.382 (12)C29—H290.9300
C4—C91.449 (15)C29—C301.395 (13)
C5—H50.9300C30—H300.9300
C5—C61.383 (12)C30—C311.379 (12)
C6—H60.9300C31—C321.512 (14)
C6—C71.393 (18)C32—C331.370 (12)
C7—H70.9300C32—C371.368 (12)
C7—C81.327 (19)C33—H330.9300
C8—H80.9300C33—C341.380 (14)
C8—C91.412 (16)C34—H340.9300
C9—C101.427 (18)C34—C351.387 (13)
C10—C111.429 (16)C35—H350.9300
C10—C151.422 (15)C35—C361.343 (13)
C11—H110.9300C36—H360.9300
C11—C121.35 (2)C36—C371.403 (12)
C12—H120.9300C37—H370.9300
C12—C131.353 (19)C38—C391.349 (11)
C13—H130.9300C38—C431.366 (10)
C13—C141.380 (15)C39—H390.9300
C14—H140.9300C39—C401.408 (11)
C14—C151.340 (14)C40—H400.9300
C15—H150.9300C40—C411.389 (12)
C16—C171.385 (11)C41—C421.378 (12)
C16—C211.394 (11)C42—H420.9300
C17—H170.9300C42—C431.362 (12)
C17—C181.377 (13)C43—H430.9300
C18—H180.9300C44—H44A0.9600
C18—C191.362 (12)C44—H44B0.9600
C19—C201.336 (12)C44—H44C0.9600
Cl1—Pd1—Cl2177.44 (11)C20—C21—H21118.9
N1—Pd1—Cl191.85 (19)O1—C22—H22A109.5
N1—Pd1—Cl288.10 (17)O1—C22—H22B109.5
N1—Pd1—N2176.4 (3)O1—C22—H22C109.5
N2—Pd1—Cl189.96 (18)H22A—C22—H22B109.5
N2—Pd1—Cl290.0 (2)H22A—C22—H22C109.5
C22—O1—C19118.5 (8)H22B—C22—H22C109.5
C41—O2—C44117.3 (8)N2—C23—H23117.3
C1—N1—Pd1124.5 (5)N2—C23—C26125.4 (8)
C1—N1—C2119.6 (7)C26—C23—H23117.3
C2—N1—Pd1115.9 (5)N2—C24—H24106.9
C23—N2—Pd1122.7 (5)N2—C24—C38110.6 (6)
C23—N2—C24115.1 (6)C25—C24—N2112.2 (6)
C24—N2—Pd1121.9 (5)C25—C24—H24106.9
N1—C1—H1116.7C25—C24—C38112.9 (6)
N1—C1—C4126.6 (8)C38—C24—H24106.9
C4—C1—H1116.7C24—C25—H25A109.5
N1—C2—H2106.4C24—C25—H25B109.5
N1—C2—C3109.9 (5)C24—C25—H25C109.5
C3—C2—H2106.4H25A—C25—H25B109.5
C16—C2—N1112.3 (6)H25A—C25—H25C109.5
C16—C2—H2106.4H25B—C25—H25C109.5
C16—C2—C3115.0 (6)C27—C26—C23119.9 (8)
C2—C3—H3A109.5C31—C26—C23119.2 (8)
C2—C3—H3B109.5C31—C26—C27120.7 (7)
C2—C3—H3C109.5C26—C27—H27120.7
H3A—C3—H3B109.5C28—C27—C26118.5 (8)
H3A—C3—H3C109.5C28—C27—H27120.7
H3B—C3—H3C109.5C27—C28—H28119.4
C5—C4—C1119.5 (9)C29—C28—C27121.2 (8)
C5—C4—C9120.5 (9)C29—C28—H28119.4
C9—C4—C1119.7 (10)C28—C29—H29120.1
C4—C5—H5119.0C28—C29—C30119.9 (8)
C4—C5—C6121.9 (11)C30—C29—H29120.1
C6—C5—H5119.0C29—C30—H30119.8
C5—C6—H6121.4C31—C30—C29120.5 (9)
C5—C6—C7117.2 (12)C31—C30—H30119.8
C7—C6—H6121.4C26—C31—C30119.1 (10)
C6—C7—H7118.7C26—C31—C32121.6 (9)
C8—C7—C6122.5 (11)C30—C31—C32119.3 (10)
C8—C7—H7118.7C33—C32—C31118.6 (9)
C7—C8—H8118.4C37—C32—C31121.0 (9)
C7—C8—C9123.2 (13)C37—C32—C33120.3 (10)
C9—C8—H8118.4C32—C33—H33119.6
C8—C9—C4114.6 (13)C32—C33—C34120.9 (9)
C8—C9—C10122.1 (13)C34—C33—H33119.6
C10—C9—C4123.3 (11)C33—C34—H34121.0
C9—C10—C11121.9 (14)C33—C34—C35118.0 (10)
C15—C10—C9123.1 (12)C35—C34—H34121.0
C15—C10—C11115.0 (14)C34—C35—H35119.1
C10—C11—H11119.8C36—C35—C34121.8 (10)
C12—C11—C10120.3 (14)C36—C35—H35119.1
C12—C11—H11119.8C35—C36—H36120.2
C11—C12—H12118.7C35—C36—C37119.6 (10)
C11—C12—C13122.6 (15)C37—C36—H36120.2
C13—C12—H12118.7C32—C37—C36119.3 (9)
C12—C13—H13120.4C32—C37—H37120.4
C12—C13—C14119.2 (15)C36—C37—H37120.4
C14—C13—H13120.4C39—C38—C24120.3 (7)
C13—C14—H14120.0C39—C38—C43118.9 (8)
C15—C14—C13120.0 (13)C43—C38—C24120.6 (8)
C15—C14—H14120.0C38—C39—H39119.5
C10—C15—H15118.6C38—C39—C40121.0 (8)
C14—C15—C10122.7 (12)C40—C39—H39119.5
C14—C15—H15118.6C39—C40—H40120.6
C17—C16—C2119.0 (8)C41—C40—C39118.8 (8)
C17—C16—C21115.1 (8)C41—C40—H40120.6
C21—C16—C2125.9 (7)O2—C41—C40125.0 (9)
C16—C17—H17118.6O2—C41—C42115.7 (8)
C18—C17—C16122.8 (9)C42—C41—C40119.2 (9)
C18—C17—H17118.6C41—C42—H42120.1
C17—C18—H18120.4C43—C42—C41119.9 (8)
C19—C18—C17119.1 (9)C43—C42—H42120.1
C19—C18—H18120.4C38—C43—H43119.0
C18—C19—O1114.1 (8)C42—C43—C38122.0 (9)
C20—C19—O1124.8 (9)C42—C43—H43119.0
C20—C19—C18121.1 (9)O2—C44—H44A109.5
C19—C20—H20120.2O2—C44—H44B109.5
C19—C20—C21119.6 (9)O2—C44—H44C109.5
C21—C20—H20120.2H44A—C44—H44B109.5
C16—C21—H21118.9H44A—C44—H44C109.5
C20—C21—C16122.2 (8)H44B—C44—H44C109.5
Pd1—N1—C1—C47.7 (12)C17—C16—C21—C200.6 (14)
Pd1—N1—C2—C3105.9 (6)C17—C18—C19—O1179.9 (10)
Pd1—N1—C2—C16124.8 (6)C17—C18—C19—C200.2 (17)
Pd1—N2—C23—C2610.4 (11)C18—C19—C20—C211.4 (16)
Pd1—N2—C24—C2510.7 (8)C19—C20—C21—C161.8 (15)
Pd1—N2—C24—C38116.2 (6)C21—C16—C17—C181.0 (15)
O1—C19—C20—C21178.5 (10)C22—O1—C19—C18170.9 (10)
O2—C41—C42—C43178.4 (9)C22—O1—C19—C209.2 (16)
N1—C1—C4—C546.8 (12)C23—N2—C24—C25175.1 (6)
N1—C1—C4—C9139.0 (9)C23—N2—C24—C3857.9 (8)
N1—C2—C16—C1775.6 (10)C23—C26—C27—C28176.3 (7)
N1—C2—C16—C21105.0 (9)C23—C26—C31—C30177.0 (8)
N2—C23—C26—C2738.9 (11)C23—C26—C31—C323.9 (13)
N2—C23—C26—C31146.2 (8)C24—N2—C23—C26175.5 (7)
N2—C24—C38—C39121.4 (8)C24—C38—C39—C40177.5 (8)
N2—C24—C38—C4363.2 (10)C24—C38—C43—C42177.5 (8)
C1—N1—C2—C376.9 (9)C25—C24—C38—C39112.0 (8)
C1—N1—C2—C1652.4 (9)C25—C24—C38—C4363.4 (9)
C1—C4—C5—C6176.8 (8)C26—C27—C28—C290.4 (13)
C1—C4—C9—C8177.2 (8)C26—C31—C32—C33128.0 (9)
C1—C4—C9—C104.5 (15)C26—C31—C32—C3752.0 (12)
C2—N1—C1—C4175.4 (7)C27—C26—C31—C302.1 (14)
C2—C16—C17—C18178.5 (10)C27—C26—C31—C32178.8 (8)
C2—C16—C21—C20180.0 (9)C27—C28—C29—C301.5 (14)
C3—C2—C16—C17157.7 (8)C28—C29—C30—C310.8 (15)
C3—C2—C16—C2121.7 (12)C29—C30—C31—C261.0 (15)
C4—C5—C6—C71.7 (13)C29—C30—C31—C32179.9 (9)
C4—C9—C10—C11132.7 (11)C30—C31—C32—C3353.0 (12)
C4—C9—C10—C1547.4 (16)C30—C31—C32—C37127.1 (10)
C5—C4—C9—C83.1 (14)C31—C26—C27—C281.4 (12)
C5—C4—C9—C10178.6 (9)C31—C32—C33—C34179.8 (9)
C5—C6—C7—C81.5 (17)C31—C32—C37—C36179.3 (8)
C6—C7—C8—C92 (2)C32—C33—C34—C352.2 (14)
C7—C8—C9—C42.9 (18)C33—C32—C37—C360.6 (13)
C7—C8—C9—C10178.8 (13)C33—C34—C35—C364.1 (15)
C8—C9—C10—C1149.1 (16)C34—C35—C36—C373.6 (14)
C8—C9—C10—C15130.8 (12)C35—C36—C37—C321.2 (13)
C9—C4—C5—C62.7 (13)C37—C32—C33—C340.1 (13)
C9—C10—C11—C12179.9 (13)C38—C39—C40—C410.9 (14)
C9—C10—C15—C14178.9 (10)C39—C38—C43—C422.0 (14)
C10—C11—C12—C133 (2)C39—C40—C41—O2178.7 (9)
C11—C10—C15—C141.0 (15)C39—C40—C41—C423.7 (14)
C11—C12—C13—C145 (3)C40—C41—C42—C433.7 (15)
C12—C13—C14—C154 (2)C41—C42—C43—C380.9 (15)
C13—C14—C15—C100.9 (16)C43—C38—C39—C401.9 (13)
C15—C10—C11—C120.0 (17)C44—O2—C41—C4014.6 (14)
C16—C17—C18—C191.4 (18)C44—O2—C41—C42167.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl10.962.903.662 (6)138
C22—H22A···Cl1i0.962.873.765 (10)155
C25—H25A···Cl20.962.713.460 (6)135
C44—H44C···Cl2ii0.962.823.757 (9)165
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1/2, z+2.
 

Funding information

We thank Conacyt for the financial support (Fellowship 368610).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAnzaldo, B., Moreno Morales, G. E., Villamizar, C. C. P., Mendoza, Á. & Hernández Téllez, G. (2024). Acta Cryst. E80, 213–217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Kahlouche, A., Boublia, A., Darwish, A. S., Lemaoui, T., Verma, R. & Benguerba, Y. (2023). Inorg. Chem. Commun. 150, 110451.  Web of Science CrossRef Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBowes, E. G., Lee, G. M., Vogels, C. M., Decken, A. & Westcott, S. A. (2011). Inorg. Chim. Acta, 377, 84–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrayton, D. F., Larkin, T. M., Vicic, D. A. & Navarro, O. (2009). J. Organomet. Chem. 694, 3008–3011.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuong, A., Wuest, J. D. & Maris, T. (2011). Acta Cryst. E67, m518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Chem. Rev. 252, 1420–1450.  CAS Google Scholar
First citationKinzhalov, M. A., Baykov, S. V., Novikov, A. S., Haukka, M. & Boyarskiy, V. P. (2019). Z. Kristallogr. Cryst. Mater. 234, 155–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationMotswainyana, W. M., Onani, M. O. & Lalancette, R. A. (2012a). Acta Cryst. E68, m387.  CSD CrossRef IUCr Journals Google Scholar
First citationMotswainyana, W. M., Onani, M. O. & Madiehe, A. M. (2012b). Polyhedron, 41, 44–51.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRochon, F. D., Melanson, R. & Farrell, N. (1993). Acta Cryst. C49, 1703–1706.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146