metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­carbonyl-1κ2C-μ-chlorido-2:3κ2Cl:Cl-penta­chlorido-2κ2Cl,3κ3Cl-[1(η6)-toluene]digallium(III)ruthenium(I)(RuGa)

crossmark logo

aPO Box 6949, Radford University, Radford, Virginia 24142, USA
*Correspondence e-mail: gharakas@radford.edu

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 2 July 2024; accepted 3 July 2024; online 9 July 2024)

The title compound, [RuGa2Cl6(C7H8)(CO)2] or [(CO)2(GaCl2)(η6-toluene)Ru]+[GaCl4], was isolated from the reaction of Ga2Cl4 with di­phenyl­silanediol in toluene, followed by the addition of Ru3(CO)12. The compound contains a ruthenium–gallium metal–metal bond with a length of 2.4575 (2) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The reaction of Ga2Cl4 with Ru3(CO)12 in toluene was demonstrated to produce two ruthenium–gallium metal clusters (Harakas & Whittlesey, 1997[Harakas, G. N. & Whittlesey, B. R. (1997). Inorg. Chem. 36, 2704-2707.]). The title compound (Fig. 1[link]) was isolated during an attempt to synthesize the ruthenium–gallium di­phenyl­siloxane analogue of the previously reported iron–gallium di­methyl­siloxane cluster (Demmin et al., 2024[Demmin, M. E., Bauer, C., Ruf, M. & Harakas, G. N. (2024). IUCrData, 9, x240620.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

The title compound can be described as [(CO)2(GaCl2)(η6-toluene) Ru]+ [GaCl4]. A single positive charge on the ruthenium complex provides a total of 18 electrons for the metal center with [GaCl4] for charge balance. This bonding model is supported by the Ga1—Cl3 bond length of 2.4619 (5) Å, which is significantly longer than the other Ga—Cl bond lengths (Table 1[link]) observed in the title compound. In contrast, [{CpFe(CO)2}Ga(Cl*GaCl3)(μ-Cl)]2 is described as a Lewis acid–base complex i.e. [{CpFe(CO)2}GaCl2]2·2GaCl3 (Borovik et al., 1999[Borovik, A. S., Bott, S. G. & Barron, A. R. (1999). Organometallics, 18, 2668-2676.]). The bond angles for the terminal GaCl3 are 112.87, 114.74, and 114.09°, which are all significantly greater than the 109.5° of tetra­hedral geometry. For the title compound, the corresponding angles around Ga2 (Table 1[link]) are much closer to the ideal tetra­hedral geometry, which is consistent with [GaCl4]. In tetra­ethyl ­ammonium tetra­chlorido­gallium (Bolte et al., 2023[Bolte, M., Georg, I. & Wagner, M. (2023). CSD Communication (CCDC 2250783, Refcode VIDYAM). CCDC, Cambridge, England.]), the Cl—Ga—Cl bond angles range from 108.1 to 110.1°. An analogous Lewis acid–base bonding model for the title complex would require a 19 electron ruthenium metal center or that Ga1 carries one formal negative charge, both of which are unlikely.

Table 1
Selected geometric parameters (Å, °)

Ru1—Ga1 2.4575 (2) Ga2—Cl6 2.1413 (6)
Ga1—Cl2 2.1665 (5) Ga2—Cl4 2.1456 (6)
Ga1—Cl1 2.1888 (5) Ga2—Cl5 2.1521 (6)
Ga1—Cl3 2.4619 (5) Ga2—Cl3 2.2583 (5)
       
Cl6—Ga2—Cl4 114.95 (3) Cl6—Ga2—Cl3 110.96 (2)
Cl6—Ga2—Cl5 110.36 (3) Cl4—Ga2—Cl3 106.43 (2)
Cl4—Ga2—Cl5 109.67 (3) Cl5—Ga2—Cl3 103.82 (2)

The Ru1—Ga1 bond length of 2.4575 (2) Å for the title compound is very similar to the value of 2.453 (1) Å observed for Ru2{GaCl2(THF)}2(CO)8 (Harakas & Whittlesey, 1997[Harakas, G. N. & Whittlesey, B. R. (1997). Inorg. Chem. 36, 2704-2707.]). The packing is shown in Fig. 2[link]

[Figure 2]
Figure 2
Crystal packing diagram viewed along the b axis. Hydrogen atoms have been omitted for clarity.

During the work-up of the reaction, the title compound was isolated directly from the toluene solution. It is unknown at this time the role of di­phenyl­silanediol, if any, in the formation of the title compound. A solid that was insoluble in toluene in the reaction flask was extracted with THF forming an orange solution. This reaction product, which may contain the desired di­phenyl­siloxane metal cluster, has not yet been fully characterized.

Synthesis and crystallization

All manipulations were carried out under argon using standard Schlenk line techniques. Our previous work (Demmin et al., 2024[Demmin, M. E., Bauer, C., Ruf, M. & Harakas, G. N. (2024). IUCrData, 9, x240620.]) demonstrated that silicone-based vacuum grease can contaminate gallium halide reactions. Therefore, PTFE sleeves and non-silicone based vacuum grease were used on all glassware in this experiment. In a 250 ml Schlenk flask, gallium (5.60 g, 80.3 mmole) and GaCl3 5.00 g (28.4, mmole) were combined followed by toluene (175 ml). The mixture was heated to reflux for 24 h to produce a solution containing gallium(II) chloride (Ga2Cl4), excess gallium was present.

Di­phenyl­silanediol (0.306 g, 1.41 mmol) was added to a 150 ml Schlenk flask followed by toluene (50 ml). To this flask, 10 ml of the Ga2Cl4 stock solution was added via cannula. The dark-gray mixture was refluxed under argon for 72 h resulting in a light-gray mixture. The reaction flask was cooled to 25°C and Ru3(CO)12 (0.225 g, 0.352 mmol) was then added. The mixture was heated to reflux for an additional 72 h. This resulted in a mixture with a suspended gray solid/gel and colorless solution. The colorless solution was deca­nted into a 150 ml Schlenk flask via cannula. After standing at 25°C for 10 days, colorless crystals were observed.

A single crystal was coated with NVH oil and mounted on a MiTeGen loop under a stream of argon gas then cooled to −25°C for data collection.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [RuGa2Cl6(C7H8)(CO)2]
Mr 601.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 248
a, b, c (Å) 13.1598 (6), 9.7142 (4), 15.3369 (7)
β (°) 115.257 (1)
V3) 1773.19 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.76
Crystal size (mm) 0.36 × 0.34 × 0.31
 
Data collection
Diffractometer Bruker D8 Quest Eco, Photon II 7
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.21, 0.32
No. of measured, independent and observed [I > 2σ(I)] reflections 66270, 4424, 4133
Rint 0.031
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.041, 1.09
No. of reflections 4424
No. of parameters 182
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.43
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Structural data


Computing details top

Dicarbonyl-1κ2C-µ-chlorido-2:3κ2Cl:Cl-pentachlorido-2κ2Cl,3κ3Cl-[1(η6)-toluene]digallium(III)ruthenium(I)(RuGa) top
Crystal data top
[RuGa2Cl6(C7H8)(CO)2]F(000) = 1144
Mr = 601.36Dx = 2.253 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.1598 (6) ÅCell parameters from 9595 reflections
b = 9.7142 (4) Åθ = 2.7–28.3°
c = 15.3369 (7) ŵ = 4.76 mm1
β = 115.257 (1)°T = 248 K
V = 1773.19 (14) Å3Block, clear colourless
Z = 40.36 × 0.34 × 0.31 mm
Data collection top
Bruker D8 Quest Eco, Photon II 7
diffractometer
4133 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.031
phi and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.21, Tmax = 0.32k = 1212
66270 measured reflectionsl = 2020
4424 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0179P)2 + 1.0566P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
4424 reflectionsΔρmax = 0.65 e Å3
182 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.24301 (2)0.66776 (2)0.55005 (2)0.02484 (4)
Ga10.37587 (2)0.52947 (2)0.68455 (2)0.02795 (5)
Ga20.21861 (2)0.26035 (2)0.77462 (2)0.03228 (5)
Cl10.53434 (4)0.47105 (6)0.68030 (4)0.04053 (11)
Cl20.41255 (5)0.58077 (6)0.83247 (3)0.04424 (12)
Cl30.31993 (4)0.28855 (5)0.68851 (4)0.03697 (10)
Cl40.09559 (5)0.42180 (6)0.73078 (5)0.05227 (13)
Cl50.13673 (5)0.06499 (6)0.72620 (5)0.05478 (14)
Cl60.32572 (4)0.25357 (7)0.92593 (4)0.05277 (15)
O10.12790 (15)0.73771 (17)0.67684 (13)0.0519 (4)
O20.10336 (14)0.40984 (18)0.48352 (13)0.0573 (4)
C10.17226 (16)0.7071 (2)0.63130 (14)0.0338 (4)
C20.15713 (16)0.5047 (2)0.51002 (14)0.0367 (4)
C30.1370 (2)1.0026 (3)0.48306 (18)0.0502 (5)
H3A0.1511901.0850310.4543100.075000*
H3B0.1485441.0222840.5486470.075000*
H3C0.0600800.9728000.4457480.075000*
C40.21607 (15)0.8907 (2)0.48377 (13)0.0324 (4)
C50.18667 (17)0.7958 (2)0.40924 (13)0.0389 (4)
H50.1078920.7903890.3599640.047000*
C60.2656 (2)0.6935 (3)0.41157 (15)0.0478 (5)
H60.2412320.6189420.3629320.057000*
C70.37233 (19)0.6881 (2)0.48817 (17)0.0458 (5)
H70.4234880.6106110.4933980.055000*
C80.40090 (17)0.7834 (2)0.56321 (16)0.0432 (5)
H80.4719640.7721110.6220050.052000*
C90.32405 (16)0.8811 (2)0.56150 (14)0.0371 (4)
H90.3409020.9372640.6199160.044000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02522 (6)0.02903 (7)0.02071 (6)0.00104 (5)0.01024 (5)0.00055 (5)
Ga10.02861 (9)0.03056 (10)0.02508 (9)0.00314 (7)0.01183 (7)0.00206 (7)
Ga20.03015 (10)0.03326 (11)0.03336 (10)0.00027 (8)0.01347 (8)0.00417 (8)
Cl10.0333 (2)0.0472 (3)0.0458 (3)0.00639 (19)0.0213 (2)0.0039 (2)
Cl20.0559 (3)0.0468 (3)0.0281 (2)0.0091 (2)0.0161 (2)0.00377 (19)
Cl30.0476 (2)0.0293 (2)0.0424 (2)0.00163 (19)0.0273 (2)0.00116 (18)
Cl40.0467 (3)0.0490 (3)0.0610 (3)0.0157 (2)0.0228 (3)0.0080 (3)
Cl50.0554 (3)0.0405 (3)0.0623 (3)0.0155 (2)0.0192 (3)0.0040 (3)
Cl60.0389 (2)0.0864 (4)0.0323 (2)0.0041 (3)0.0145 (2)0.0060 (3)
O10.0721 (11)0.0459 (9)0.0607 (10)0.0051 (8)0.0503 (9)0.0003 (8)
O20.0500 (9)0.0449 (9)0.0626 (10)0.0152 (8)0.0103 (8)0.0092 (8)
C10.0408 (9)0.0295 (9)0.0349 (9)0.0002 (7)0.0198 (8)0.0036 (7)
C20.0334 (9)0.0387 (10)0.0334 (9)0.0019 (8)0.0099 (7)0.0010 (8)
C30.0545 (13)0.0464 (12)0.0567 (14)0.0116 (10)0.0304 (11)0.0103 (10)
C40.0365 (9)0.0339 (9)0.0302 (8)0.0027 (7)0.0175 (7)0.0051 (7)
C50.0422 (10)0.0474 (11)0.0233 (8)0.0055 (9)0.0101 (7)0.0060 (8)
C60.0754 (15)0.0475 (12)0.0321 (10)0.0045 (11)0.0342 (11)0.0027 (9)
C70.0519 (12)0.0497 (12)0.0532 (12)0.0122 (10)0.0392 (11)0.0147 (10)
C80.0308 (9)0.0520 (12)0.0473 (11)0.0053 (9)0.0172 (8)0.0101 (10)
C90.0371 (9)0.0378 (10)0.0343 (9)0.0111 (8)0.0133 (8)0.0000 (8)
Geometric parameters (Å, º) top
Ru1—C11.8856 (19)Ga2—Cl42.1456 (6)
Ru1—C21.890 (2)Ga2—Cl52.1521 (6)
Ru1—C62.2803 (19)Ga2—Cl32.2583 (5)
Ru1—C72.2834 (19)O1—C11.125 (2)
Ru1—C82.294 (2)O2—C21.127 (3)
Ru1—C92.3027 (19)C3—C41.502 (3)
Ru1—C52.3223 (19)C4—C51.389 (3)
Ru1—C42.3536 (19)C4—C91.415 (3)
Ru1—Ga12.4575 (2)C5—C61.426 (3)
Ga1—Cl22.1665 (5)C6—C71.396 (3)
Ga1—Cl12.1888 (5)C7—C81.398 (3)
Ga1—Cl32.4619 (5)C8—C91.379 (3)
Ga2—Cl62.1413 (6)
C1—Ru1—C289.37 (9)Cl2—Ga1—Cl1107.54 (2)
C1—Ru1—C6152.94 (9)Cl2—Ga1—Ru1120.934 (17)
C2—Ru1—C694.99 (9)Cl1—Ga1—Ru1117.546 (16)
C1—Ru1—C7157.35 (9)Cl2—Ga1—Cl397.36 (2)
C2—Ru1—C7112.70 (9)Cl1—Ga1—Cl393.035 (19)
C6—Ru1—C735.62 (9)Ru1—Ga1—Cl3115.292 (15)
C1—Ru1—C8121.78 (9)Cl6—Ga2—Cl4114.95 (3)
C2—Ru1—C8146.39 (9)Cl6—Ga2—Cl5110.36 (3)
C6—Ru1—C863.59 (9)Cl4—Ga2—Cl5109.67 (3)
C7—Ru1—C835.56 (9)Cl6—Ga2—Cl3110.96 (2)
C1—Ru1—C996.35 (8)Cl4—Ga2—Cl3106.43 (2)
C2—Ru1—C9166.51 (8)Cl5—Ga2—Cl3103.82 (2)
C6—Ru1—C974.46 (8)Ga2—Cl3—Ga1112.77 (2)
C7—Ru1—C963.31 (8)O1—C1—Ru1175.86 (18)
C8—Ru1—C934.91 (8)O2—C2—Ru1177.7 (2)
C1—Ru1—C5117.03 (8)C5—C4—C9118.47 (18)
C2—Ru1—C5103.73 (8)C5—C4—C3121.72 (19)
C6—Ru1—C536.09 (8)C9—C4—C3119.81 (19)
C7—Ru1—C564.28 (8)C5—C4—Ru171.49 (11)
C8—Ru1—C574.78 (7)C9—C4—Ru170.35 (11)
C9—Ru1—C562.79 (7)C3—C4—Ru1130.19 (13)
C1—Ru1—C494.20 (7)C4—C5—C6119.83 (19)
C2—Ru1—C4132.21 (8)C4—C5—Ru173.96 (11)
C6—Ru1—C463.40 (8)C6—C5—Ru170.35 (11)
C7—Ru1—C475.08 (7)C7—C6—C5120.5 (2)
C8—Ru1—C463.34 (7)C7—C6—Ru172.31 (11)
C9—Ru1—C435.37 (7)C5—C6—Ru173.56 (11)
C5—Ru1—C434.55 (7)C6—C7—C8119.2 (2)
C1—Ru1—Ga186.05 (6)C6—C7—Ru172.07 (12)
C2—Ru1—Ga185.82 (6)C8—C7—Ru172.63 (11)
C6—Ru1—Ga1120.86 (7)C9—C8—C7120.2 (2)
C7—Ru1—Ga190.38 (6)C9—C8—Ru172.89 (11)
C8—Ru1—Ga184.29 (6)C7—C8—Ru171.81 (12)
C9—Ru1—Ga1106.70 (5)C8—C9—C4121.73 (19)
C5—Ru1—Ga1154.66 (5)C8—C9—Ru172.20 (12)
C4—Ru1—Ga1141.95 (5)C4—C9—Ru174.28 (11)
 

References

First citationBolte, M., Georg, I. & Wagner, M. (2023). CSD Communication (CCDC 2250783, Refcode VIDYAM). CCDC, Cambridge, England.  Google Scholar
First citationBorovik, A. S., Bott, S. G. & Barron, A. R. (1999). Organometallics, 18, 2668–2676.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemmin, M. E., Bauer, C., Ruf, M. & Harakas, G. N. (2024). IUCrData, 9, x240620.  Google Scholar
First citationHarakas, G. N. & Whittlesey, B. R. (1997). Inorg. Chem. 36, 2704–2707.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146