organic compounds
Bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate
aTermez State University, Barkamol Avlod Street 43, Termez City, Uzbekistan, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str 83, Tashkent, Uzbekistan
*Correspondence e-mail: ashurovjamshid1@gmail.com
The interaction between 8-hydroxyquinoline (8HQ, C9H7NO) and naphthalene-1,5-disulfonic acid (H2NDS, C10H8O6S2) in aqueous media results in the formation of the salt hydrate bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate, 2C9H8NO+·C10H6O6S22−·4H2O. The comprises one protonated 8HQ+ cation, half of an NDS2– dianion symmetrically disposed around a center of inversion, and two water molecules. Within the these components are organized into chains along the [010] and [10] directions through O—H⋯O and N—H⋯O hydrogen-bonding interactions, forming a di-periodic network parallel to (101). Additional stabilizing interactions such as C—H⋯O, C—H⋯π, and π–π interactions extend this arrangement into a tri-periodic network structure
Keywords: naphthalene-1,5-disulfonate; 8-hydroxyquinoline; crystal structure; hydrogen bonds; organic salt.
CCDC reference: 2256736
Structure description
8-Hydroxyquinoline (8HQ, C9H7NO, HL), known also as oxine, is a bidentate chelating agent. It forms three species: H2L+, HL and L−. 8HQ bearing a hetero-nitrogen atom (pKa = 10.8) and the 8-substituted phenol group (pKa = 4.9) is a good organic acid–base adduct conformer and has been reported to form supramolecularly organized compounds with acidic counter parts under formation of multiple hydrogen bonds (Smith et al., 2003). 8HQ is used in analytical chemistry for the quantitative determination of metal ions because the resulting complexes are insoluble in water. The aluminium complex (Cölle et al., 2002; Katakura & Koide, 2006) is a common component of organic light-emitting diodes (OLEDs). Substituents on the quinoline ring result in compounds with luminescence properties (Montes et al., 2006). In its photo-induced 8HQ converts to zwitterionic isomers, in which the hydrogen atom is transferred from oxygen to nitrogen (Bardez et al., 1997). The complexes as well as the heterocycle itself exhibit antiseptic, disinfectant, and pesticidal properties (Phillips et al., 1956) and functions as a transcription inhibitor (Wen et al., 2023). Its solution in alcohol is used in liquid bandages. It once was of interest as an anti-cancer drug (Zhu et al., 2017; Fouda 2017). The roots of the invasive plant Centaurea diffusa release 8HQ, which has a negative effect on plants that have not co-evolved with it (Vivanco et al., 2004).
1,5-Naphthalenedisulfonic acid (H2NDS, Armstrong acid, C10H8O6S2) is a white-to-yellowish solid that is soluble in water (1030 g l−1). It is used in the production of dyes, pigments, and other industrial chemicals. It also functions as a chelating and complexing agent, which is used in various applications such as water treatment, analytical chemistry, and mineral processing (Arslan-Alaton et al., 2008). H2NDS does not demonstrate a definite biological activity. Complexes derived from H2NDS are of interest in supramolecular chemistry due to their ability to form complex hydrogen-bonded systems because the sulfonate group can accept up to six hydrogen bonds.
Preparation and structural characterization of organic salts on basis of these two simple compounds is of interest for supramolecular and analytical chemistry (Oh et al., 2020; Chen et al., 2022). In our previous works (Suyunov et al., 2023a,b,c), we reported on H2NDS and its salts involving nickel(II) and cadmium(II). In the current work, we report on preparation and molecular and crystal structures of a proton-transfer salt, 2(8HQ)+·NDS2–·4H2O.
The + cation, half of an NDS2– anion, and two water molecules of crystallization, resulting in a supramolecular associate with a 2:1:4 cation-anion-water composition. The sulfonic acid (SO3H) groups of H2NDS are deprotonated, with the hydrogen atoms transferred to the nitrogen atom of an 8HQ+ cation, and the NDS2− dianion exhibits inversion symmetry, with the inversion center located at the midpoint of the C11—C11i [symmetry code: (i) −x, 1 − y, 1 − z] bond in the naphthalene ring system (Fig. 1). A similar salt with composition 2C9H8NO+·C10H6O6S22–·2H2O was previously reported (Jin et al., 2014), the main difference being the presence of only two water molecules and orthorhombic symmetry (space group Pbca) compared to four water molecules and monoclinic symmetry (space group P21/n) for the title salt. In the cation of the title salt, the angle around the protonated N atom [C7—N1—C8 = 122.67 (13)°] is approximately 1° less than the corresponding angle in the study of the dihydrate [123.5 (3)°]. In the title salt, the anions exhibit two distinct orientations, with the angle between their planes being 33.37 (7)°. The cations are oriented in a single direction, forming angles of 71.66 (8) and 75.80 (9)° with the planes of the anions. The naphthalene ring system exhibits typical bond lengths and angles, with C—C bond lengths ranging from 1.362 (2) to 1.431 (2) Å, and C—C—C angles in the range 117.91 (14) to 123.05 (12)°. The hydroxyquinoline and naphthalene fragments are coplanar with r.m.s deviations of 0.0162 (14) Å and 0.0112 (13) Å.
of the title compound consists of one 8HQIn the crystal, the 8HQ+ cation, the NDS2– anion, and the water molecules are connected via classical O—H⋯O and N—H⋯O hydrogen bonds (Table 1) with graph-set motifs of R43(10) and R44(13), which link the components into chains extending parallel to [010], as illustrated in Fig. 2. The SO3− group on one side of the anion participates in the formation of these chains. The symmetry-related second SO3− group also participates in hydrogen bonding under the formation of a second infinite chain parallel to [10] connecting with the previous chains via C—H⋯π interactions (where Cg are the centroids of the naphthalene rings, Table 1) and C(π)⋯C,N(π) weak intermolecular contacts [Cg⋯Cg distance = 3.6547 (9) Å, slippage 1.248 Å], forming sheets parallel to (101) (Fig. 3). These sheets are linked through additional weak C—H⋯O interactions into a tri-periodic network structure. Due to of the sulfonate groups, the nearest centroid separation between naphthalene rings is 5.264 (3) Å, suggesting no π–π stacking between these moieties.
A search of the Cambridge Structural Database (CSD, version 5.45, updated November 2023; Groom et al., 2016) revealed that the of 8HQ alone has been determined eleven times, while thirteen reports are related to molecular complexes, and 71 crystals are organic salts where the nitrogen atom of 8HQ is protonated. In the case of 1,5-NDSA, 225 crystals are organic salts of 1,5-NDSA in the dianionic form, One compound (FIVFOI01; Du et al., 2019) is a complex with 1,5-NDSA in the monoanionic form, and four crystals are molecular complexes (SAHRIG, Singh et al., 2021; SATBEX, Liu et al., 2017; VEGHUN, Cunha et al., 2017; WEZGAN, Xu et al., 2023) with neutral sulfo-acid molecules.
Synthesis and crystallization
The title compound was obtained by the addition of 1,5-naphthalenedisulfonate acid (0.288 g, 1 mmol) to a solution of 8-hydroxyquinoline (0.176 g, 2 mmol) in water, in the stoichiometric ratio 1:2. Good-quality single crystals were obtained by slow evaporation after four days (yield: 60%).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2256736
https://doi.org/10.1107/S2414314624005704/wm4216sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624005704/wm4216Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624005704/wm4216Isup3.cml
2C9H8NO+·C10H6O6S22−·4H2O | F(000) = 680 |
Mr = 650.66 | Dx = 1.473 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 7.55855 (8) Å | Cell parameters from 9285 reflections |
b = 12.16674 (13) Å | θ = 2.8–71.2° |
c = 16.00467 (17) Å | µ = 2.25 mm−1 |
β = 94.7152 (10)° | T = 290 K |
V = 1466.86 (3) Å3 | Block, light yellow |
Z = 2 | 0.32 × 0.3 × 0.28 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 2841 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2621 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 71.4°, θmin = 4.6° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −14→14 |
Tmin = 0.820, Tmax = 1.000 | l = −19→19 |
14094 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.303P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2841 reflections | Δρmax = 0.20 e Å−3 |
214 parameters | Δρmin = −0.29 e Å−3 |
2 restraints | Extinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: intrinsic phasing | Extinction coefficient: 0.0023 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen atoms attached to the N and O atoms were located from a difference-Fourier map and refined with bond-length restraints of 0.86 (1) Å and 0.82 (1) Å, respectively. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.12659 (4) | 0.52366 (3) | 0.29817 (2) | 0.03571 (13) | |
O2 | 0.16257 (16) | 0.40840 (9) | 0.28388 (7) | 0.0539 (3) | |
O3 | 0.28637 (14) | 0.58461 (9) | 0.32385 (6) | 0.0451 (3) | |
O4 | 0.02239 (15) | 0.57423 (10) | 0.22875 (6) | 0.0525 (3) | |
C10 | −0.00953 (17) | 0.52607 (10) | 0.38419 (8) | 0.0315 (3) | |
C11 | 0.05915 (16) | 0.49755 (10) | 0.46738 (8) | 0.0297 (3) | |
C12 | 0.23846 (17) | 0.46556 (11) | 0.48773 (9) | 0.0351 (3) | |
H12 | 0.315658 | 0.460895 | 0.445520 | 0.042* | |
C13 | 0.29860 (18) | 0.44165 (13) | 0.56821 (9) | 0.0407 (3) | |
H13 | 0.417007 | 0.422577 | 0.580589 | 0.049* | |
C14 | −0.18313 (18) | 0.55446 (12) | 0.36709 (9) | 0.0379 (3) | |
H14 | −0.225612 | 0.571361 | 0.312413 | 0.045* | |
O1 | 0.60496 (18) | 0.47210 (9) | 0.18830 (7) | 0.0538 (3) | |
N1 | 0.68475 (17) | 0.64774 (10) | 0.09816 (8) | 0.0415 (3) | |
C1 | 0.6624 (2) | 0.45179 (12) | 0.11258 (9) | 0.0409 (3) | |
C2 | 0.6827 (2) | 0.35003 (13) | 0.07829 (10) | 0.0500 (4) | |
H2 | 0.659051 | 0.287453 | 0.108831 | 0.060* | |
C3 | 0.7392 (2) | 0.33952 (15) | −0.00293 (11) | 0.0563 (4) | |
H3 | 0.750754 | 0.269640 | −0.025395 | 0.068* | |
C4 | 0.7774 (2) | 0.42843 (15) | −0.04946 (10) | 0.0538 (4) | |
H4 | 0.814252 | 0.419332 | −0.103052 | 0.065* | |
C5 | 0.7981 (2) | 0.63185 (15) | −0.05880 (10) | 0.0520 (4) | |
H5 | 0.836512 | 0.627362 | −0.112434 | 0.062* | |
C6 | 0.7791 (2) | 0.73209 (15) | −0.02321 (11) | 0.0550 (4) | |
H6 | 0.804189 | 0.795738 | −0.052154 | 0.066* | |
C7 | 0.7214 (2) | 0.73849 (13) | 0.05723 (11) | 0.0500 (4) | |
H7 | 0.708614 | 0.806722 | 0.082224 | 0.060* | |
C8 | 0.70289 (18) | 0.54549 (12) | 0.06544 (9) | 0.0370 (3) | |
C9 | 0.7607 (2) | 0.53461 (13) | −0.01585 (9) | 0.0426 (3) | |
O1W | 0.49949 (17) | 0.31023 (10) | 0.28209 (9) | 0.0626 (3) | |
H1WA | 0.392446 | 0.331508 | 0.282471 | 0.094* | |
H1WB | 0.491769 | 0.242369 | 0.269682 | 0.094* | |
O2W | 0.53570 (16) | 0.71260 (10) | 0.24017 (8) | 0.0556 (3) | |
H2WA | 0.480634 | 0.773241 | 0.233271 | 0.083* | |
H2WB | 0.460317 | 0.669091 | 0.258790 | 0.083* | |
H1A | 0.643 (3) | 0.6562 (18) | 0.1467 (8) | 0.069 (6)* | |
H1 | 0.581 (3) | 0.4147 (13) | 0.2114 (14) | 0.086 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0424 (2) | 0.0381 (2) | 0.02794 (19) | −0.00473 (12) | 0.01084 (14) | −0.00284 (12) |
O2 | 0.0634 (7) | 0.0416 (6) | 0.0599 (7) | −0.0036 (5) | 0.0242 (6) | −0.0135 (5) |
O3 | 0.0471 (6) | 0.0540 (6) | 0.0360 (5) | −0.0140 (5) | 0.0142 (4) | −0.0021 (4) |
O4 | 0.0584 (7) | 0.0706 (8) | 0.0291 (5) | −0.0020 (5) | 0.0078 (5) | 0.0066 (5) |
C10 | 0.0356 (7) | 0.0308 (6) | 0.0289 (6) | −0.0024 (5) | 0.0074 (5) | 0.0001 (5) |
C11 | 0.0312 (6) | 0.0285 (6) | 0.0300 (6) | −0.0018 (5) | 0.0066 (5) | 0.0002 (5) |
C12 | 0.0317 (7) | 0.0393 (7) | 0.0356 (7) | 0.0018 (5) | 0.0102 (5) | 0.0026 (5) |
C13 | 0.0307 (7) | 0.0489 (8) | 0.0428 (8) | 0.0052 (6) | 0.0047 (6) | 0.0054 (6) |
C14 | 0.0385 (7) | 0.0442 (8) | 0.0309 (7) | 0.0004 (6) | 0.0021 (5) | 0.0043 (5) |
O1 | 0.0785 (8) | 0.0460 (7) | 0.0388 (6) | −0.0095 (6) | 0.0159 (6) | 0.0057 (5) |
N1 | 0.0483 (7) | 0.0403 (6) | 0.0360 (6) | −0.0024 (5) | 0.0041 (5) | 0.0042 (5) |
C1 | 0.0443 (8) | 0.0437 (8) | 0.0345 (7) | −0.0027 (6) | 0.0017 (6) | 0.0049 (6) |
C2 | 0.0571 (9) | 0.0407 (8) | 0.0518 (9) | −0.0019 (7) | 0.0026 (7) | 0.0059 (7) |
C3 | 0.0661 (10) | 0.0474 (9) | 0.0555 (10) | 0.0066 (8) | 0.0056 (8) | −0.0076 (7) |
C4 | 0.0599 (10) | 0.0613 (10) | 0.0409 (8) | 0.0071 (8) | 0.0092 (7) | −0.0043 (7) |
C5 | 0.0525 (9) | 0.0649 (11) | 0.0398 (8) | 0.0007 (7) | 0.0104 (7) | 0.0136 (7) |
C6 | 0.0582 (10) | 0.0532 (10) | 0.0543 (10) | −0.0050 (8) | 0.0090 (8) | 0.0210 (8) |
C7 | 0.0570 (9) | 0.0396 (8) | 0.0532 (9) | −0.0028 (7) | 0.0033 (7) | 0.0076 (7) |
C8 | 0.0370 (7) | 0.0413 (7) | 0.0321 (7) | −0.0018 (5) | 0.0000 (5) | 0.0029 (5) |
C9 | 0.0400 (7) | 0.0533 (9) | 0.0344 (7) | 0.0013 (6) | 0.0033 (6) | 0.0046 (6) |
O1W | 0.0647 (8) | 0.0529 (7) | 0.0722 (8) | 0.0003 (6) | 0.0171 (7) | 0.0131 (6) |
O2W | 0.0629 (7) | 0.0451 (6) | 0.0618 (7) | 0.0057 (5) | 0.0236 (6) | 0.0069 (5) |
S1—O2 | 1.4503 (11) | C1—C8 | 1.414 (2) |
S1—O3 | 1.4476 (10) | C2—H2 | 0.9300 |
S1—O4 | 1.4455 (11) | C2—C3 | 1.407 (2) |
S1—C10 | 1.7853 (13) | C3—H3 | 0.9300 |
C10—C11 | 1.4314 (18) | C3—C4 | 1.358 (3) |
C10—C14 | 1.3627 (19) | C4—H4 | 0.9300 |
C11—C11i | 1.431 (2) | C4—C9 | 1.409 (2) |
C11—C12 | 1.4219 (18) | C5—H5 | 0.9300 |
C12—H12 | 0.9300 | C5—C6 | 1.359 (3) |
C12—C13 | 1.362 (2) | C5—C9 | 1.409 (2) |
C13—H13 | 0.9300 | C6—H6 | 0.9300 |
C13—C14i | 1.409 (2) | C6—C7 | 1.395 (2) |
C14—H14 | 0.9300 | C7—H7 | 0.9300 |
O1—C1 | 1.3433 (19) | C8—C9 | 1.412 (2) |
O1—H1 | 0.819 (10) | O1W—H1WA | 0.8500 |
N1—C7 | 1.3246 (19) | O1W—H1WB | 0.8501 |
N1—C8 | 1.3611 (19) | O2W—H2WA | 0.8498 |
N1—H1A | 0.868 (9) | O2W—H2WB | 0.8495 |
C1—C2 | 1.368 (2) | ||
O2—S1—C10 | 105.37 (6) | C2—C1—C8 | 118.63 (14) |
O3—S1—O2 | 112.16 (7) | C1—C2—H2 | 119.8 |
O3—S1—C10 | 107.03 (6) | C1—C2—C3 | 120.36 (15) |
O4—S1—O2 | 112.81 (7) | C3—C2—H2 | 119.8 |
O4—S1—O3 | 112.91 (7) | C2—C3—H3 | 119.0 |
O4—S1—C10 | 105.88 (6) | C4—C3—C2 | 121.91 (16) |
C11—C10—S1 | 121.69 (10) | C4—C3—H3 | 119.0 |
C14—C10—S1 | 117.11 (10) | C3—C4—H4 | 120.3 |
C14—C10—C11 | 121.19 (12) | C3—C4—C9 | 119.43 (15) |
C11i—C11—C10 | 117.91 (14) | C9—C4—H4 | 120.3 |
C12—C11—C10 | 123.05 (12) | C6—C5—H5 | 119.4 |
C12—C11—C11i | 119.03 (14) | C6—C5—C9 | 121.12 (15) |
C11—C12—H12 | 119.6 | C9—C5—H5 | 119.4 |
C13—C12—C11 | 120.86 (12) | C5—C6—H6 | 120.4 |
C13—C12—H12 | 119.6 | C5—C6—C7 | 119.28 (15) |
C12—C13—H13 | 119.7 | C7—C6—H6 | 120.4 |
C12—C13—C14i | 120.62 (13) | N1—C7—C6 | 120.25 (15) |
C14i—C13—H13 | 119.7 | N1—C7—H7 | 119.9 |
C10—C14—C13i | 120.36 (13) | C6—C7—H7 | 119.9 |
C10—C14—H14 | 119.8 | N1—C8—C1 | 119.89 (13) |
C13i—C14—H14 | 119.8 | N1—C8—C9 | 119.25 (13) |
C1—O1—H1 | 110.6 (17) | C9—C8—C1 | 120.85 (14) |
C7—N1—C8 | 122.67 (13) | C4—C9—C8 | 118.80 (14) |
C7—N1—H1A | 116.7 (15) | C5—C9—C4 | 123.77 (15) |
C8—N1—H1A | 120.6 (15) | C5—C9—C8 | 117.43 (14) |
O1—C1—C2 | 125.70 (14) | H1WA—O1W—H1WB | 104.5 |
O1—C1—C8 | 115.67 (13) | H2WA—O2W—H2WB | 104.5 |
S1—C10—C11—C11i | 179.61 (12) | N1—C8—C9—C4 | −179.40 (14) |
S1—C10—C11—C12 | 0.00 (18) | N1—C8—C9—C5 | 0.5 (2) |
S1—C10—C14—C13i | −179.89 (11) | C1—C2—C3—C4 | 0.8 (3) |
O2—S1—C10—C11 | 69.66 (12) | C1—C8—C9—C4 | 0.0 (2) |
O2—S1—C10—C14 | −109.23 (12) | C1—C8—C9—C5 | 179.91 (14) |
O3—S1—C10—C11 | −49.90 (12) | C2—C1—C8—N1 | −179.68 (14) |
O3—S1—C10—C14 | 131.21 (11) | C2—C1—C8—C9 | 0.9 (2) |
O4—S1—C10—C11 | −170.60 (10) | C2—C3—C4—C9 | 0.1 (3) |
O4—S1—C10—C14 | 10.52 (13) | C3—C4—C9—C5 | 179.58 (16) |
C10—C11—C12—C13 | 178.45 (13) | C3—C4—C9—C8 | −0.5 (2) |
C11—C10—C14—C13i | 1.2 (2) | C5—C6—C7—N1 | −0.4 (3) |
C11i—C11—C12—C13 | −1.1 (2) | C6—C5—C9—C4 | 179.83 (16) |
C11—C12—C13—C14i | 1.5 (2) | C6—C5—C9—C8 | 0.0 (2) |
C14—C10—C11—C11i | −1.6 (2) | C7—N1—C8—C1 | 179.67 (14) |
C14—C10—C11—C12 | 178.84 (13) | C7—N1—C8—C9 | −0.9 (2) |
O1—C1—C2—C3 | 178.11 (15) | C8—N1—C7—C6 | 0.8 (2) |
O1—C1—C8—N1 | 0.9 (2) | C8—C1—C2—C3 | −1.3 (2) |
O1—C1—C8—C9 | −178.57 (13) | C9—C5—C6—C7 | 0.0 (3) |
Symmetry code: (i) −x, −y+1, −z+1. |
Cg1 and Cg2 are the centroids of the C10/ C11/C11'–C13'/C14 and C11–C13/C14'/C10'/C11' rings, respectively, where primed atoms are related by the symmetry operation -x, 1 - y, 1 - z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2WA···O2ii | 0.85 | 1.98 | 2.8239 (16) | 176 |
O2W—H2WB···O3 | 0.85 | 2.02 | 2.8610 (15) | 168 |
O1W—H1WA···O2 | 0.85 | 1.98 | 2.8150 (17) | 169 |
O1W—H1WB···O4iii | 0.85 | 2.05 | 2.8806 (18) | 166 |
O1—H1···O1W | 0.82 (1) | 1.84 (1) | 2.6390 (16) | 165 (2) |
N1—H1A···O2W | 0.87 (1) | 1.89 (1) | 2.7347 (18) | 164 (2) |
C6—H6···O3iv | 0.93 | 2.46 | 3.3153 (19) | 154 |
C4—H4···O4v | 0.93 | 2.45 | 3.352 (2) | 165 |
C14—H14···O1vi | 0.93 | 2.57 | 3.3173 (18) | 137 |
C12—H12···O3 | 0.93 | 2.46 | 3.0439 (17) | 121 |
C7—H7···Cg1ii | 0.93 | 2.82 | 3.6125 (17) | 144 |
C7—H7···Cg2iv | 0.93 | 2.82 | 3.6125 (17) | 144 |
Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x+1/2, −y+3/2, z−1/2; (v) −x+1, −y+1, −z; (vi) x−1, y, z. |
Funding information
The authors thank the Uzbekistan government for their direct financial support of this research. They also gratefully acknowledge the Fundamental Research Grant from the Agency for Innovative Development under the Ministry of Higher Education, Science, and Innovation of the Republic of Uzbekistan.
References
Arslan-Alaton, I., Kabdaşlı, I., Tunay, O. & Cekirge, Z. (2008). Fresenius Environ. Bull. 17, 1803–1808. CAS Google Scholar
Bardez, E., Devol, I., Larrey, B. & Valeur, B. (1997). J. Phys. Chem. B, 101, 7786–7793. CrossRef CAS Google Scholar
Chen, X., Huang, Z., Sala, R. L., McLean, A. M., Wu, G., Sokołowski, K., King, K., McCune, J. A. & Scherman, O. A. (2022). J. Am. Chem. Soc. 144, 8474–8479. CrossRef CAS PubMed Google Scholar
Cölle, M., Dinnebier, R. E. & Brütting, W. (2002). Chem. Commun. 23, 2908–2909. Google Scholar
Cunha, M. S., Ribeiro, C. E. P., Corrêa, C. C. & Diniz, R. (2017). J. Mol. Struct. 1150, 586–594. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Du, Y., Li, H., Wang, Z., Zhang, M., Liu, K., Liu, Y., Chen, R. & Wang, L. (2019). J. Mol. Struct. 1196, 828–835. CSD CrossRef CAS Google Scholar
Fouda, A. M. (2017). Med. Chem. Res. 26, 302–313. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jin, S., Wang, D., Du, S., Linhe, Q., Fu, M. & Wu, S. (2014). J. Chem. Crystallogr. 44, 435–441. CSD CrossRef CAS Google Scholar
Katakura, R. & Koide, Y. (2006). Inorg. Chem. 45, 5730–5732. Web of Science CrossRef PubMed CAS Google Scholar
Liu, L., Zhao, Z. & Hao, C. (2017). J. Incl Phenom. Macrocycl Chem. 88, 247–252. CSD CrossRef CAS Google Scholar
Montes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). Chem. A Eur. J. 12, 4523–4535. CSD CrossRef CAS Google Scholar
Oh, H., Kim, D., Kim, D., Park, I.-H. & Jung, O.-S. (2020). Cryst. Growth Des. 20, 7027–7033. Web of Science CSD CrossRef CAS Google Scholar
Phillips, J. P. (1956). Chem. Rev. 56, 271–297. CrossRef CAS Web of Science Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, U. P., Singh, N., Mohanty, A. & Butcher, R. J. (2021). J. Chem. Crystallogr. 51, 57–70. CSD CrossRef CAS Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2003). CrystEngComm, 5, 58–61. Web of Science CSD CrossRef CAS Google Scholar
Suyunov, J., Torambetov, B., Turaev, K., Kadirova, S., Alimnazarov, B. & Ashurov, J. (2023c). Acta Cryst. E79, 1190–1193. CSD CrossRef IUCr Journals Google Scholar
Suyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Ibragimov, A. B., Mengnorov, I. J., Rasulov, A. A. & Ashurov, J. M. (2023b). IUCrData, 8, x231032. Google Scholar
Suyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Nazarov, Y. E., Mengnorov, I. J., Ibragimov, B. T. & Ashurov, J. M. (2023a). Acta Cryst. E79, 1083–1087. CSD CrossRef IUCr Journals Google Scholar
Vivanco, J. M., Bais, H. P., Stermitz, F. R., Thelen, G. C. & Callaway, R. M. (2004). Ecol. Lett. 7, 285–292. CrossRef Google Scholar
Wen, J., Charan Dash, R., Zaino, A., Harrahill, N., Calhoun, J., Dusek, C., Morel, Sh., Russolillo, M. & Kyle Hadden, M. (2023). Bioorg. Chem. 132, 106387. CrossRef PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, J., Wang, Q., Ge, W.-W., Wu, D., Redshaw, C. & Chen, K. (2023). CrystEngComm, 25, 1529–1540. CSD CrossRef CAS Google Scholar
Zhu, X.-F., Zhang, J., Sun, S., Guo, Y.-C., Cao, S.-X. & Zhao, Y.-F. (2017). Chin. Chem. Lett. 28, 1514–1518. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.