

IUCrData

ISSN 2414-3146

Received 29 May 2024 Accepted 13 June 2024

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: naphthalene-1,5-disulfonate; 8hydroxyquinoline; crystal structure; hydrogen bonds; organic salt.

CCDC reference: 2256736

Structural data: full structural data are available from iucrdata.iucr.org

Bis(8-hydroxyquinolinium) naphthalene-1,5disulfonate tetrahydrate

Yusufjon Eshkobilovich Nazarov,^a Khayit Khudaynazarovich Turaev,^a Bekmurod Khurramovich Alimnazarov,^a Jabbor Ruziboevich Suyunov,^a Gulnora Abdurakhmonovna Umirova,^a Bakhtiyar Tulyaganovich Ibragimov^b and Jamshid Mengnorovich Ashurov^b*

^aTermez State University, Barkamol Avlod Street 43, Termez City, Uzbekistan, and ^bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str 83, Tashkent, Uzbekistan. *Correspondence e-mail: ashurovjamshid1@gmail.com

The interaction between 8-hydroxyquinoline (8HQ, C₉H₇NO) and naphthalene-1,5-disulfonic acid (H₂NDS, C₁₀H₈O₆S₂) in aqueous media results in the formation of the salt hydrate bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate, $2C_9H_8NO^+$ ·C₁₀H₆O₆S₂²⁻·4H₂O. The asymmetric unit comprises one protonated 8HQ⁺ cation, half of an NDS²⁻ dianion symmetrically disposed around a center of inversion, and two water molecules. Within the crystal structure, these components are organized into chains along the [010] and [101] directions through O–H···O and N–H···O hydrogen-bonding interactions, forming a di-periodic network parallel to (101). Additional stabilizing interactions such as C–H···O, C–H··· π , and π - π interactions extend this arrangement into a tri-periodic network structure

Structure description

8-Hydroxyquinoline (8HQ, C₉H₇NO, H*L*), known also as oxine, is a bidentate chelating agent. It forms three species: H_2L^+ , H*L* and L^- . 8HQ bearing a hetero-nitrogen atom (p*K*a = 10.8) and the 8-substituted phenol group (p*K*a = 4.9) is a good organic acid–base adduct conformer and has been reported to form supramolecularly organized compounds with acidic counter parts under formation of multiple hydrogen bonds (Smith *et al.*, 2003). 8HQ is used in analytical chemistry for the quantitative determination of metal ions because the resulting complexes are insoluble in water. The aluminium complex (Cölle *et al.*, 2002; Katakura & Koide, 2006) is a common component of organic light-emitting diodes (OLEDs). Substituents on the quinoline ring result in compounds with luminescence properties (Montes *et al.*, 2006). In its photo-induced excited state, 8HQ converts to

zwitterionic isomers, in which the hydrogen atom is transferred from oxygen to nitrogen (Bardez *et al.*, 1997). The complexes as well as the heterocycle itself exhibit antiseptic, disinfectant, and pesticidal properties (Phillips *et al.*, 1956) and functions as a transcription inhibitor (Wen *et al.*, 2023). Its solution in alcohol is used in liquid bandages. It once was of interest as an anti-cancer drug (Zhu *et al.*, 2017; Fouda 2017). The roots of the invasive plant *Centaurea diffusa* release 8HQ, which has a negative effect on plants that have not co-evolved with it (Vivanco *et al.*, 2004).

1,5-Naphthalenedisulfonic acid (H₂NDS, Armstrong acid, $C_{10}H_8O_6S_2$) is a white-to-yellowish solid that is soluble in water (1030 g l⁻¹). It is used in the production of dyes, pigments, and other industrial chemicals. It also functions as a chelating and complexing agent, which is used in various applications such as water treatment, analytical chemistry, and mineral processing (Arslan-Alaton *et al.*, 2008). H₂NDS does not demonstrate a definite biological activity. Complexes derived from H₂NDS are of interest in supramolecular chemistry due to their ability to form complex hydrogenbonded systems because the sulfonate group can accept up to six hydrogen bonds.

Preparation and structural characterization of organic salts on basis of these two simple compounds is of interest for supramolecular and analytical chemistry (Oh *et al.*, 2020; Chen *et al.*, 2022). In our previous works (Suyunov *et al.*, 2023*a,b,c*), we reported on H₂NDS and its salts involving nickel(II) and cadmium(II). In the current work, we report on preparation and molecular and crystal structures of a proton-transfer salt, $2(8HQ)^+\cdot NDS^{2-}\cdot 4H_2O$.

The asymmetric unit of the title compound consists of one $8HQ^+$ cation, half of an NDS²⁻ anion, and two water molecules of crystallization, resulting in a supramolecular associate with a 2:1:4 cation-anion-water composition. The sulfonic acid (SO₃H) groups of H₂NDS are deprotonated, with the hydrogen atoms transferred to the nitrogen atom of an $8HQ^+$ cation, and the NDS²⁻ dianion exhibits inversion symmetry, with the inversion center located at the midpoint of the C11-C11ⁱ [symmetry code: (i) -x, 1 - y, 1 - z] bond in the naphthalene ring system (Fig. 1). A similar salt with composition 2C₉H₈NO⁺·C₁₀H₆O₆S₂²⁻·2H₂O was previously reported (Jin *et al.*, 2014), the main difference being the presence of

Figure 1

The structures of the molecular entities in the title salt, showing the atomlabelling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius and hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, 1 - y, 1 - z.]

C11 C12

C13

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

*Cg*1 and *Cg*2 are the centroids of the C10/ C11/C11'-C13'/C14 and C11-C13/ C14'/C10'/C11' rings, respectively, where primed atoms are related by the symmetry operation -x, 1 - y, 1 - z.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2W - H2WA \cdots O2^{i}$	0.85	1.98	2.8239 (16)	176
$O2W - H2WB \cdots O3$	0.85	2.02	2.8610 (15)	168
$O1W - H1WA \cdots O2$	0.85	1.98	2.8150 (17)	169
$O1W - H1WB \cdots O4^{ii}$	0.85	2.05	2.8806 (18)	166
$O1-H1\cdots O1W$	0.82(1)	1.84 (1)	2.6390 (16)	165 (2)
$N1 - H1A \cdots O2W$	0.87(1)	1.89 (1)	2.7347 (18)	164 (2)
C6-H6···O3 ⁱⁱⁱ	0.93	2.46	3.3153 (19)	154
$C4-H4\cdots O4^{iv}$	0.93	2.45	3.352 (2)	165
$C14-H14\cdots O1^{v}$	0.93	2.57	3.3173 (18)	137
C12-H12···O3	0.93	2.46	3.0439 (17)	121
$C7-H7\cdots Cg1^{i}$	0.93	2.82	3.6125 (17)	144
$C7-H7\cdots Cg2^{iii}$	0.93	2.82	3.6125 (17)	144
Symmetry codes: (i)	$-r + \frac{1}{2}v +$	$\frac{1}{2} - 7 + \frac{1}{2}$ (i	i) $-r + \frac{1}{2}v - \frac{1}{2}$	$-7 + \frac{1}{2}$ (iii)

Symmetry codes. (1) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}, (1) -x + \frac{1}{2}, x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}; (iv) -x + 1, -y + 1, -z; (v) x - 1, y, z.$

only two water molecules and orthorhombic symmetry (space group Pbca) compared to four water molecules and monoclinic symmetry (space group $P2_1/n$) for the title salt. In the cation of the title salt, the angle around the protonated N atom $[C7-N1-C8 = 122.67 (13)^{\circ}]$ is approximately 1° less than the corresponding angle in the study of the dihydrate $[123.5 (3)^{\circ}]$. In the title salt, the anions exhibit two distinct orientations, with the angle between their planes being $33.37 (7)^{\circ}$. The cations are oriented in a single direction, forming angles of 71.66 (8) and 75.80 $(9)^{\circ}$ with the planes of the anions. The naphthalene ring system exhibits typical bond lengths and angles, with C-C bond lengths ranging from 1.362(2) to 1.431 (2) Å, and C-C-C angles in the range 117.91 (14) to 123.05 (12)°. The hydroxyquinoline and naphthalene fragments are coplanar with r.m.s deviations of 0.0162 (14) Å and 0.0112 (13) Å.

In the crystal, the $8HQ^+$ cation, the NDS²⁻ anion, and the water molecules are connected *via* classical O-H···O and N-H···O hydrogen bonds (Table 1) with graph-set motifs of $R_4^3(10)$ and $R_4^4(13)$, which link the components into chains extending parallel to [010], as illustrated in Fig. 2. The SO₃⁻

Figure 2

The formation of $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds (dashed red lines) in the crystal structure, leading to $R_4^3(10)$ and $R_4^4(13)$ graph-set motifs.

C12³

C1:

C10

Figure 3

The crystal packing of the title salt in a view along [101]. O–H···O, N–H···O, and C–H···O hydrogen bonds are shown as dashed blue lines, and C–H··· π and π - π interactions as dashed pink lines.

group on one side of the anion participates in the formation of these chains. The symmetry-related second SO_3^- group also participates in hydrogen bonding under the formation of a second infinite chain parallel to [101] connecting with the previous chains *via* $C-H\cdots\pi$ interactions (where *Cg* are the centroids of the naphthalene rings, Table 1) and $C(\pi)\cdots C$, $N(\pi)$ weak intermolecular contacts [$Cg\cdots Cg$ distance = 3.6547 (9) Å, slippage 1.248 Å], forming sheets parallel to (101) (Fig. 3). These sheets are linked through additional weak $C-H\cdots O$ interactions into a tri-periodic network structure. Due to steric hindrance of the sulfonate groups, the nearest centroid separation between naphthalene rings is 5.264 (3) Å, suggesting no $\pi-\pi$ stacking between these moieties.

A search of the Cambridge Structural Database (CSD, version 5.45, updated November 2023; Groom *et al.*, 2016) revealed that the crystal structure of 8HQ alone has been determined eleven times, while thirteen reports are related to molecular complexes, and 71 crystals are organic salts where the nitrogen atom of 8HQ is protonated. In the case of 1,5-NDSA, 225 crystals are organic salts of 1,5-NDSA in the dianionic form, One compound (FIVFOI01; Du *et al.*, 2019) is a complex with 1,5-NDSA in the monoanionic form, and four crystals are molecular complexes (SAHRIG, Singh *et al.*, 2021; SATBEX, Liu *et al.*, 2017; VEGHUN, Cunha *et al.*, 2017; WEZGAN, Xu *et al.*, 2023) with neutral sulfo-acid molecules.

Synthesis and crystallization

The title compound was obtained by the addition of 1,5naphthalenedisulfonate acid (0.288 g, 1 mmol) to a solution of 8-hydroxyquinoline (0.176 g, 2 mmol) in water, in the stoichiometric ratio 1:2. Good-quality single crystals were obtained by slow evaporation after four days (yield: 60%).

Crystal data	
Chemical formula	$2C_9H_8NO^+ \cdot C_{10}H_6O_6S_2^{-2-} \cdot 4H_2O$
M _r	650.66
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	290
a, b, c (Å)	7.55855 (8), 12.16674 (13), 16.00467 (17)
β (°)	94.7152 (10)
$V(Å^3)$	1466.86 (3)
Ζ	2
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	2.25
Crystal size (mm)	$0.32 \times 0.3 \times 0.28$
Data collection	
Diffractometer	XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.820, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14094, 2841, 2621
R _{int}	0.026
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.615
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.089, 1.05
No. of reflections	2841
No. of parameters	214
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm A}^{-3})$	0.20, -0.30

Computer programs: *CrysAlis PRO* (Rigaku OD, 2022), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *OLEX2* (Dolomanov *et al.*, 2009) and *publCIF* (Westrip, 2010).

Refinement

Table 2

.

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

The authors thank the Uzbekistan government for their direct financial support of this research. They also gratefully acknowledge the Fundamental Research Grant from the Agency for Innovative Development under the Ministry of Higher Education, Science, and Innovation of the Republic of Uzbekistan.

References

- Arslan-Alaton, I., Kabdaşlı, I., Tunay, O. & Cekirge, Z. (2008). Fresenius Environ. Bull. 17, 1803–1808.
- Bardez, E., Devol, I., Larrey, B. & Valeur, B. (1997). J. Phys. Chem. B, 101, 7786–7793.
- Chen, X., Huang, Z., Sala, R. L., McLean, A. M., Wu, G., Sokołowski, K., King, K., McCune, J. A. & Scherman, O. A. (2022). J. Am. Chem. Soc. 144, 8474–8479.
- Cölle, M., Dinnebier, R. E. & Brütting, W. (2002). *Chem. Commun.* **23**, 2908–2909.
- Cunha, M. S., Ribeiro, C. E. P., Corrêa, C. C. & Diniz, R. (2017). J. Mol. Struct. 1150, 586–594.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Du, Y., Li, H., Wang, Z., Zhang, M., Liu, K., Liu, Y., Chen, R. & Wang, L. (2019). J. Mol. Struct. 1196, 828–835.
- Fouda, A. M. (2017). Med. Chem. Res. 26, 302-313.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jin, S., Wang, D., Du, S., Linhe, Q., Fu, M. & Wu, S. (2014). J. Chem. Crystallogr. 44, 435–441.
- Katakura, R. & Koide, Y. (2006). Inorg. Chem. 45, 5730-5732.
- Liu, L., Zhao, Z. & Hao, C. (2017). J. Incl Phenom. Macrocycl Chem. 88, 247–252.
- Montes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). *Chem.* A Eur. J. **12**, 4523–4535.
- Oh, H., Kim, D., Kim, D., Park, I.-H. & Jung, O.-S. (2020). Cryst. Growth Des. 20, 7027–7033.
- Phillips, J. P. (1956). Chem. Rev. 56, 271-297.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

- Singh, U. P., Singh, N., Mohanty, A. & Butcher, R. J. (2021). J. Chem. Crystallogr. 51, 57–70.
- Smith, G., Wermuth, U. D. & White, J. M. (2003). *CrystEngComm*, 5, 58–61.
- Suyunov, J., Torambetov, B., Turaev, K., Kadirova, S., Alimnazarov, B. & Ashurov, J. (2023c). Acta Cryst. E79, 1190–1193.
- Suyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Ibragimov, A. B., Mengnorov, I. J., Rasulov, A. A. & Ashurov, J. M. (2023b). *IUCr-Data*, 8, x231032.
- Suyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Nazarov, Y. E., Mengnorov, I. J., Ibragimov, B. T. & Ashurov, J. M. (2023a). Acta Cryst. E79, 1083–1087.
- Vivanco, J. M., Bais, H. P., Stermitz, F. R., Thelen, G. C. & Callaway, R. M. (2004). *Ecol. Lett.* **7**, 285–292.
- Wen, J., Charan Dash, R., Zaino, A., Harrahill, N., Calhoun, J., Dusek, C., Morel, Sh., Russolillo, M. & Kyle Hadden, M. (2023). *Bioorg. Chem.* 132, 106387.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xu, J., Wang, Q., Ge, W.-W., Wu, D., Redshaw, C. & Chen, K. (2023). CrystEngComm, 25, 1529–1540.
- Zhu, X.-F., Zhang, J., Sun, S., Guo, Y.-C., Cao, S.-X. & Zhao, Y.-F. (2017). *Chin. Chem. Lett.* **28**, 1514–1518.

full crystallographic data

IUCrData (2024). 9, x240570 [https://doi.org/10.1107/S2414314624005704]

Bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate

Yusufjon Eshkobilovich Nazarov, Khayit Khudaynazarovich Turaev, Bekmurod Khurramovich Alimnazarov, Jabbor Ruziboevich Suyunov, Gulnora Abdurakhmonovna Umirova, Bakhtiyar Tulyaganovich Ibragimov and Jamshid Mengnorovich Ashurov

Bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate

Crystal data

 $2C_{9}H_{8}NO^{+} \cdot C_{10}H_{6}O_{6}S_{2}^{2-} \cdot 4H_{2}O$ $M_{r} = 650.66$ Monoclinic, $P2_{1}/n$ a = 7.55855 (8) Å b = 12.16674 (13) Å c = 16.00467 (17) Å $\beta = 94.7152$ (10)° V = 1466.86 (3) Å³ Z = 2

Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.089$ S = 1.052841 reflections 214 parameters 2 restraints Primary atom site location: intrinsic phasing Secondary atom site location: difference Fourier map Hydrogen site location: mixed F(000) = 680 $D_x = 1.473 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54184 \rightarrow Cell parameters from 9285 reflections $\theta = 2.8-71.2^{\circ}$ $\mu = 2.25 \text{ mm}^{-1}$ T = 290 KBlock, light yellow $0.32 \times 0.3 \times 0.28 \text{ mm}$

 $T_{\min} = 0.820, T_{\max} = 1.000$ 14094 measured reflections 2841 independent reflections 2621 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{\max} = 71.4^{\circ}, \theta_{\min} = 4.6^{\circ}$ $h = -9 \rightarrow 9$ $k = -14 \rightarrow 14$ $l = -19 \rightarrow 19$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0501P)^2 + 0.303P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20$ e Å⁻³ $\Delta\rho_{min} = -0.29$ e Å⁻³ Extinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0023 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to the N and O atoms were located from a difference-Fourier map and refined with bond-length restraints of 0.86 (1) Å and 0.82 (1) Å, respectively.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.12659 (4)	0.52366 (3)	0.29817 (2)	0.03571 (13)	
02	0.16257 (16)	0.40840 (9)	0.28388 (7)	0.0539 (3)	
03	0.28637 (14)	0.58461 (9)	0.32385 (6)	0.0451 (3)	
04	0.02239 (15)	0.57423 (10)	0.22875 (6)	0.0525 (3)	
C10	-0.00953 (17)	0.52607 (10)	0.38419 (8)	0.0315 (3)	
C11	0.05915 (16)	0.49755 (10)	0.46738 (8)	0.0297 (3)	
C12	0.23846 (17)	0.46556 (11)	0.48773 (9)	0.0351 (3)	
H12	0.315658	0.460895	0.445520	0.042*	
C13	0.29860 (18)	0.44165 (13)	0.56821 (9)	0.0407 (3)	
H13	0.417007	0.422577	0.580589	0.049*	
C14	-0.18313 (18)	0.55446 (12)	0.36709 (9)	0.0379 (3)	
H14	-0.225612	0.571361	0.312413	0.045*	
01	0.60496 (18)	0.47210 (9)	0.18830(7)	0.0538 (3)	
N1	0.68475 (17)	0.64774 (10)	0.09816 (8)	0.0415 (3)	
C1	0.6624 (2)	0.45179 (12)	0.11258 (9)	0.0409 (3)	
C2	0.6827 (2)	0.35003 (13)	0.07829 (10)	0.0500 (4)	
H2	0.659051	0.287453	0.108831	0.060*	
C3	0.7392 (2)	0.33952 (15)	-0.00293 (11)	0.0563 (4)	
H3	0.750754	0.269640	-0.025395	0.068*	
C4	0.7774 (2)	0.42843 (15)	-0.04946 (10)	0.0538 (4)	
H4	0.814252	0.419332	-0.103052	0.065*	
C5	0.7981 (2)	0.63185 (15)	-0.05880 (10)	0.0520 (4)	
Н5	0.836512	0.627362	-0.112434	0.062*	
C6	0.7791 (2)	0.73209 (15)	-0.02321 (11)	0.0550 (4)	
H6	0.804189	0.795738	-0.052154	0.066*	
C7	0.7214 (2)	0.73849 (13)	0.05723 (11)	0.0500 (4)	
H7	0.708614	0.806722	0.082224	0.060*	
C8	0.70289 (18)	0.54549 (12)	0.06544 (9)	0.0370 (3)	
C9	0.7607 (2)	0.53461 (13)	-0.01585 (9)	0.0426 (3)	
O1W	0.49949 (17)	0.31023 (10)	0.28209 (9)	0.0626 (3)	
H1WA	0.392446	0.331508	0.282471	0.094*	
H1WB	0.491769	0.242369	0.269682	0.094*	
O2W	0.53570 (16)	0.71260 (10)	0.24017 (8)	0.0556 (3)	
H2WA	0.480634	0.773241	0.233271	0.083*	
H2WB	0.460317	0.669091	0.258790	0.083*	
H1A	0.643 (3)	0.6562 (18)	0.1467 (8)	0.069 (6)*	
H1	0.581 (3)	0.4147 (13)	0.2114 (14)	0.086 (7)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

data reports

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1	0.0424 (2)	0.0381 (2)	0.02794 (19)	-0.00473 (12)	0.01084 (14)	-0.00284 (12)
02	0.0634 (7)	0.0416 (6)	0.0599 (7)	-0.0036 (5)	0.0242 (6)	-0.0135 (5)
O3	0.0471 (6)	0.0540 (6)	0.0360 (5)	-0.0140 (5)	0.0142 (4)	-0.0021 (4)
O4	0.0584 (7)	0.0706 (8)	0.0291 (5)	-0.0020 (5)	0.0078 (5)	0.0066 (5)
C10	0.0356 (7)	0.0308 (6)	0.0289 (6)	-0.0024 (5)	0.0074 (5)	0.0001 (5)
C11	0.0312 (6)	0.0285 (6)	0.0300 (6)	-0.0018 (5)	0.0066 (5)	0.0002 (5)
C12	0.0317 (7)	0.0393 (7)	0.0356 (7)	0.0018 (5)	0.0102 (5)	0.0026 (5)
C13	0.0307 (7)	0.0489 (8)	0.0428 (8)	0.0052 (6)	0.0047 (6)	0.0054 (6)
C14	0.0385 (7)	0.0442 (8)	0.0309 (7)	0.0004 (6)	0.0021 (5)	0.0043 (5)
01	0.0785 (8)	0.0460 (7)	0.0388 (6)	-0.0095 (6)	0.0159 (6)	0.0057 (5)
N1	0.0483 (7)	0.0403 (6)	0.0360 (6)	-0.0024 (5)	0.0041 (5)	0.0042 (5)
C1	0.0443 (8)	0.0437 (8)	0.0345 (7)	-0.0027 (6)	0.0017 (6)	0.0049 (6)
C2	0.0571 (9)	0.0407 (8)	0.0518 (9)	-0.0019 (7)	0.0026 (7)	0.0059 (7)
C3	0.0661 (10)	0.0474 (9)	0.0555 (10)	0.0066 (8)	0.0056 (8)	-0.0076 (7)
C4	0.0599 (10)	0.0613 (10)	0.0409 (8)	0.0071 (8)	0.0092 (7)	-0.0043 (7)
C5	0.0525 (9)	0.0649 (11)	0.0398 (8)	0.0007 (7)	0.0104 (7)	0.0136 (7)
C6	0.0582 (10)	0.0532 (10)	0.0543 (10)	-0.0050 (8)	0.0090 (8)	0.0210 (8)
C7	0.0570 (9)	0.0396 (8)	0.0532 (9)	-0.0028 (7)	0.0033 (7)	0.0076 (7)
C8	0.0370 (7)	0.0413 (7)	0.0321 (7)	-0.0018 (5)	0.0000 (5)	0.0029 (5)
C9	0.0400 (7)	0.0533 (9)	0.0344 (7)	0.0013 (6)	0.0033 (6)	0.0046 (6)
O1W	0.0647 (8)	0.0529 (7)	0.0722 (8)	0.0003 (6)	0.0171 (7)	0.0131 (6)
O2W	0.0629 (7)	0.0451 (6)	0.0618 (7)	0.0057 (5)	0.0236 (6)	0.0069 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—O2	1.4503 (11)	C1—C8	1.414 (2)	
S1—O3	1.4476 (10)	C2—H2	0.9300	
S1—O4	1.4455 (11)	C2—C3	1.407 (2)	
S1—C10	1.7853 (13)	С3—Н3	0.9300	
C10-C11	1.4314 (18)	C3—C4	1.358 (3)	
C10—C14	1.3627 (19)	C4—H4	0.9300	
C11-C11 ⁱ	1.431 (2)	C4—C9	1.409 (2)	
C11—C12	1.4219 (18)	С5—Н5	0.9300	
С12—Н12	0.9300	C5—C6	1.359 (3)	
C12—C13	1.362 (2)	С5—С9	1.409 (2)	
С13—Н13	0.9300	С6—Н6	0.9300	
C13-C14 ⁱ	1.409 (2)	C6—C7	1.395 (2)	
C14—H14	0.9300	С7—Н7	0.9300	
01—C1	1.3433 (19)	C8—C9	1.412 (2)	
01—H1	0.819 (10)	O1W—H1WA	0.8500	
N1—C7	1.3246 (19)	O1W—H1WB	0.8501	
N1—C8	1.3611 (19)	O2W—H2WA	0.8498	
N1—H1A	0.868 (9)	O2W—H2WB	0.8495	
C1—C2	1.368 (2)			

O2—S1—C10	105.37 (6)	C2—C1—C8	118.63 (14)
O3—S1—O2	112.16 (7)	C1—C2—H2	119.8
O3—S1—C10	107.03 (6)	C1—C2—C3	120.36 (15)
O4—S1—O2	112.81 (7)	C3—C2—H2	119.8
O4—S1—O3	112.91 (7)	С2—С3—Н3	119.0
O4—S1—C10	105.88 (6)	C4—C3—C2	121.91 (16)
C11—C10—S1	121.69 (10)	C4—C3—H3	119.0
C14—C10—S1	117.11 (10)	C3—C4—H4	120.3
C14—C10—C11	121.19 (12)	C3—C4—C9	119.43 (15)
$C11^{i}$ — $C11$ — $C10$	117.91 (14)	C9—C4—H4	120.3
C12—C11—C10	123.05 (12)	С6—С5—Н5	119.4
C12—C11—C11 ⁱ	119.03 (14)	C6—C5—C9	121.12 (15)
C11—C12—H12	119.6	C9—C5—H5	119.4
C13-C12-C11	120.86 (12)	C5—C6—H6	120.4
C_{13} C_{12} H_{12}	119.6	$C_5 - C_6 - C_7$	119 28 (15)
C12 - C13 - H13	119.0	C7—C6—H6	120.4
C_{12} C_{13} $C_{14^{i}}$	120.62 (13)	N1 - C7 - C6	120.1
$C12^{i}$ $C13$ $H13$	119.7	N1-C7-H7	110.0
$C10-C14-C13^{i}$	119.7	C6-C7-H7	119.9
$C_{10} = C_{14} = C_{13}$	120.30 (13)	$\mathbb{N}_{1} = \mathbb{C}_{8} = \mathbb{C}_{1}$	110.80 (13)
$C13^{i}$ $C14$ $H14$	119.8	N1 C8 C9	119.09 (13)
$C_1 = C_1 + H_1$	119.6 (17)		119.25(13) 120.85(14)
C7 N1 C8	110.0(17) 122.67(13)	$C_{2} = C_{3} = C_{1}$	120.83(14)
C7 N1 H1A	122.07(15)	$C_{4} = C_{9} = C_{8}$	110.00(14) 122.77(15)
C = NI = HIA	110.7(15)	$C_{3} - C_{9} - C_{4}$	123.77(13)
C_{0} NI-HIA	120.0(13) 125.70(14)	C_{3}	117.45 (14)
01 - C1 - C2	125.70(14)	HIWA—OIW—HIWB	104.5
01-01-08	115.67 (13)	H2WA—O2W—H2WB	104.5
S1-C10-C11-C11 ⁱ	179.61 (12)	N1—C8—C9—C4	-179.40 (14)
S1-C10-C11-C12	0.00 (18)	N1	0.5 (2)
S1-C10-C14-C13 ⁱ	-179.89 (11)	C1—C2—C3—C4	0.8 (3)
O2—S1—C10—C11	69.66 (12)	C1C8C4	0.0 (2)
O2—S1—C10—C14	-109.23 (12)	C1—C8—C9—C5	179.91 (14)
O3—S1—C10—C11	-49.90 (12)	C2—C1—C8—N1	-179.68 (14)
O3—S1—C10—C14	131.21 (11)	C2—C1—C8—C9	0.9 (2)
O4—S1—C10—C11	-170.60 (10)	C2—C3—C4—C9	0.1 (3)
O4—S1—C10—C14	10.52 (13)	C3—C4—C9—C5	179.58 (16)
C10-C11-C12-C13	178.45 (13)	C3—C4—C9—C8	-0.5 (2)
C11—C10—C14—C13 ⁱ	1.2 (2)	C5—C6—C7—N1	-0.4(3)
C11 ⁱ —C11—C12—C13	-1.1 (2)	C6—C5—C9—C4	179.83 (16)
C11—C12—C13—C14 ⁱ	1.5 (2)	C6—C5—C9—C8	0.0 (2)
C14—C10—C11—C11 ⁱ	-1.6 (2)	C7—N1—C8—C1	179.67 (14)
C14—C10—C11—C12	178.84 (13)	C7—N1—C8—C9	-0.9 (2)
01-C1-C2-C3	178.11 (15)	C8—N1—C7—C6	0.8 (2)
01—C1—C8—N1	0.9 (2)	C8—C1—C2—C3	-1.3(2)
O1—C1—C8—C9	-178.57 (13)	C9—C5—C6—C7	0.0 (3)
	× /		

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C10/ C11/C11'-C13'/C14 and C11-C13/C14'/C10'/C11' rings, respectively, where primed atoms are related by the symmetry operation -*x*, 1 - *y*, 1 - *z*.

D—H···A	D—H	H···A	D····A	D—H···A
$\overline{\text{O2}W-\text{H2}WA\cdots\text{O2}^{\text{ii}}}$	0.85	1.98	2.8239 (16)	176
O2 <i>W</i> —H2 <i>WB</i> ···O3	0.85	2.02	2.8610 (15)	168
O1 <i>W</i> —H1 <i>WA</i> ···O2	0.85	1.98	2.8150 (17)	169
O1 <i>W</i> —H1 <i>WB</i> ····O4 ⁱⁱⁱ	0.85	2.05	2.8806 (18)	166
O1—H1…O1 <i>W</i>	0.82(1)	1.84(1)	2.6390 (16)	165 (2)
N1—H1 <i>A</i> ···O2 <i>W</i>	0.87(1)	1.89(1)	2.7347 (18)	164 (2)
C6—H6…O3 ^{iv}	0.93	2.46	3.3153 (19)	154
C4—H4…O4 ^v	0.93	2.45	3.352 (2)	165
C14—H14…O1 ^{vi}	0.93	2.57	3.3173 (18)	137
C12—H12…O3	0.93	2.46	3.0439 (17)	121
C7— $H7$ ··· $Cg1$ ⁱⁱ	0.93	2.82	3.6125 (17)	144
$C7-H7\cdots Cg2^{iv}$	0.93	2.82	3.6125 (17)	144

Symmetry codes: (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x+1/2, y-1/2, -z+1/2; (iv) x+1/2, -y+3/2, z-1/2; (v) -x+1, -y+1, -z; (vi) x-1, y, z.