N IUCrData ISSN 2414-3146

Received 29 May 2024
Accepted 13 June 2024

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: naphthalene-1,5-disulfonate; 8hydroxyquinoline; crystal structure; hydrogen bonds; organic salt.

CCDC reference: 2256736
Structural data: full structural data are available from iucrdata.iucr.org


# Bis(8-hydroxyquinolinium) naphthalene-1,5disulfonate tetrahydrate 

Yusufjon Eshkobilovich Nazarov, ${ }^{\text {a }}$ Khayit Khudaynazarovich Turaev, ${ }^{\text {a }}$ Bekmurod Khurramovich Alimnazarov, ${ }^{\text {a }}$ Jabbor Ruziboevich Suyunov, ${ }^{\text {a }}$ Gulnora Abdurakhmonovna Umirova, ${ }^{\text {a }}$ Bakhtiyar Tulyaganovich Ibragimov ${ }^{\text {b }}$ and Jamshid Mengnorovich Ashurov ${ }^{{ }^{\text {b }}}$

${ }^{\text {a }}$ Termez State University, Barkamol Avlod Street 43, Termez City, Uzbekistan, and ${ }^{\mathbf{b}}$ Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str 83, Tashkent, Uzbekistan. *Correspondence e-mail: ashurovjamshid1@gmail.com

The interaction between 8-hydroxyquinoline ( $8 \mathrm{HQ}, \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}$ ) and naphthalene-1,5-disulfonic acid $\left(\mathrm{H}_{2} \mathrm{NDS}, \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6} \mathrm{~S}_{2}\right)$ in aqueous media results in the formation of the salt hydrate bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate, $2 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{2-} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. The asymmetric unit comprises one protonated $8 \mathrm{HQ}^{+}$cation, half of an $\mathrm{NDS}^{2-}$ dianion symmetrically disposed around a center of inversion, and two water molecules. Within the crystal structure, these components are organized into chains along the [010] and [10 $\overline{1}$ ] directions through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions, forming a di-periodic network parallel to (101). Additional stabilizing interactions such as $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \pi$, and $\pi-\pi$ interactions extend this arrangement into a tri-periodic network structure


## Structure description

8-Hydroxyquinoline ( $8 \mathrm{HQ}, \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}, \mathrm{H} L$ ), known also as oxine, is a bidentate chelating agent. It forms three species: $\mathrm{H}_{2} L^{+}, \mathrm{H} L$ and $L^{-} .8 \mathrm{HQ}$ bearing a hetero-nitrogen atom $(\mathrm{pKa}=10.8)$ and the 8 -substituted phenol group $(\mathrm{pKa}=4.9)$ is a good organic acid-base adduct conformer and has been reported to form supramolecularly organized compounds with acidic counter parts under formation of multiple hydrogen bonds (Smith et al., 2003). 8 HQ is used in analytical chemistry for the quantitative determination of metal ions because the resulting complexes are insoluble in water. The aluminium complex (Cölle et al., 2002; Katakura \& Koide, 2006) is a common component of organic light-emitting diodes (OLEDs). Substituents on the quinoline ring result in compounds with luminescence properties (Montes et al., 2006). In its photo-induced excited state, 8 HQ converts to
zwitterionic isomers, in which the hydrogen atom is transferred from oxygen to nitrogen (Bardez et al., 1997). The complexes as well as the heterocycle itself exhibit antiseptic, disinfectant, and pesticidal properties (Phillips et al., 1956) and functions as a transcription inhibitor (Wen et al., 2023). Its solution in alcohol is used in liquid bandages. It once was of interest as an anti-cancer drug (Zhu et al., 2017; Fouda 2017). The roots of the invasive plant Centaurea diffusa release 8HQ, which has a negative effect on plants that have not co-evolved with it (Vivanco et al., 2004).

1,5-Naphthalenedisulfonic acid ( $\mathrm{H}_{2} \mathrm{NDS}$, Armstrong acid, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6} \mathrm{~S}_{2}$ ) is a white-to-yellowish solid that is soluble in water $\left(1030 \mathrm{~g} \mathrm{l}^{-1}\right)$. It is used in the production of dyes, pigments, and other industrial chemicals. It also functions as a chelating and complexing agent, which is used in various applications such as water treatment, analytical chemistry, and mineral processing (Arslan-Alaton et al., 2008). $\mathrm{H}_{2} \mathrm{NDS}$ does not demonstrate a definite biological activity. Complexes derived from $\mathrm{H}_{2} \mathrm{NDS}$ are of interest in supramolecular chemistry due to their ability to form complex hydrogenbonded systems because the sulfonate group can accept up to six hydrogen bonds.

Preparation and structural characterization of organic salts on basis of these two simple compounds is of interest for supramolecular and analytical chemistry (Oh et al., 2020; Chen et al., 2022). In our previous works (Suyunov et al., 2023a,b,c), we reported on $\mathrm{H}_{2} \mathrm{NDS}$ and its salts involving nickel(II) and cadmium(II). In the current work, we report on preparation and molecular and crystal structures of a proton-transfer salt, $2(8 \mathrm{HQ})^{+} \cdot \mathrm{NDS}^{2-} \cdot 4 \mathrm{H}_{2} \mathrm{O}$.

The asymmetric unit of the title compound consists of one $8 \mathrm{HQ}^{+}$cation, half of an $\mathrm{NDS}^{2-}$ anion, and two water molecules of crystallization, resulting in a supramolecular associate with a 2:1:4 cation-anion-water composition. The sulfonic acid $\left(\mathrm{SO}_{3} \mathrm{H}\right)$ groups of $\mathrm{H}_{2} \mathrm{NDS}$ are deprotonated, with the hydrogen atoms transferred to the nitrogen atom of an $8 \mathrm{HQ}^{+}$ cation, and the $\mathrm{NDS}^{2-}$ dianion exhibits inversion symmetry, with the inversion center located at the midpoint of the $\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$ [symmetry code: (i) $-x, 1-y, 1-z$ ] bond in the naphthalene ring system (Fig. 1). A similar salt with composition $2 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{2-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was previously reported (Jin et al., 2014), the main difference being the presence of



Figure 1
The structures of the molecular entities in the title salt, showing the atomlabelling scheme and displacement ellipsoids drawn at the $50 \%$ probability level. H atoms are shown as spheres of arbitrary radius and hydrogen bonds are shown as dashed lines. [Symmetry code: (i) $-x, 1-y$, 1-z.]

Table 1
Hydrogen-bond geometry ( $\AA{ }^{\circ}{ }^{\circ}$ ).
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 10 / \mathrm{C} 11 / \mathrm{C} 11^{\prime}-\mathrm{C} 13^{\prime} / \mathrm{C} 14$ and $\mathrm{C} 11-\mathrm{C} 13 /$ $\mathrm{C} 14^{\prime} / \mathrm{C} 10^{\prime} / \mathrm{C} 11^{\prime}$ rings, respectively, where primed atoms are related by the symmetry operation $-x, 1-y, 1-z$.

| $D-\mathrm{H} \cdots A$ | D-H | H $\cdots$ A | $D \cdots A$ | $D-\mathrm{H} \cdots \cdot$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 2^{\mathrm{i}}$ | 0.85 | 1.98 | 2.8239 (16) | 176 |
| $\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 3$ | 0.85 | 2.02 | 2.8610 (15) | 168 |
| $\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 2$ | 0.85 | 1.98 | 2.8150 (17) | 169 |
| $\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 4^{\text {ii }}$ | 0.85 | 2.05 | 2.8806 (18) | 166 |
| $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 W$ | 0.82 (1) | 1.84 (1) | 2.6390 (16) | 165 (2) |
| $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2 W$ | 0.87 (1) | 1.89 (1) | 2.7347 (18) | 164 (2) |
| C6-H6 . $\mathrm{O}^{\text {iii }}$ | 0.93 | 2.46 | 3.3153 (19) | 154 |
| $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 4^{\text {iv }}$ | 0.93 | 2.45 | 3.352 (2) | 165 |
| C14-H14...O1v | 0.93 | 2.57 | 3.3173 (18) | 137 |
| C12-H12...O3 | 0.93 | 2.46 | 3.0439 (17) | 121 |
| $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 1^{\text {i }}$ | 0.93 | 2.82 | 3.6125 (17) | 144 |
| $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 2^{\text {iii }}$ | 0.93 | 2.82 | 3.6125 (17) | 144 |

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ; \quad$ (ii) $\quad-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iii)
$x+\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (iv) $-x+1,-y+1,-z ;$ (v) $x-1, y, z$.
only two water molecules and orthorhombic symmetry (space group Pbca) compared to four water molecules and monoclinic symmetry (space group $P 2_{1} / n$ ) for the title salt. In the cation of the title salt, the angle around the protonated N atom $\left[\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8=122.67(13)^{\circ}\right]$ is approximately $1^{\circ}$ less than the corresponding angle in the study of the dihydrate [123.5 (3) ${ }^{\circ}$ ]. In the title salt, the anions exhibit two distinct orientations, with the angle between their planes being $33.37(7)^{\circ}$. The cations are oriented in a single direction, forming angles of 71.66 (8) and $75.80(9)^{\circ}$ with the planes of the anions. The naphthalene ring system exhibits typical bond lengths and angles, with $\mathrm{C}-\mathrm{C}$ bond lengths ranging from 1.362 (2) to 1.431 (2) $\AA$, and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles in the range 117.91 (14) to $123.05(12)^{\circ}$. The hydroxyquinoline and naphthalene fragments are coplanar with r.m.s deviations of 0.0162 (14) $\AA$ and 0.0112 (13) $\AA$.

In the crystal, the $8 \mathrm{HQ}^{+}$cation, the $\mathrm{NDS}^{2-}$ anion, and the water molecules are connected via classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) with graph-set motifs of $R_{4}^{3}(10)$ and $R_{4}^{4}(13)$, which link the components into chains extending parallel to [010], as illustrated in Fig. 2. The $\mathrm{SO}_{3}{ }^{-}$


Figure 2
The formation of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed red lines) in the crystal structure, leading to $R_{4}^{3}(10)$ and $R_{4}^{4}(13)$ graph-set motifs.


Figure 3
The crystal packing of the title salt in a view along [101]. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed blue lines, and $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions as dashed pink lines.
group on one side of the anion participates in the formation of these chains. The symmetry-related second $\mathrm{SO}_{3}{ }^{-}$group also participates in hydrogen bonding under the formation of a second infinite chain parallel to [10 $\overline{1}]$ connecting with the previous chains via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (where $C g$ are the centroids of the naphthalene rings, Table 1 ) and $\mathrm{C}(\pi) \cdots \mathrm{C}$, $\mathrm{N}(\pi)$ weak intermolecular contacts $[C g \cdots C g$ distance $=$ 3.6547 (9) Å, slippage $1.248 \AA$ ], forming sheets parallel to (101) (Fig. 3). These sheets are linked through additional weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into a tri-periodic network structure. Due to steric hindrance of the sulfonate groups, the nearest centroid separation between naphthalene rings is 5.264 (3) $\AA$, suggesting no $\pi-\pi$ stacking between these moieties.

A search of the Cambridge Structural Database (CSD, version 5.45, updated November 2023; Groom et al., 2016) revealed that the crystal structure of 8 HQ alone has been determined eleven times, while thirteen reports are related to molecular complexes, and 71 crystals are organic salts where the nitrogen atom of 8 HQ is protonated. In the case of $1,5-$ NDSA, 225 crystals are organic salts of $1,5-\mathrm{NDSA}$ in the dianionic form, One compound (FIVFOI01; Du et al., 2019) is a complex with $1,5-\mathrm{NDSA}$ in the monoanionic form, and four crystals are molecular complexes (SAHRIG, Singh et al., 2021; SATBEX, Liu et al., 2017; VEGHUN, Cunha et al., 2017; WEZGAN, Xu et al., 2023) with neutral sulfo-acid molecules.

## Synthesis and crystallization

The title compound was obtained by the addition of $1,5-$ naphthalenedisulfonate acid $(0.288 \mathrm{~g}, 1 \mathrm{mmol})$ to a solution of 8 -hydroxyquinoline $(0.176 \mathrm{~g}, 2 \mathrm{mmol})$ in water, in the stoichiometric ratio $1: 2$. Good-quality single crystals were obtained by slow evaporation after four days (yield: 60\%).

Table 2
Experimental details.
Crystal data
Chemical formula
$M_{\mathrm{r}}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$2 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{2-} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
650.66
Monoclinic, $P 2_{1} / n$
290
$7.55855(8), 12.16674(13)$,
$16.00467(17)$
$94.7152(10)$
1466.86 (3)
2
$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$
2.25
$0.32 \times 0.3 \times 0.28$

XtaLAB Synergy, Single source at
home/near, HyPix3000
Multi-scan $($ CrysAlis PRO; Rigaku
OD, 2022)
$0.820,1.000$
$14094,2841,2621$
0.026
0.615

$0.031,0.089,1.05$
2841
214
2
H atoms treated by a mixture of
independent and constrained
refinement
$0.20,-0.30$

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

## Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

## Funding information

The authors thank the Uzbekistan government for their direct financial support of this research. They also gratefully acknowledge the Fundamental Research Grant from the Agency for Innovative Development under the Ministry of Higher Education, Science, and Innovation of the Republic of Uzbekistan.

## References

Arslan-Alaton, I., Kabdaşlı, I., Tunay, O. \& Cekirge, Z. (2008). Fresenius Environ. Bull. 17, 1803-1808.
Bardez, E., Devol, I., Larrey, B. \& Valeur, B. (1997). J. Phys. Chem. B, 101, 7786-7793.
Chen, X., Huang, Z., Sala, R. L., McLean, A. M., Wu, G., Sokołowski, K., King, K., McCune, J. A. \& Scherman, O. A. (2022). J. Am. Chem. Soc. 144, 8474-8479.
Cölle, M., Dinnebier, R. E. \& Brütting, W. (2002). Chem. Commun. 23, 2908-2909.
Cunha, M. S., Ribeiro, C. E. P., Corrêa, C. C. \& Diniz, R. (2017). J. Mol. Struct. 1150, 586-594.

## data reports

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Du, Y., Li, H., Wang, Z., Zhang, M., Liu, K., Liu, Y., Chen, R. \& Wang, L. (2019). J. Mol. Struct. 1196, 828-835.
Fouda, A. M. (2017). Med. Chem. Res. 26, 302-313.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jin, S., Wang, D., Du, S., Linhe, Q., Fu, M. \& Wu, S. (2014). J. Chem. Crystallogr. 44, 435-441.
Katakura, R. \& Koide, Y. (2006). Inorg. Chem. 45, 5730-5732.
Liu, L., Zhao, Z. \& Hao, C. (2017). J. Incl Phenom. Macrocycl Chem. 88, 247-252.
Montes, V. A., Pohl, R., Shinar, J. \& Anzenbacher, P. Jr (2006). Chem. A Eur. J. 12, 4523-4535.
Oh, H., Kim, D., Kim, D., Park, I.-H. \& Jung, O.-S. (2020). Cryst. Growth Des. 20, 7027-7033.
Phillips, J. P. (1956). Chem. Rev. 56, 271-297.
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Singh, U. P., Singh, N., Mohanty, A. \& Butcher, R. J. (2021). J. Chem. Crystallogr. 51, 57-70.
Smith, G., Wermuth, U. D. \& White, J. M. (2003). CrystEngComm, 5, 58-61.
Suyunov, J., Torambetov, B., Turaev, K., Kadirova, S., Alimnazarov, B. \& Ashurov, J. (2023c). Acta Cryst. E79, 1190-1193.
Suyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Ibragimov, A. B., Mengnorov, I. J., Rasulov, A. A. \& Ashurov, J. M. (2023b). IUCrData, 8, x231032.
Suyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Nazarov, Y. E., Mengnorov, I. J., Ibragimov, B. T. \& Ashurov, J. M. (2023a). Acta Cryst. E79, 1083-1087.
Vivanco, J. M., Bais, H. P., Stermitz, F. R., Thelen, G. C. \& Callaway, R. M. (2004). Ecol. Lett. 7, 285-292.

Wen, J., Charan Dash, R., Zaino, A., Harrahill, N., Calhoun, J., Dusek, C., Morel, Sh., Russolillo, M. \& Kyle Hadden, M. (2023). Bioorg. Chem. 132, 106387.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Xu, J., Wang, Q., Ge, W.-W., Wu, D., Redshaw, C. \& Chen, K. (2023). CrystEngComm, 25, 1529-1540.
Zhu, X.-F., Zhang, J., Sun, S., Guo, Y.-C., Cao, S.-X. \& Zhao, Y.-F. (2017). Chin. Chem. Lett. 28, 1514-1518.

## full crystallographic data

IUCrData (2024). 9, x240570 [https://doi.org/10.1107/S2414314624005704]

## Bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate

Yusufjon Eshkobilovich Nazarov, Khayit Khudaynazarovich Turaev, Bekmurod Khurramovich Alimnazarov, Jabbor Ruziboevich Suyunov, Gulnora Abdurakhmonovna Umirova, Bakhtiyar Tulyaganovich Ibragimov and Jamshid Mengnorovich Ashurov

Bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate

## Crystal data

$2 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{2-} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=650.66$
Monoclinic, $P 2_{1} / n$
$a=7.55855$ (8) $\AA$
$b=12.16674$ (13) $\AA$
$c=16.00467$ (17) $\AA$
$\beta=94.7152(10)^{\circ}$
$V=1466.86(3) \AA^{3}$
$Z=2$

## Data collection

XtaLAB Synergy, Single source at home/near, HyPix 3000 diffractometer
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels $\mathrm{mm}^{-1}$
$\omega$ scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.089$
$S=1.05$
2841 reflections
214 parameters
2 restraints
Primary atom site location: intrinsic phasing
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed

$$
F(000)=680
$$

$D_{\mathrm{x}}=1.473 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 9285 reflections
$\theta=2.8-71.2^{\circ}$
$\mu=2.25 \mathrm{~mm}^{-1}$
$T=290 \mathrm{~K}$
Block, light yellow
$0.32 \times 0.3 \times 0.28 \mathrm{~mm}$
$T_{\min }=0.820, T_{\text {max }}=1.000$
14094 measured reflections
2841 independent reflections
2621 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=71.4^{\circ}, \theta_{\text {min }}=4.6^{\circ}$
$h=-9 \rightarrow 9$
$k=-14 \rightarrow 14$
$l=-19 \rightarrow 19$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0501 P)^{2}+0.303 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.29$ e $\AA^{-3}$
Extinction correction: SHELXL-2019/2
(Sheldrick 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0023 (3)

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atoms attached to the N and O atoms were located from a difference-Fourier map and refined with bond-length restraints of 0.86 (1) $\AA$ and 0.82 (1) $\AA$, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| S1 | 0.12659 (4) | 0.52366 (3) | 0.29817 (2) | 0.03571 (13) |
| O2 | 0.16257 (16) | 0.40840 (9) | 0.28388 (7) | 0.0539 (3) |
| O3 | 0.28637 (14) | 0.58461 (9) | 0.32385 (6) | 0.0451 (3) |
| O4 | 0.02239 (15) | 0.57423 (10) | 0.22875 (6) | 0.0525 (3) |
| C10 | -0.00953 (17) | 0.52607 (10) | 0.38419 (8) | 0.0315 (3) |
| C11 | 0.05915 (16) | 0.49755 (10) | 0.46738 (8) | 0.0297 (3) |
| C12 | 0.23846 (17) | 0.46556 (11) | 0.48773 (9) | 0.0351 (3) |
| H12 | 0.315658 | 0.460895 | 0.445520 | 0.042* |
| C13 | 0.29860 (18) | 0.44165 (13) | 0.56821 (9) | 0.0407 (3) |
| H13 | 0.417007 | 0.422577 | 0.580589 | 0.049* |
| C14 | -0.18313 (18) | 0.55446 (12) | 0.36709 (9) | 0.0379 (3) |
| H14 | -0.225612 | 0.571361 | 0.312413 | 0.045* |
| O1 | 0.60496 (18) | 0.47210 (9) | 0.18830 (7) | 0.0538 (3) |
| N1 | 0.68475 (17) | 0.64774 (10) | 0.09816 (8) | 0.0415 (3) |
| C1 | 0.6624 (2) | 0.45179 (12) | 0.11258 (9) | 0.0409 (3) |
| C2 | 0.6827 (2) | 0.35003 (13) | 0.07829 (10) | 0.0500 (4) |
| H2 | 0.659051 | 0.287453 | 0.108831 | 0.060* |
| C3 | 0.7392 (2) | 0.33952 (15) | -0.00293 (11) | 0.0563 (4) |
| H3 | 0.750754 | 0.269640 | -0.025395 | 0.068* |
| C4 | 0.7774 (2) | 0.42843 (15) | -0.04946 (10) | 0.0538 (4) |
| H4 | 0.814252 | 0.419332 | -0.103052 | 0.065* |
| C5 | 0.7981 (2) | 0.63185 (15) | -0.05880 (10) | 0.0520 (4) |
| H5 | 0.836512 | 0.627362 | -0.112434 | 0.062* |
| C6 | 0.7791 (2) | 0.73209 (15) | -0.02321 (11) | 0.0550 (4) |
| H6 | 0.804189 | 0.795738 | -0.052154 | 0.066* |
| C7 | 0.7214 (2) | 0.73849 (13) | 0.05723 (11) | 0.0500 (4) |
| H7 | 0.708614 | 0.806722 | 0.082224 | 0.060* |
| C8 | 0.70289 (18) | 0.54549 (12) | 0.06544 (9) | 0.0370 (3) |
| C9 | 0.7607 (2) | 0.53461 (13) | -0.01585 (9) | 0.0426 (3) |
| O1W | 0.49949 (17) | 0.31023 (10) | 0.28209 (9) | 0.0626 (3) |
| H1WA | 0.392446 | 0.331508 | 0.282471 | 0.094* |
| H1WB | 0.491769 | 0.242369 | 0.269682 | 0.094* |
| O2W | 0.53570 (16) | 0.71260 (10) | 0.24017 (8) | 0.0556 (3) |
| H2WA | 0.480634 | 0.773241 | 0.233271 | 0.083* |
| H2WB | 0.460317 | 0.669091 | 0.258790 | 0.083* |
| H1A | 0.643 (3) | 0.6562 (18) | 0.1467 (8) | 0.069 (6)* |
| H1 | 0.581 (3) | 0.4147 (13) | 0.2114 (14) | 0.086 (7)* |

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 | $0.0424(2)$ | $0.0381(2)$ | $0.02794(19)$ | $-0.00473(12)$ | $0.01084(14)$ | $-0.00284(12)$ |
| O2 | $0.0634(7)$ | $0.0416(6)$ | $0.0599(7)$ | $-0.0036(5)$ | $0.0242(6)$ | $-0.0135(5)$ |
| O3 | $0.0471(6)$ | $0.0540(6)$ | $0.0360(5)$ | $-0.0140(5)$ | $0.0142(4)$ | $-0.0021(4)$ |
| O4 | $0.0584(7)$ | $0.0706(8)$ | $0.0291(5)$ | $-0.0020(5)$ | $0.0078(5)$ | $0.0066(5)$ |
| C10 | $0.0356(7)$ | $0.0308(6)$ | $0.0289(6)$ | $-0.0024(5)$ | $0.0074(5)$ | $0.0001(5)$ |
| C11 | $0.0312(6)$ | $0.0285(6)$ | $0.0300(6)$ | $-0.0018(5)$ | $0.0066(5)$ | $0.0002(5)$ |
| C12 | $0.0317(7)$ | $0.0393(7)$ | $0.0356(7)$ | $0.0018(5)$ | $0.0102(5)$ | $0.0026(5)$ |
| C13 | $0.0307(7)$ | $0.0489(8)$ | $0.0428(8)$ | $0.0052(6)$ | $0.0047(6)$ | $0.0054(6)$ |
| C14 | $0.0385(7)$ | $0.0442(8)$ | $0.0309(7)$ | $0.0004(6)$ | $0.0021(5)$ | $0.0043(5)$ |
| O1 | $0.0785(8)$ | $0.0460(7)$ | $0.0388(6)$ | $-0.0095(6)$ | $0.0159(6)$ | $0.0057(5)$ |
| N1 | $0.0483(7)$ | $0.0403(6)$ | $0.0360(6)$ | $-0.0024(5)$ | $0.0041(5)$ | $0.0042(5)$ |
| C1 | $0.0443(8)$ | $0.0437(8)$ | $0.0345(7)$ | $-0.0027(6)$ | $0.0017(6)$ | $0.0049(6)$ |
| C2 | $0.0571(9)$ | $0.0407(8)$ | $0.0518(9)$ | $-0.0019(7)$ | $0.0026(7)$ | $0.0059(7)$ |
| C3 | $0.0661(10)$ | $0.0474(9)$ | $0.0555(10)$ | $0.0066(8)$ | $0.0056(8)$ | $-0.0076(7)$ |
| C4 | $0.0599(10)$ | $0.0613(10)$ | $0.0409(8)$ | $0.0071(8)$ | $0.0092(7)$ | $-0.0043(7)$ |
| C5 | $0.0525(9)$ | $0.0649(11)$ | $0.0398(8)$ | $0.0007(7)$ | $0.0104(7)$ | $0.0136(7)$ |
| C6 | $0.0582(10)$ | $0.0532(10)$ | $0.0543(10)$ | $-0.0050(8)$ | $0.0090(8)$ | $0.0210(8)$ |
| C7 | $0.0570(9)$ | $0.0396(8)$ | $0.0532(9)$ | $-0.0028(7)$ | $0.0033(7)$ | $0.0076(7)$ |
| C8 | $0.0370(7)$ | $0.0413(7)$ | $0.0321(7)$ | $-0.0018(5)$ | $0.0000(5)$ | $0.0029(5)$ |
| C9 | $0.0400(7)$ | $0.0533(9)$ | $0.0344(7)$ | $0.0013(6)$ | $0.0033(6)$ | $0.0046(6)$ |
| O1W | $0.0647(8)$ | $0.0529(7)$ | $0.0722(8)$ | $0.0003(6)$ | $0.0171(7)$ | $0.0131(6)$ |
| O2W | $0.0629(7)$ | $0.0451(6)$ | $0.0618(7)$ | $0.0057(5)$ | $0.0236(6)$ | $0.0069(5)$ |
|  |  |  |  |  |  |  |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{S} 1-\mathrm{O} 2$ | $1.4503(11)$ | $\mathrm{C} 1-\mathrm{C} 8$ | $1.414(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{S} 1-\mathrm{O} 3$ | $1.4476(10)$ | $\mathrm{C} 2-\mathrm{H} 2$ | 0.9300 |
| $\mathrm{~S} 1-\mathrm{O} 4$ | $1.4455(11)$ | $\mathrm{C} 2-\mathrm{C} 3$ | $1.407(2)$ |
| $\mathrm{S} 1-\mathrm{C} 10$ | $1.7853(13)$ | $\mathrm{C} 3-\mathrm{H} 3$ | 0.9300 |
| $\mathrm{C} 10-\mathrm{C} 11$ | $1.4314(18)$ | $\mathrm{C} 3-\mathrm{C} 4$ | $1.358(3)$ |
| $\mathrm{C} 10-\mathrm{C} 14$ | $1.3627(19)$ | $\mathrm{C} 4-\mathrm{H} 4$ | 0.9300 |
| $\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$ | $1.431(2)$ | $\mathrm{C} 4-\mathrm{C} 9$ | $1.409(2)$ |
| $\mathrm{C} 11-\mathrm{C} 12$ | $1.4219(18)$ | $\mathrm{C} 5-\mathrm{H} 5$ | 0.9300 |
| $\mathrm{C} 12-\mathrm{H} 12$ | 0.9300 | $\mathrm{C} 5-\mathrm{C} 6$ | $1.359(3)$ |
| $\mathrm{C} 12-\mathrm{C} 13$ | $1.362(2)$ | $\mathrm{C} 5-\mathrm{C} 9$ | $1.409(2)$ |
| $\mathrm{C} 13-\mathrm{H} 13$ | 0.9300 | $\mathrm{C} 6-\mathrm{H} 6$ | 0.9300 |
| $\mathrm{C} 13-\mathrm{C} 14 \mathrm{i}$ | $1.409(2)$ | $\mathrm{C} 6-\mathrm{C} 7$ | $1.395(2)$ |
| $\mathrm{C} 14-\mathrm{H} 14$ | 0.9300 | $\mathrm{C} 7-\mathrm{H} 7$ | 0.9300 |
| $\mathrm{O} 1-\mathrm{C} 1$ | $1.3433(19)$ | $\mathrm{C} 8-\mathrm{C} 9$ | $1.412(2)$ |
| $\mathrm{O} 1-\mathrm{H} 1$ | $0.819(10)$ | $\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{WA}$ | 0.8500 |
| $\mathrm{~N} 1-\mathrm{C} 7$ | $1.3246(19)$ | $\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{WB}$ | 0.8501 |
| $\mathrm{~N} 1-\mathrm{C} 8$ | $1.3611(19)$ | $\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WA}$ | 0.8498 |
| $\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A}$ | $0.868(9)$ | $\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WB}$ | 0.8495 |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.368(2)$ |  |  |


| $\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 10$ | 105.37 (6) |
| :---: | :---: |
| $\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$ | 112.16 (7) |
| O3-S1-C10 | 107.03 (6) |
| $\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 2$ | 112.81 (7) |
| $\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 3$ | 112.91 (7) |
| O4-S1-C10 | 105.88 (6) |
| C11-C10-S1 | 121.69 (10) |
| C14-C10-S1 | 117.11 (10) |
| C14-C10-C11 | 121.19 (12) |
| C11-C11-C10 | 117.91 (14) |
| C12-C11-C10 | 123.05 (12) |
| $\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 11^{\text {i }}$ | 119.03 (14) |
| C11-C12-H12 | 119.6 |
| C13-C12-C11 | 120.86 (12) |
| C13-C12-H12 | 119.6 |
| C12-C13-H13 | 119.7 |
| C12-C13-C14 | 120.62 (13) |
| C14-C13-H13 | 119.7 |
| C10-C14-C13 ${ }^{\text {i }}$ | 120.36 (13) |
| C10-C14-H14 | 119.8 |
| C13-C14-H14 | 119.8 |
| C1-O1-H1 | 110.6 (17) |
| C7-N1-C8 | 122.67 (13) |
| C7-N1-H1A | 116.7 (15) |
| C8-N1-H1A | 120.6 (15) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | 125.70 (14) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 8$ | 115.67 (13) |
| $\mathrm{S} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 11^{\text {i }}$ | 179.61 (12) |
| S1-C10-C11-C12 | 0.00 (18) |
| S1-C10-C14-C13 ${ }^{\text {i }}$ | -179.89 (11) |
| $\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 10-\mathrm{C} 11$ | 69.66 (12) |
| O2-S1-C10-C14 | -109.23 (12) |
| O3-S1-C10-C11 | -49.90 (12) |
| O3-S1-C10-C14 | 131.21 (11) |
| O4-S1-C10-C11 | -170.60 (10) |
| O4-S1-C10-C14 | 10.52 (13) |
| C10-C11-C12-C13 | 178.45 (13) |
| C11-C10-C14-C13 ${ }^{\text {i }}$ | 1.2 (2) |
| C11- ${ }^{\text {C }} 11-\mathrm{C} 12-\mathrm{C} 13$ | -1.1(2) |
| C11-C12-C13-C14 | 1.5 (2) |
| C14-C10-C11-C11 | -1.6 (2) |
| C14-C10-C11-C12 | 178.84 (13) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 178.11 (15) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 1$ | 0.9 (2) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9$ | -178.57 (13) |


| C2-C1-C8 | 118.63 (14) |
| :---: | :---: |
| C1-C2-H2 | 119.8 |
| C1-C2-C3 | 120.36 (15) |
| C3-C2-H2 | 119.8 |
| C2-C3-H3 | 119.0 |
| C4-C3-C2 | 121.91 (16) |
| C4-C3-H3 | 119.0 |
| C3-C4-H4 | 120.3 |
| C3-C4-C9 | 119.43 (15) |
| C9-C4-H4 | 120.3 |
| C6-C5-H5 | 119.4 |
| C6-C5-C9 | 121.12 (15) |
| C9-C5-H5 | 119.4 |
| C5-C6-H6 | 120.4 |
| C5-C6-C7 | 119.28 (15) |
| C7-C6-H6 | 120.4 |
| N1-C7-C6 | 120.25 (15) |
| N1-C7-H7 | 119.9 |
| C6-C7-H7 | 119.9 |
| N1-C8-C1 | 119.89 (13) |
| N1-C8-C9 | 119.25 (13) |
| C9-C8-C1 | 120.85 (14) |
| C4-C9-C8 | 118.80 (14) |
| C5-C9-C4 | 123.77 (15) |
| C5-C9-C8 | 117.43 (14) |
| H1WA-O1W-H1WB | 104.5 |
| H2WA-O2W-H2WB | 104.5 |
| N1-C8-C9-C4 | -179.40 (14) |
| N1-C8-C9-C5 | 0.5 (2) |
| C1-C2-C3-C4 | 0.8 (3) |
| C1-C8-C9-C4 | 0.0 (2) |
| C1-C8-C9-C5 | 179.91 (14) |
| C2-C1-C8-N1 | -179.68 (14) |
| C2- $21-\mathrm{C} 8-\mathrm{C} 9$ | 0.9 (2) |
| C2-C3-C4-C9 | 0.1 (3) |
| C3-C4-C9-C5 | 179.58 (16) |
| C3-C4-C9-C8 | -0.5 (2) |
| C5-C6-C7-N1 | -0.4 (3) |
| C6-C5-C9-C4 | 179.83 (16) |
| C6-C5-C9-C8 | 0.0 (2) |
| C7-N1-C8-C1 | 179.67 (14) |
| C7-N1-C8-C9 | -0.9 (2) |
| C8-N1-C7-C6 | 0.8 (2) |
| C8- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | -1.3 (2) |
| C9-C5-C6-C7 | 0.0 (3) |

Symmetry code: (i) $-x,-y+1,-z+1$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 10 / \mathrm{C} 11 / \mathrm{C} 11^{\prime}-\mathrm{C} 13^{\prime} / \mathrm{C} 14$ and $\mathrm{C} 11-\mathrm{C} 13 / \mathrm{C} 14^{\prime} / \mathrm{C} 10^{\prime} / \mathrm{C} 11^{\prime}$ rings, respectively, where primed atoms are related by the symmetry operation $-x, 1-y, 1-z$.

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 2^{\text {ii }}$ | 0.85 | 1.98 | 2.8239 (16) | 176 |
| $\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 3$ | 0.85 | 2.02 | 2.8610 (15) | 168 |
| $\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 2$ | 0.85 | 1.98 | 2.8150 (17) | 169 |
| $\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots 4^{\text {iii }}$ | 0.85 | 2.05 | 2.8806 (18) | 166 |
| $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 W$ | 0.82 (1) | 1.84 (1) | 2.6390 (16) | 165 (2) |
| $\mathrm{N} 1-\mathrm{H} 1 A^{\cdots} \mathrm{O} 2 W$ | 0.87 (1) | 1.89 (1) | 2.7347 (18) | 164 (2) |
| C6-H6 ${ }^{-} \mathrm{O}^{\text {iv }}$ | 0.93 | 2.46 | 3.3153 (19) | 154 |
| $\mathrm{C} 4-\mathrm{H} 4 \cdots{ }^{\text {- }}$ | 0.93 | 2.45 | 3.352 (2) | 165 |
| $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 1^{\text {vi }}$ | 0.93 | 2.57 | 3.3173 (18) | 137 |
| C12-H12 $\cdots 3$ | 0.93 | 2.46 | 3.0439 (17) | 121 |
| $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 1^{\text {ii }}$ | 0.93 | 2.82 | 3.6125 (17) | 144 |
| $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 2^{\mathrm{iv}}$ | 0.93 | 2.82 | 3.6125 (17) | 144 |

Symmetry codes: (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (iv) $x+1 / 2,-y+3 / 2, z-1 / 2$; (v) $-x+1,-y+1,-z$; (vi) $x-1, y, z$.

