organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(8-hy­dr­oxy­quinolinium) naphthalene-1,5-di­sulfonate tetra­hydrate

crossmark logo

aTermez State University, Barkamol Avlod Street 43, Termez City, Uzbekistan, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str 83, Tashkent, Uzbekistan
*Correspondence e-mail: ashurovjamshid1@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 May 2024; accepted 13 June 2024; online 18 June 2024)

The inter­action between 8-hy­droxy­quinoline (8HQ, C9H7NO) and naphthalene-1,5-di­sulfonic acid (H2NDS, C10H8O6S2) in aqueous media results in the formation of the salt hydrate bis­(8-hy­droxy­quinolinium) naphthalene-1,5-di­sulfonate tetra­hydrate, 2C9H8NO+·C10H6O6S22−·4H2O. The asymmetric unit comprises one protonated 8HQ+ cation, half of an NDS2– dianion symmetrically disposed around a center of inversion, and two water mol­ecules. Within the crystal structure, these components are organized into chains along the [010] and [10[\overline{1}]] directions through O—H⋯O and N—H⋯O hydrogen-bonding inter­actions, forming a di-periodic network parallel to (101). Additional stabilizing inter­actions such as C—H⋯O, C—H⋯π, and ππ inter­actions extend this arrangement into a tri-periodic network structure

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

8-Hy­droxy­quinoline (8HQ, C9H7NO, HL), known also as oxine, is a bidentate chelating agent. It forms three species: H2L+, HL and L. 8HQ bearing a hetero-nitro­gen atom (pKa = 10.8) and the 8-substituted phenol group (pKa = 4.9) is a good organic acid–base adduct conformer and has been reported to form supra­molecularly organized compounds with acidic counter parts under formation of multiple hydrogen bonds (Smith et al., 2003[Smith, G., Wermuth, U. D. & White, J. M. (2003). CrystEngComm, 5, 58-61.]). 8HQ is used in analytical chemistry for the qu­anti­tative determination of metal ions because the resulting complexes are insoluble in water. The aluminium complex (Cölle et al., 2002[Cölle, M., Dinnebier, R. E. & Brütting, W. (2002). Chem. Commun. 23, 2908-2909.]; Katakura & Koide, 2006[Katakura, R. & Koide, Y. (2006). Inorg. Chem. 45, 5730-5732.]) is a common component of organic light-emitting diodes (OLEDs). Substituents on the quinoline ring result in compounds with luminescence properties (Montes et al., 2006[Montes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). Chem. A Eur. J. 12, 4523-4535.]). In its photo-induced excited state, 8HQ converts to zwitterionic isomers, in which the hydrogen atom is transferred from oxygen to nitro­gen (Bardez et al., 1997[Bardez, E., Devol, I., Larrey, B. & Valeur, B. (1997). J. Phys. Chem. B, 101, 7786-7793.]). The complexes as well as the heterocycle itself exhibit anti­septic, disinfectant, and pesticidal properties (Phillips et al., 1956[Phillips, J. P. (1956). Chem. Rev. 56, 271-297.]) and functions as a transcription inhibitor (Wen et al., 2023[Wen, J., Charan Dash, R., Zaino, A., Harrahill, N., Calhoun, J., Dusek, C., Morel, Sh., Russolillo, M. & Kyle Hadden, M. (2023). Bioorg. Chem. 132, 106387.]). Its solution in alcohol is used in liquid bandages. It once was of inter­est as an anti-cancer drug (Zhu et al., 2017[Zhu, X.-F., Zhang, J., Sun, S., Guo, Y.-C., Cao, S.-X. & Zhao, Y.-F. (2017). Chin. Chem. Lett. 28, 1514-1518.]; Fouda 2017[Fouda, A. M. (2017). Med. Chem. Res. 26, 302-313.]). The roots of the invasive plant Centaurea diffusa release 8HQ, which has a negative effect on plants that have not co-evolved with it (Vivanco et al., 2004[Vivanco, J. M., Bais, H. P., Stermitz, F. R., Thelen, G. C. & Callaway, R. M. (2004). Ecol. Lett. 7, 285-292.]).

1,5-Naphthalene­disulfonic acid (H2NDS, Armstrong acid, C10H8O6S2) is a white-to-yellowish solid that is soluble in water (1030 g l−1). It is used in the production of dyes, pigments, and other industrial chemicals. It also functions as a chelating and complexing agent, which is used in various applications such as water treatment, analytical chemistry, and mineral processing (Arslan-Alaton et al., 2008[Arslan-Alaton, I., Kabdaşlı, I., Tunay, O. & Cekirge, Z. (2008). Fresenius Environ. Bull. 17, 1803-1808.]). H2NDS does not demonstrate a definite biological activity. Complexes derived from H2NDS are of inter­est in supra­molecular chemistry due to their ability to form complex hydrogen-bonded systems because the sulfonate group can accept up to six hydrogen bonds.

Preparation and structural characterization of organic salts on basis of these two simple compounds is of inter­est for supra­molecular and analytical chemistry (Oh et al., 2020[Oh, H., Kim, D., Kim, D., Park, I.-H. & Jung, O.-S. (2020). Cryst. Growth Des. 20, 7027-7033.]; Chen et al., 2022[Chen, X., Huang, Z., Sala, R. L., McLean, A. M., Wu, G., Sokołowski, K., King, K., McCune, J. A. & Scherman, O. A. (2022). J. Am. Chem. Soc. 144, 8474-8479.]). In our previous works (Suyunov et al., 2023a[Suyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Nazarov, Y. E., Mengnorov, I. J., Ibragimov, B. T. & Ashurov, J. M. (2023a). Acta Cryst. E79, 1083-1087.],b[Suyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Ibragimov, A. B., Mengnorov, I. J., Rasulov, A. A. & Ashurov, J. M. (2023b). IUCrData, 8, x231032.],c[Suyunov, J., Torambetov, B., Turaev, K., Kadirova, S., Alimnazarov, B. & Ashurov, J. (2023c). Acta Cryst. E79, 1190-1193.]), we reported on H2NDS and its salts involving nickel(II) and cadmium(II). In the current work, we report on preparation and mol­ecular and crystal structures of a proton-transfer salt, 2(8HQ)+·NDS2–·4H2O.

The asymmetric unit of the title compound consists of one 8HQ+ cation, half of an NDS2– anion, and two water mol­ecules of crystallization, resulting in a supra­molecular associate with a 2:1:4 cation-anion-water composition. The sulfonic acid (SO3H) groups of H2NDS are deprotonated, with the hydrogen atoms transferred to the nitro­gen atom of an 8HQ+ cation, and the NDS2− dianion exhibits inversion symmetry, with the inversion center located at the midpoint of the C11—C11i [symmetry code: (i) −x, 1 − y, 1 − z] bond in the naphthalene ring system (Fig. 1[link]). A similar salt with composition 2C9H8NO+·C10H6O6S22–·2H2O was previously reported (Jin et al., 2014[Jin, S., Wang, D., Du, S., Linhe, Q., Fu, M. & Wu, S. (2014). J. Chem. Crystallogr. 44, 435-441.]), the main difference being the presence of only two water mol­ecules and ortho­rhom­bic symmetry (space group Pbca) compared to four water mol­ecules and monoclinic symmetry (space group P21/n) for the title salt. In the cation of the title salt, the angle around the protonated N atom [C7—N1—C8 = 122.67 (13)°] is approximately 1° less than the corresponding angle in the study of the dihydrate [123.5 (3)°]. In the title salt, the anions exhibit two distinct orientations, with the angle between their planes being 33.37 (7)°. The cations are oriented in a single direction, forming angles of 71.66 (8) and 75.80 (9)° with the planes of the anions. The naphthalene ring system exhibits typical bond lengths and angles, with C—C bond lengths ranging from 1.362 (2) to 1.431 (2) Å, and C—C—C angles in the range 117.91 (14) to 123.05 (12)°. The hy­droxy­quinoline and naphthalene fragments are coplanar with r.m.s deviations of 0.0162 (14) Å and 0.0112 (13) Å.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title salt, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius and hydrogen bonds are shown as dashed lines. [Symmetry code: (i) −x, 1 − y, 1 - z.]

In the crystal, the 8HQ+ cation, the NDS2– anion, and the water mol­ecules are connected via classical O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link]) with graph-set motifs of R43(10) and R44(13), which link the components into chains extending parallel to [010], as illustrated in Fig. 2[link]. The SO3 group on one side of the anion participates in the formation of these chains. The symmetry-related second SO3 group also participates in hydrogen bonding under the formation of a second infinite chain parallel to [10[\overline{1}]] connecting with the previous chains via C—H⋯π inter­actions (where Cg are the centroids of the naphthalene rings, Table 1[link]) and C(π)⋯C,N(π) weak inter­molecular contacts [CgCg distance = 3.6547 (9) Å, slippage 1.248 Å], forming sheets parallel to (101) (Fig. 3[link]). These sheets are linked through additional weak C—H⋯O inter­actions into a tri-periodic network structure. Due to steric hindrance of the sulfonate groups, the nearest centroid separation between naphthalene rings is 5.264 (3) Å, suggesting no ππ stacking between these moieties.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C10/ C11/C11′–C13′/C14 and C11–C13/C14′/C10′/C11′ rings, respectively, where primed atoms are related by the symmetry operation −x, 1 − y, 1 − z.

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WA⋯O2i 0.85 1.98 2.8239 (16) 176
O2W—H2WB⋯O3 0.85 2.02 2.8610 (15) 168
O1W—H1WA⋯O2 0.85 1.98 2.8150 (17) 169
O1W—H1WB⋯O4ii 0.85 2.05 2.8806 (18) 166
O1—H1⋯O1W 0.82 (1) 1.84 (1) 2.6390 (16) 165 (2)
N1—H1A⋯O2W 0.87 (1) 1.89 (1) 2.7347 (18) 164 (2)
C6—H6⋯O3iii 0.93 2.46 3.3153 (19) 154
C4—H4⋯O4iv 0.93 2.45 3.352 (2) 165
C14—H14⋯O1v 0.93 2.57 3.3173 (18) 137
C12—H12⋯O3 0.93 2.46 3.0439 (17) 121
C7—H7⋯Cg1i 0.93 2.82 3.6125 (17) 144
C7—H7⋯Cg2iii 0.93 2.82 3.6125 (17) 144
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z]; (v) [x-1, y, z].
[Figure 2]
Figure 2
The formation of O—H⋯O and N—H⋯O hydrogen bonds (dashed red lines) in the crystal structure, leading to R43(10) and R44(13) graph-set motifs.
[Figure 3]
Figure 3
The crystal packing of the title salt in a view along [101]. O—H⋯O, N—H⋯O, and C—H⋯O hydrogen bonds are shown as dashed blue lines, and C—H⋯π and ππ inter­actions as dashed pink lines.

A search of the Cambridge Structural Database (CSD, version 5.45, updated November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the crystal structure of 8HQ alone has been determined eleven times, while thirteen reports are related to mol­ecular complexes, and 71 crystals are organic salts where the nitro­gen atom of 8HQ is protonated. In the case of 1,5-NDSA, 225 crystals are organic salts of 1,5-NDSA in the dianionic form, One compound (FIVFOI01; Du et al., 2019[Du, Y., Li, H., Wang, Z., Zhang, M., Liu, K., Liu, Y., Chen, R. & Wang, L. (2019). J. Mol. Struct. 1196, 828-835.]) is a complex with 1,5-NDSA in the monoanionic form, and four crystals are mol­ecular complexes (SAHRIG, Singh et al., 2021[Singh, U. P., Singh, N., Mohanty, A. & Butcher, R. J. (2021). J. Chem. Crystallogr. 51, 57-70.]; SATBEX, Liu et al., 2017[Liu, L., Zhao, Z. & Hao, C. (2017). J. Incl Phenom. Macrocycl Chem. 88, 247-252.]; VEGHUN, Cunha et al., 2017[Cunha, M. S., Ribeiro, C. E. P., Corrêa, C. C. & Diniz, R. (2017). J. Mol. Struct. 1150, 586-594.]; WEZGAN, Xu et al., 2023[Xu, J., Wang, Q., Ge, W.-W., Wu, D., Redshaw, C. & Chen, K. (2023). CrystEngComm, 25, 1529-1540.]) with neutral sulfo-acid mol­ecules.

Synthesis and crystallization

The title compound was obtained by the addition of 1,5-naphthalene­disulfonate acid (0.288 g, 1 mmol) to a solution of 8-hy­droxy­quinoline (0.176 g, 2 mmol) in water, in the stoichiometric ratio 1:2. Good-quality single crystals were obtained by slow evaporation after four days (yield: 60%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C9H8NO+·C10H6O6S22−·4H2O
Mr 650.66
Crystal system, space group Monoclinic, P21/n
Temperature (K) 290
a, b, c (Å) 7.55855 (8), 12.16674 (13), 16.00467 (17)
β (°) 94.7152 (10)
V3) 1466.86 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.25
Crystal size (mm) 0.32 × 0.3 × 0.28
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.820, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14094, 2841, 2621
Rint 0.026
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.05
No. of reflections 2841
No. of parameters 214
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.30
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate top
Crystal data top
2C9H8NO+·C10H6O6S22·4H2OF(000) = 680
Mr = 650.66Dx = 1.473 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 7.55855 (8) ÅCell parameters from 9285 reflections
b = 12.16674 (13) Åθ = 2.8–71.2°
c = 16.00467 (17) ŵ = 2.25 mm1
β = 94.7152 (10)°T = 290 K
V = 1466.86 (3) Å3Block, light yellow
Z = 20.32 × 0.3 × 0.28 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
2841 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2621 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.0000 pixels mm-1θmax = 71.4°, θmin = 4.6°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1414
Tmin = 0.820, Tmax = 1.000l = 1919
14094 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.303P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2841 reflectionsΔρmax = 0.20 e Å3
214 parametersΔρmin = 0.29 e Å3
2 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: intrinsic phasingExtinction coefficient: 0.0023 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to the N and O atoms were located from a difference-Fourier map and refined with bond-length restraints of 0.86 (1) Å and 0.82 (1) Å, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12659 (4)0.52366 (3)0.29817 (2)0.03571 (13)
O20.16257 (16)0.40840 (9)0.28388 (7)0.0539 (3)
O30.28637 (14)0.58461 (9)0.32385 (6)0.0451 (3)
O40.02239 (15)0.57423 (10)0.22875 (6)0.0525 (3)
C100.00953 (17)0.52607 (10)0.38419 (8)0.0315 (3)
C110.05915 (16)0.49755 (10)0.46738 (8)0.0297 (3)
C120.23846 (17)0.46556 (11)0.48773 (9)0.0351 (3)
H120.3156580.4608950.4455200.042*
C130.29860 (18)0.44165 (13)0.56821 (9)0.0407 (3)
H130.4170070.4225770.5805890.049*
C140.18313 (18)0.55446 (12)0.36709 (9)0.0379 (3)
H140.2256120.5713610.3124130.045*
O10.60496 (18)0.47210 (9)0.18830 (7)0.0538 (3)
N10.68475 (17)0.64774 (10)0.09816 (8)0.0415 (3)
C10.6624 (2)0.45179 (12)0.11258 (9)0.0409 (3)
C20.6827 (2)0.35003 (13)0.07829 (10)0.0500 (4)
H20.6590510.2874530.1088310.060*
C30.7392 (2)0.33952 (15)0.00293 (11)0.0563 (4)
H30.7507540.2696400.0253950.068*
C40.7774 (2)0.42843 (15)0.04946 (10)0.0538 (4)
H40.8142520.4193320.1030520.065*
C50.7981 (2)0.63185 (15)0.05880 (10)0.0520 (4)
H50.8365120.6273620.1124340.062*
C60.7791 (2)0.73209 (15)0.02321 (11)0.0550 (4)
H60.8041890.7957380.0521540.066*
C70.7214 (2)0.73849 (13)0.05723 (11)0.0500 (4)
H70.7086140.8067220.0822240.060*
C80.70289 (18)0.54549 (12)0.06544 (9)0.0370 (3)
C90.7607 (2)0.53461 (13)0.01585 (9)0.0426 (3)
O1W0.49949 (17)0.31023 (10)0.28209 (9)0.0626 (3)
H1WA0.3924460.3315080.2824710.094*
H1WB0.4917690.2423690.2696820.094*
O2W0.53570 (16)0.71260 (10)0.24017 (8)0.0556 (3)
H2WA0.4806340.7732410.2332710.083*
H2WB0.4603170.6690910.2587900.083*
H1A0.643 (3)0.6562 (18)0.1467 (8)0.069 (6)*
H10.581 (3)0.4147 (13)0.2114 (14)0.086 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0424 (2)0.0381 (2)0.02794 (19)0.00473 (12)0.01084 (14)0.00284 (12)
O20.0634 (7)0.0416 (6)0.0599 (7)0.0036 (5)0.0242 (6)0.0135 (5)
O30.0471 (6)0.0540 (6)0.0360 (5)0.0140 (5)0.0142 (4)0.0021 (4)
O40.0584 (7)0.0706 (8)0.0291 (5)0.0020 (5)0.0078 (5)0.0066 (5)
C100.0356 (7)0.0308 (6)0.0289 (6)0.0024 (5)0.0074 (5)0.0001 (5)
C110.0312 (6)0.0285 (6)0.0300 (6)0.0018 (5)0.0066 (5)0.0002 (5)
C120.0317 (7)0.0393 (7)0.0356 (7)0.0018 (5)0.0102 (5)0.0026 (5)
C130.0307 (7)0.0489 (8)0.0428 (8)0.0052 (6)0.0047 (6)0.0054 (6)
C140.0385 (7)0.0442 (8)0.0309 (7)0.0004 (6)0.0021 (5)0.0043 (5)
O10.0785 (8)0.0460 (7)0.0388 (6)0.0095 (6)0.0159 (6)0.0057 (5)
N10.0483 (7)0.0403 (6)0.0360 (6)0.0024 (5)0.0041 (5)0.0042 (5)
C10.0443 (8)0.0437 (8)0.0345 (7)0.0027 (6)0.0017 (6)0.0049 (6)
C20.0571 (9)0.0407 (8)0.0518 (9)0.0019 (7)0.0026 (7)0.0059 (7)
C30.0661 (10)0.0474 (9)0.0555 (10)0.0066 (8)0.0056 (8)0.0076 (7)
C40.0599 (10)0.0613 (10)0.0409 (8)0.0071 (8)0.0092 (7)0.0043 (7)
C50.0525 (9)0.0649 (11)0.0398 (8)0.0007 (7)0.0104 (7)0.0136 (7)
C60.0582 (10)0.0532 (10)0.0543 (10)0.0050 (8)0.0090 (8)0.0210 (8)
C70.0570 (9)0.0396 (8)0.0532 (9)0.0028 (7)0.0033 (7)0.0076 (7)
C80.0370 (7)0.0413 (7)0.0321 (7)0.0018 (5)0.0000 (5)0.0029 (5)
C90.0400 (7)0.0533 (9)0.0344 (7)0.0013 (6)0.0033 (6)0.0046 (6)
O1W0.0647 (8)0.0529 (7)0.0722 (8)0.0003 (6)0.0171 (7)0.0131 (6)
O2W0.0629 (7)0.0451 (6)0.0618 (7)0.0057 (5)0.0236 (6)0.0069 (5)
Geometric parameters (Å, º) top
S1—O21.4503 (11)C1—C81.414 (2)
S1—O31.4476 (10)C2—H20.9300
S1—O41.4455 (11)C2—C31.407 (2)
S1—C101.7853 (13)C3—H30.9300
C10—C111.4314 (18)C3—C41.358 (3)
C10—C141.3627 (19)C4—H40.9300
C11—C11i1.431 (2)C4—C91.409 (2)
C11—C121.4219 (18)C5—H50.9300
C12—H120.9300C5—C61.359 (3)
C12—C131.362 (2)C5—C91.409 (2)
C13—H130.9300C6—H60.9300
C13—C14i1.409 (2)C6—C71.395 (2)
C14—H140.9300C7—H70.9300
O1—C11.3433 (19)C8—C91.412 (2)
O1—H10.819 (10)O1W—H1WA0.8500
N1—C71.3246 (19)O1W—H1WB0.8501
N1—C81.3611 (19)O2W—H2WA0.8498
N1—H1A0.868 (9)O2W—H2WB0.8495
C1—C21.368 (2)
O2—S1—C10105.37 (6)C2—C1—C8118.63 (14)
O3—S1—O2112.16 (7)C1—C2—H2119.8
O3—S1—C10107.03 (6)C1—C2—C3120.36 (15)
O4—S1—O2112.81 (7)C3—C2—H2119.8
O4—S1—O3112.91 (7)C2—C3—H3119.0
O4—S1—C10105.88 (6)C4—C3—C2121.91 (16)
C11—C10—S1121.69 (10)C4—C3—H3119.0
C14—C10—S1117.11 (10)C3—C4—H4120.3
C14—C10—C11121.19 (12)C3—C4—C9119.43 (15)
C11i—C11—C10117.91 (14)C9—C4—H4120.3
C12—C11—C10123.05 (12)C6—C5—H5119.4
C12—C11—C11i119.03 (14)C6—C5—C9121.12 (15)
C11—C12—H12119.6C9—C5—H5119.4
C13—C12—C11120.86 (12)C5—C6—H6120.4
C13—C12—H12119.6C5—C6—C7119.28 (15)
C12—C13—H13119.7C7—C6—H6120.4
C12—C13—C14i120.62 (13)N1—C7—C6120.25 (15)
C14i—C13—H13119.7N1—C7—H7119.9
C10—C14—C13i120.36 (13)C6—C7—H7119.9
C10—C14—H14119.8N1—C8—C1119.89 (13)
C13i—C14—H14119.8N1—C8—C9119.25 (13)
C1—O1—H1110.6 (17)C9—C8—C1120.85 (14)
C7—N1—C8122.67 (13)C4—C9—C8118.80 (14)
C7—N1—H1A116.7 (15)C5—C9—C4123.77 (15)
C8—N1—H1A120.6 (15)C5—C9—C8117.43 (14)
O1—C1—C2125.70 (14)H1WA—O1W—H1WB104.5
O1—C1—C8115.67 (13)H2WA—O2W—H2WB104.5
S1—C10—C11—C11i179.61 (12)N1—C8—C9—C4179.40 (14)
S1—C10—C11—C120.00 (18)N1—C8—C9—C50.5 (2)
S1—C10—C14—C13i179.89 (11)C1—C2—C3—C40.8 (3)
O2—S1—C10—C1169.66 (12)C1—C8—C9—C40.0 (2)
O2—S1—C10—C14109.23 (12)C1—C8—C9—C5179.91 (14)
O3—S1—C10—C1149.90 (12)C2—C1—C8—N1179.68 (14)
O3—S1—C10—C14131.21 (11)C2—C1—C8—C90.9 (2)
O4—S1—C10—C11170.60 (10)C2—C3—C4—C90.1 (3)
O4—S1—C10—C1410.52 (13)C3—C4—C9—C5179.58 (16)
C10—C11—C12—C13178.45 (13)C3—C4—C9—C80.5 (2)
C11—C10—C14—C13i1.2 (2)C5—C6—C7—N10.4 (3)
C11i—C11—C12—C131.1 (2)C6—C5—C9—C4179.83 (16)
C11—C12—C13—C14i1.5 (2)C6—C5—C9—C80.0 (2)
C14—C10—C11—C11i1.6 (2)C7—N1—C8—C1179.67 (14)
C14—C10—C11—C12178.84 (13)C7—N1—C8—C90.9 (2)
O1—C1—C2—C3178.11 (15)C8—N1—C7—C60.8 (2)
O1—C1—C8—N10.9 (2)C8—C1—C2—C31.3 (2)
O1—C1—C8—C9178.57 (13)C9—C5—C6—C70.0 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C10/ C11/C11'–C13'/C14 and C11–C13/C14'/C10'/C11' rings, respectively, where primed atoms are related by the symmetry operation -x, 1 - y, 1 - z.
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O2ii0.851.982.8239 (16)176
O2W—H2WB···O30.852.022.8610 (15)168
O1W—H1WA···O20.851.982.8150 (17)169
O1W—H1WB···O4iii0.852.052.8806 (18)166
O1—H1···O1W0.82 (1)1.84 (1)2.6390 (16)165 (2)
N1—H1A···O2W0.87 (1)1.89 (1)2.7347 (18)164 (2)
C6—H6···O3iv0.932.463.3153 (19)154
C4—H4···O4v0.932.453.352 (2)165
C14—H14···O1vi0.932.573.3173 (18)137
C12—H12···O30.932.463.0439 (17)121
C7—H7···Cg1ii0.932.823.6125 (17)144
C7—H7···Cg2iv0.932.823.6125 (17)144
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1, y+1, z; (vi) x1, y, z.
 

Funding information

The authors thank the Uzbekistan government for their direct financial support of this research. They also gratefully acknowledge the Fundamental Research Grant from the Agency for Innovative Development under the Ministry of Higher Education, Science, and Innovation of the Republic of Uzbekistan.

References

First citationArslan-Alaton, I., Kabdaşlı, I., Tunay, O. & Cekirge, Z. (2008). Fresenius Environ. Bull. 17, 1803–1808.  CAS Google Scholar
First citationBardez, E., Devol, I., Larrey, B. & Valeur, B. (1997). J. Phys. Chem. B, 101, 7786–7793.  CrossRef CAS Google Scholar
First citationChen, X., Huang, Z., Sala, R. L., McLean, A. M., Wu, G., Sokołowski, K., King, K., McCune, J. A. & Scherman, O. A. (2022). J. Am. Chem. Soc. 144, 8474–8479.  CrossRef CAS PubMed Google Scholar
First citationCölle, M., Dinnebier, R. E. & Brütting, W. (2002). Chem. Commun. 23, 2908–2909.  Google Scholar
First citationCunha, M. S., Ribeiro, C. E. P., Corrêa, C. C. & Diniz, R. (2017). J. Mol. Struct. 1150, 586–594.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, Y., Li, H., Wang, Z., Zhang, M., Liu, K., Liu, Y., Chen, R. & Wang, L. (2019). J. Mol. Struct. 1196, 828–835.  CSD CrossRef CAS Google Scholar
First citationFouda, A. M. (2017). Med. Chem. Res. 26, 302–313.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJin, S., Wang, D., Du, S., Linhe, Q., Fu, M. & Wu, S. (2014). J. Chem. Crystallogr. 44, 435–441.  CSD CrossRef CAS Google Scholar
First citationKatakura, R. & Koide, Y. (2006). Inorg. Chem. 45, 5730–5732.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, L., Zhao, Z. & Hao, C. (2017). J. Incl Phenom. Macrocycl Chem. 88, 247–252.  CSD CrossRef CAS Google Scholar
First citationMontes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). Chem. A Eur. J. 12, 4523–4535.  CSD CrossRef CAS Google Scholar
First citationOh, H., Kim, D., Kim, D., Park, I.-H. & Jung, O.-S. (2020). Cryst. Growth Des. 20, 7027–7033.  Web of Science CSD CrossRef CAS Google Scholar
First citationPhillips, J. P. (1956). Chem. Rev. 56, 271–297.  CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, U. P., Singh, N., Mohanty, A. & Butcher, R. J. (2021). J. Chem. Crystallogr. 51, 57–70.  CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2003). CrystEngComm, 5, 58–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuyunov, J., Torambetov, B., Turaev, K., Kadirova, S., Alimnazarov, B. & Ashurov, J. (2023c). Acta Cryst. E79, 1190–1193.  CSD CrossRef IUCr Journals Google Scholar
First citationSuyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Ibragimov, A. B., Mengnorov, I. J., Rasulov, A. A. & Ashurov, J. M. (2023b). IUCrData, 8, x231032.  Google Scholar
First citationSuyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Nazarov, Y. E., Mengnorov, I. J., Ibragimov, B. T. & Ashurov, J. M. (2023a). Acta Cryst. E79, 1083–1087.  CSD CrossRef IUCr Journals Google Scholar
First citationVivanco, J. M., Bais, H. P., Stermitz, F. R., Thelen, G. C. & Callaway, R. M. (2004). Ecol. Lett. 7, 285–292.  CrossRef Google Scholar
First citationWen, J., Charan Dash, R., Zaino, A., Harrahill, N., Calhoun, J., Dusek, C., Morel, Sh., Russolillo, M. & Kyle Hadden, M. (2023). Bioorg. Chem. 132, 106387.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J., Wang, Q., Ge, W.-W., Wu, D., Redshaw, C. & Chen, K. (2023). CrystEngComm, 25, 1529–1540.  CSD CrossRef CAS Google Scholar
First citationZhu, X.-F., Zhang, J., Sun, S., Guo, Y.-C., Cao, S.-X. & Zhao, Y.-F. (2017). Chin. Chem. Lett. 28, 1514–1518.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146