organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-[4-(tert-Butyl­di­methyl­sil­yl­oxy)phen­yl]-1-oxa­spiro­[2.5]hepta­ne

crossmark logo

aDepartment of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881, USA
*Correspondence e-mail: william.donaldson@marquette.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 11 June 2024; accepted 17 June 2024; online 21 June 2024)

The title compound, C19H30O2Si, has triclinic (P[\overline{1}]) symmetry at 100 K. The O atom of the epoxide group has a pseudoaxial orientation and the dihedral angle between the cyclo­hexyl and benzene rings is 85.80 (8)°. The C—O—Si—Ct (t = tert-but­yl) torsion angle is −177.40 (14)°. In the crystal, pairwise C—H⋯O links connect the mol­ecules into inversion dimers featuring R22(8) loops.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Fumagillin and ovalicin, isolated from Aspergillus fumigatus and Pseudorotium ovalis, respectively, are sesquiterpene epoxides that exhibit anti-angiogenic activity. The key structural feature of both is a 1-oxo­spiro­[2.5]heptane moiety. The structure of fumagillin was initially deduced by X-ray crystallographic analysis of its hydrolysis product fumagillol (McCorkindale & Sime, 1961[McCorkindale, N. J. & Sime, J. G. (1961). Proc. Chem. Soc. 331-331.]) and the X-ray crystal structure of fumagillin was eventually reported (Halasz et al., 2000[Halász, J., Podányi, B., Vasvári-Debreczy, L., Szabó, A., Hajdú, F., Böcskei, Z., Hegedűs-Vajda, J., Győrb\?író, A. & Hermecz, I. (2000). Tetrahedron, 56, 10081-10085.]). Preparation of the 1-oxo­spiro­[2.5]heptane system by reaction of di­methyl­sulfoxonium methyl­ide with substituted cyclo­hexa­nones generally proceeds with the formation of the exocyclic epoxide in which the oxygen atom has an axial orientation (Corey & Chaykovsky, 1965[Corey, E. J. & Chaykovsky, M. (1965). J. Am. Chem. Soc. 87, 1353-1364.]; Carlson & Behn, 1967[Carlson, R. G. & Behn, N. S. (1967). J. Org. Chem. 32, 1363-1367.]). In connection with our studies on estrogen receptor beta-selective agonists (Hanson et al., 2018[Hanson, A. M., Perera, K. L. I. S., Kim, J., Pandey, R. K., Sweeney, N., Lu, X., Imhoff, A., Mackinnon, A. C., Wargolet, A. J., Van Hart, R. M., Frick, K. M., Donaldson, W. A. & Sem, D. S. (2018). J. Med. Chem. 61, 4720-4738.]; Wetzel et al., 2022[Wetzel, E. A., Marks, K. J., Gleason, A. A., Brown-Ford, S., Reid, T.-E., Chaudhury, S., Lindeman, S., Sem, D. S. & Donaldson, W. A. (2022). Bioorg. Med. Chem. Lett. 73, 128906.]), we had the opportunity to prepare the title compound, C19H30O2Si, and we now present its synthesis and crystal structure.

The title compound (Fig. 1[link]) has an extended conformation with a transoid t-Bu—Si—O—Ar moiety. The cyclo­hexane ring has a chair conformation with the aryl substituent in an equatorial position and the epoxide oxygen atom in a pseudoaxial orientation. The C7—O1—Si1—C3 torsion angle is −177.40 (14)°. In the crystal, a weak C—H⋯O link (Fig. 2[link], Table 1[link]) connects the mol­ecules into inversion dimers featuring [R_{2}^{2}](8) loops.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.99 2.54 3.487 (2) 159
Symmetry code: (i) [-x+3, -y+1, -z+2].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
Unit-cell packing of the title compound.

Synthesis and crystallization

The reaction scheme is shown in Fig. 3[link]. To a solution of potassium tert-butoxide (2.317 g, 20.65 mmol) in di­methyl­sulfoxide (DMSO) (10 ml) was added tri­methyl­sulfoxonium iodide (5.00 g, 22.72 mmol). The solution was stirred for 30 min, and then a solution of 4-[(4-t-butyl­dimethyl­sil­yloxy)phen­yl]cyclo­hexa­none (6.288 g, 20.65 mmol) in DMSO (50 ml) was added dropwise. The mixture was stirred for 24 h, and then partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried (MgSO4), and concentrated. Upon standing at room temperature overnight, colorless crystals formed. The crystals were filtered off to afford the title compound (5.262 g, 80%). Recrystallization from the mixed solvents of ethyl acetate/hexa­nes gave colorless flat prisms. 1H NMR (400 MHz, CDCl3) δ 7.08 (d, J = 8.0 Hz, 2H), 6.76 (d, J = 8.0 Hz, 2H), 2.68 (s, 2H), 2.54 (t, J = 8.2 Hz, 1H), 2.10–1.97 (m, 2H), 1.92–1.74 (m, 4H), 1.35 (d, J = Hz, 2H), 0.97 (s, 9H), 0.18 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.7, 139.3, 127.6, 119.8, 57.9, 53.9, 42.4, 33.2, 31.7, 25.6, 18.1, −4.4 p.p.m..

[Figure 3]
Figure 3
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H30O2Si
Mr 318.52
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.3673 (3), 11.2285 (4), 12.5778 (5)
α, β, γ (°) 104.974 (4), 101.964 (4), 103.460 (4)
V3) 937.09 (7)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.13
Crystal size (mm) 0.74 × 0.43 × 0.07
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.184, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16772, 3539, 3276
Rint 0.046
(sin θ/λ)max−1) 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.10
No. of reflections 3539
No. of parameters 212
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.70, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

6-[4-(tert-Butyldimethylsilyloxy)phenyl]-1-oxaspiro[2.5]heptane top
Crystal data top
C19H30O2SiZ = 2
Mr = 318.52F(000) = 348
Triclinic, P1Dx = 1.129 Mg m3
a = 7.3673 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.2285 (4) ÅCell parameters from 9134 reflections
c = 12.5778 (5) Åθ = 4.3–70.5°
α = 104.974 (4)°µ = 1.13 mm1
β = 101.964 (4)°T = 100 K
γ = 103.460 (4)°Plate, colourless
V = 937.09 (7) Å30.74 × 0.43 × 0.07 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
diffractometer
3539 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3276 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.3756 pixels mm-1θmax = 70.6°, θmin = 3.8°
ω scansh = 88
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2018)
k = 1313
Tmin = 0.184, Tmax = 1.000l = 1515
16772 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.2247P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3539 reflectionsΔρmax = 0.70 e Å3
212 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.40119 (5)0.19395 (4)0.24021 (3)0.01921 (16)
O10.47620 (15)0.22061 (11)0.38036 (9)0.0263 (3)
O21.64517 (17)0.47505 (10)0.88309 (10)0.0292 (3)
C10.3887 (3)0.02593 (17)0.16096 (17)0.0356 (4)
H1A0.5180220.0146590.1808300.053*
H1B0.3444700.0105130.0781680.053*
H1C0.2969370.0357560.1821950.053*
C20.5762 (2)0.31022 (18)0.20005 (16)0.0315 (4)
H2A0.5562020.3954090.2229520.047*
H2B0.5551720.2799060.1168020.047*
H2C0.7095010.3166900.2392200.047*
C30.1549 (2)0.21993 (14)0.21951 (13)0.0220 (3)
C40.1760 (2)0.35451 (16)0.29980 (15)0.0290 (4)
H4A0.2284500.3595820.3796440.044*
H4B0.0482510.3689420.2895190.044*
H4C0.2648340.4207740.2814040.044*
C50.0722 (2)0.21241 (16)0.09442 (15)0.0287 (4)
H5A0.1560280.2826820.0777530.043*
H5B0.0593900.2207140.0830540.043*
H5C0.0672390.1290250.0427200.043*
C60.0151 (2)0.11714 (17)0.24914 (17)0.0327 (4)
H6A0.0007130.0309720.1983130.049*
H6B0.1122210.1321840.2389170.049*
H6C0.0677490.1226640.3290950.049*
C70.6508 (2)0.21980 (15)0.44469 (12)0.0208 (3)
C80.8018 (2)0.33469 (14)0.50020 (13)0.0237 (3)
H80.7883370.4129950.4888780.028*
C90.9723 (2)0.33456 (14)0.57228 (13)0.0226 (3)
H91.0750230.4133770.6097080.027*
C100.9962 (2)0.22092 (14)0.59095 (12)0.0196 (3)
C110.8430 (2)0.10703 (14)0.53377 (13)0.0212 (3)
H110.8555940.0284450.5447840.025*
C120.6725 (2)0.10593 (14)0.46116 (13)0.0222 (3)
H120.5703840.0270050.4226450.027*
C131.1790 (2)0.22081 (13)0.67256 (12)0.0200 (3)
H131.1673690.1288470.6674310.024*
C141.1985 (2)0.29503 (15)0.79754 (13)0.0228 (3)
H14A1.2068500.3862010.8048420.027*
H14B1.0809570.2567890.8182280.027*
C151.3792 (2)0.29093 (15)0.88093 (13)0.0230 (3)
H15A1.3949330.3474760.9591450.028*
H15B1.3615950.2015240.8830510.028*
C161.5596 (2)0.33507 (13)0.84517 (13)0.0214 (3)
C171.5456 (2)0.26890 (15)0.72234 (13)0.0232 (3)
H17A1.5399070.1774360.7114530.028*
H17B1.6633690.3112680.7039530.028*
C181.3644 (2)0.27461 (14)0.64068 (13)0.0225 (3)
H18A1.3524430.2238180.5611000.027*
H18B1.3787880.3654260.6437650.027*
C191.7490 (2)0.39772 (16)0.93104 (15)0.0285 (4)
H19A1.865 (3)0.394 (2)0.9095 (18)0.031 (5)*
H19B1.758 (3)0.4120 (18)1.0091 (18)0.024 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0177 (2)0.0210 (2)0.0203 (3)0.00703 (16)0.00510 (16)0.00808 (17)
O10.0212 (5)0.0382 (6)0.0223 (6)0.0115 (5)0.0069 (4)0.0116 (5)
O20.0337 (6)0.0184 (5)0.0308 (6)0.0041 (4)0.0067 (5)0.0055 (4)
C10.0330 (9)0.0308 (9)0.0370 (10)0.0150 (7)0.0022 (7)0.0023 (7)
C20.0219 (8)0.0424 (9)0.0390 (10)0.0118 (7)0.0103 (7)0.0245 (8)
C30.0176 (7)0.0226 (7)0.0274 (8)0.0061 (5)0.0066 (6)0.0105 (6)
C40.0250 (8)0.0288 (8)0.0356 (9)0.0123 (6)0.0108 (7)0.0089 (7)
C50.0227 (8)0.0300 (8)0.0316 (9)0.0079 (6)0.0020 (6)0.0114 (7)
C60.0223 (8)0.0334 (9)0.0483 (11)0.0068 (6)0.0133 (7)0.0220 (8)
C70.0196 (7)0.0285 (7)0.0164 (7)0.0093 (6)0.0062 (5)0.0082 (6)
C80.0279 (8)0.0219 (7)0.0247 (8)0.0096 (6)0.0083 (6)0.0105 (6)
C90.0226 (7)0.0199 (7)0.0234 (8)0.0034 (5)0.0053 (6)0.0072 (6)
C100.0213 (7)0.0212 (7)0.0179 (7)0.0072 (5)0.0082 (6)0.0064 (6)
C110.0242 (7)0.0186 (7)0.0226 (7)0.0071 (5)0.0089 (6)0.0072 (6)
C120.0217 (7)0.0220 (7)0.0201 (7)0.0032 (5)0.0070 (6)0.0043 (6)
C130.0211 (7)0.0194 (7)0.0206 (7)0.0069 (5)0.0066 (6)0.0071 (6)
C140.0231 (7)0.0267 (7)0.0216 (8)0.0092 (6)0.0090 (6)0.0090 (6)
C150.0252 (8)0.0254 (7)0.0200 (7)0.0082 (6)0.0072 (6)0.0088 (6)
C160.0237 (7)0.0183 (7)0.0225 (8)0.0072 (5)0.0053 (6)0.0073 (6)
C170.0209 (7)0.0249 (7)0.0230 (8)0.0072 (6)0.0073 (6)0.0054 (6)
C180.0219 (7)0.0270 (7)0.0183 (7)0.0065 (6)0.0075 (6)0.0063 (6)
C190.0250 (8)0.0306 (8)0.0254 (9)0.0058 (6)0.0040 (6)0.0068 (7)
Geometric parameters (Å, º) top
Si1—O11.6580 (11)C8—C91.389 (2)
Si1—C11.8629 (17)C9—C101.399 (2)
Si1—C21.8570 (16)C10—C111.394 (2)
Si1—C31.8804 (15)C10—C131.515 (2)
O1—C71.3735 (18)C11—C121.387 (2)
O2—C161.4567 (17)C13—C141.536 (2)
O2—C191.446 (2)C13—C181.536 (2)
C3—C41.538 (2)C14—C151.533 (2)
C3—C51.537 (2)C15—C161.507 (2)
C3—C61.536 (2)C16—C171.502 (2)
C7—C81.391 (2)C16—C191.461 (2)
C7—C121.386 (2)C17—C181.532 (2)
O1—Si1—C1109.67 (8)C9—C10—C13121.75 (13)
O1—Si1—C2109.22 (7)C11—C10—C9117.59 (14)
O1—Si1—C3103.07 (6)C11—C10—C13120.64 (13)
C1—Si1—C3112.59 (8)C12—C11—C10121.44 (14)
C2—Si1—C1109.20 (9)C7—C12—C11120.11 (14)
C2—Si1—C3112.88 (7)C10—C13—C14111.57 (12)
C7—O1—Si1128.73 (9)C10—C13—C18112.72 (12)
C19—O2—C1660.42 (10)C18—C13—C14110.02 (12)
C4—C3—Si1108.90 (10)C15—C14—C13111.77 (12)
C5—C3—Si1109.90 (10)C16—C15—C14111.09 (12)
C5—C3—C4109.25 (13)O2—C16—C15113.99 (12)
C6—C3—Si1110.17 (10)O2—C16—C17114.06 (12)
C6—C3—C4108.91 (13)O2—C16—C1959.43 (10)
C6—C3—C5109.69 (13)C17—C16—C15115.08 (12)
O1—C7—C8120.15 (13)C19—C16—C15120.42 (14)
O1—C7—C12120.07 (13)C19—C16—C17120.66 (13)
C12—C7—C8119.63 (14)C16—C17—C18111.04 (12)
C9—C8—C7119.77 (14)C17—C18—C13111.41 (12)
C8—C9—C10121.45 (14)O2—C19—C1660.15 (10)
O1—Si1—C3—C454.6 (1)C8—C7—C12—C110.8 (2)
O1—Si1—C3—C5174.2 (1)C7—C12—C11—C100.5 (2)
O1—Si1—C3—C664.8 (1)C9—C10—C13—C1466.7 (2)
O1—C7—C8—C9175.0 (1)C9—C10—C13—C1857.7 (2)
O1—C7—C12—C11174.6 (1)C11—C10—C13—C14111.7 (2)
C1—Si1—C3—C4172.7 (1)C11—C10—C13—C18124.0 (2)
C1—Si1—C3—C567.7 (1)C8—C9—C10—C13177.9 (1)
C1—Si1—C3—C653.3 (1)C12—C11—C10—C13178.2 (1)
C2—Si1—C3—C463.1 (1)C13—C14—C15—C1652.9 (2)
C2—Si1—C3—C556.5 (1)C14—C15—C16—C1751.4 (2)
C2—Si1—C3—C6177.5 (1)C15—C16—C17—C1852.0 (2)
C1—Si1—O1—C762.5 (1)C16—C17—C18—C1354.1 (2)
C2—Si1—O1—C757.2 (1)C17—C18—C13—C1456.7 (2)
C3—Si1—O1—C7177.40 (14)C18—C13—C14—C1556.2 (2)
Si1—O1—C7—C895.0 (2)O2—C16—C17—C1882.4 (2)
Si1—O1—C7—C1289.6 (2)O2—C16—C15—C1483.1 (2)
C7—C8—C9—C100.2 (2)C19—C16—C17—C18149.9 (1)
C8—C9—C10—C110.5 (2)C19—C16—C15—C14150.5 (1)
C9—C10—C11—C120.2 (2)C10—C13—C14—C15177.9 (1)
C9—C8—C7—C120.5 (2)C10—C13—C18—C17178.07 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.992.543.487 (2)159
Symmetry code: (i) x+3, y+1, z+2.
 

Funding information

Funding for this research was provided by: National Institutes of Health, National Institute of General Medical Sciences (grant No. R15GM118304 to William A. Donaldson).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCarlson, R. G. & Behn, N. S. (1967). J. Org. Chem. 32, 1363–1367.  CrossRef CAS Google Scholar
First citationCorey, E. J. & Chaykovsky, M. (1965). J. Am. Chem. Soc. 87, 1353–1364.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHalász, J., Podányi, B., Vasvári-Debreczy, L., Szabó, A., Hajdú, F., Böcskei, Z., Hegedűs-Vajda, J., Győrb\?író, A. & Hermecz, I. (2000). Tetrahedron, 56, 10081–10085.  Google Scholar
First citationHanson, A. M., Perera, K. L. I. S., Kim, J., Pandey, R. K., Sweeney, N., Lu, X., Imhoff, A., Mackinnon, A. C., Wargolet, A. J., Van Hart, R. M., Frick, K. M., Donaldson, W. A. & Sem, D. S. (2018). J. Med. Chem. 61, 4720–4738.  CSD CrossRef CAS PubMed Google Scholar
First citationMcCorkindale, N. J. & Sime, J. G. (1961). Proc. Chem. Soc. 331–331.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWetzel, E. A., Marks, K. J., Gleason, A. A., Brown-Ford, S., Reid, T.-E., Chaudhury, S., Lindeman, S., Sem, D. S. & Donaldson, W. A. (2022). Bioorg. Med. Chem. Lett. 73, 128906.  CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146