metal-organic compounds
Tetrakis(2,4,6-trimethylanilido)tin(IV)
aMartin-Luther-Universität Halle, Naturwissenschaftliche Fakultät II, Institut für Chemie, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de
Transamination of Sn(NMe2)4 with H2NMes (Mes is 2,4,6-trimethylphenyl, C9H11) led to the formation of the title compound, [Sn(C9H12N)4] or Sn(NHMes)4, which crystallizes in the tetragonal P21c, with four formula units per The molecular structure consists of a central tin(IV) atom, which is surrounded by four NHMes groups. Sn(NHMes)4 possesses crystallographically imposed symmetry. The SnN4 is best described as a compressed bisphenoid.
Keywords: crystal structure; tin; amide.
CCDC reference: 2357316
Structure description
Contrary to homoleptic silicon R)4 [e.g. R = methyl (Andersch & Jansen, 1990), R = pentafluorophenyl (Jansen et al., 1992), R = i-propyl (Engering et al., 2003)], corresponding tin(IV) compounds have been studied much less. In 1998, Beswick and co-workers reported the of [Li2(THF)2Sn(NHCy)6] (Cy = cyclohexyl), which represents a rare example of a homoleptic tin(IV) amide (Beswick et al., 1998). In the context of our investigations on polynuclear organotin(IV) nitrogen compounds like [(MeSn)4(NHPh)4(NPh)4] (Lämmer & Merzweiler, 1999), we found that Sn(NMe2)4 reacts with 2,4,6-trimethylphenyl amine (H2NMes) to give the title compound, (1) (Fig. 1).
Si(NHThe 1) consists of discrete Sn(NHMes)4 molecules without any unusually short intermolecular contacts. The consists of one tin(IV) atom on 2a of P21c with , and one NHMes unit on a general position. The tin(IV) atom exhibits a distorted tetrahedral (bisphenoidal) coordination (τ4 = 0.83, with extreme values of 1 for ideal tetrahedral and 0 for ideal square-planar coordination; Yang et al., 2007) from four nitrogen atoms with Sn—N distances of 2.033 (2) Å and N—Sn—N angles from 104.22 (5) to 120.6 (1)° (Table 1). Similar Sn—N distances were observed in (Me3Si)3CSn(NHtBu)3 (2.017–2.028 Å; Janssen et al., 2003), (tBu2Sn)3(NH)3 (2.030 Å; Puff et al., 1989) and 2,4,6-tBu3-C6H2-NHSnMe3 (2.050 Å; Lichtscheidl et al., 2015) that also exhibit four-coordinate tin(IV) atoms. In the case of [Li2(THF)2Sn(NHCy)6], which contains tin(IV) in a distorted octahedral coordination, the Sn—N distances are longer in average and vary from 2.06–2.27 Å (Beswick et al., 1998). Regarding the NHMes group, bond lengths and angles are within the expected ranges. The N atom in (1) displays a slightly pyramidal coordination, as indicated by the sum of bond angles (345.1°).
of (
|
The packing diagram (Fig. 2) indicates that the molecules of (1) are arranged in undulating layers parallel to (001) in the solid state. The NH groups do not participate in hydrogen bridges. This is obviously due to the steric shielding of the bulky mesityl residues.
Synthesis and crystallization
All manipulations were carried out under an argon atmosphere. n-Hexane was freshly distilled from lithium aluminium hydride. Sn(NMe2)4 was prepared according to the literature (Jones & Lappert, 1965).
2.5 g (18.4 mmol) of mesityl amine were added to a solution of 1.36 g (4.61 mmol) of Sn(NMe2)4 in 30 ml of n-hexane. The reaction slowly turned pale yellow and a colourless precipitate was formed. After 12 h the reaction mixture was filtered and 300 mg of the product were received. The filtrate was stored at 253 K to give another 0.83 g of yellowish crystals of the title compound. Combined yield: 1.13 g (38%).
1H NMR (C6D6) δ = 6.17 (s, C6H2), 3.38 (s, NH), 2.15 (s, p-CH3), 2.07 (s, o-CH3) p.p.m. 13C NMR (CDCl3) δ = 142.1, 129.4, 128.7, 127.6, 20.4, 18.6 p.p.m. 119Sn NMR (CDCl3) δ = −170.5 p.p.m.
Refinement
Crystal data, data collection, and structure .
details are given in Table 2Structural data
CCDC reference: 2357316
https://doi.org/10.1107/S2414314624004796/wm4214sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624004796/wm4214Isup2.hkl
[Sn(C9H12N)4] | Dx = 1.331 Mg m−3 |
Mr = 655.47 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P421c | Cell parameters from 28663 reflections |
a = 13.7000 (6) Å | θ = 29.7–1.5° |
c = 8.7123 (5) Å | µ = 0.81 mm−1 |
V = 1635.21 (17) Å3 | T = 170 K |
Z = 2 | Block, colourless |
F(000) = 684 | 0.50 × 0.35 × 0.30 mm |
Stoe IPDS 2 diffractometer | 2049 reflections with I > 2σ(I) |
rotation scans | Rint = 0.053 |
Absorption correction: integration [X-Red32 (Stoe & Cie, 2016), by Gaussian integration analogous to Coppens (1970)] | θmax = 29.2°, θmin = 2.1° |
Tmin = 0.735, Tmax = 0.898 | h = −18→18 |
30518 measured reflections | k = −18→17 |
2205 independent reflections | l = −11→11 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0329P)2 + 0.2402P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.057 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.42 e Å−3 |
2205 reflections | Δρmin = −0.21 e Å−3 |
100 parameters | Absolute structure: Flack x determined using 832 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.036 (19) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The amino hydrogen atom was located from a difference-Fourier map and was refined freely. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.500000 | 0.500000 | 0.500000 | 0.03205 (9) | |
N | 0.38602 (14) | 0.43981 (15) | 0.3843 (2) | 0.0398 (4) | |
H | 0.337 (2) | 0.464 (2) | 0.414 (3) | 0.058 (9)* | |
C9 | 0.51845 (19) | 0.3557 (2) | 0.1674 (3) | 0.0523 (6) | |
H9A | 0.485199 | 0.412240 | 0.122563 | 0.078* | |
H9B | 0.547813 | 0.316490 | 0.085463 | 0.078* | |
H9C | 0.569620 | 0.378157 | 0.237652 | 0.078* | |
C6 | 0.44600 (16) | 0.29472 (16) | 0.2542 (3) | 0.0419 (4) | |
C5 | 0.44012 (18) | 0.19474 (18) | 0.2270 (3) | 0.0479 (5) | |
H5 | 0.487138 | 0.165100 | 0.161838 | 0.057* | |
C4 | 0.36777 (19) | 0.13675 (17) | 0.2921 (3) | 0.0508 (6) | |
C1 | 0.37965 (16) | 0.33771 (16) | 0.3564 (3) | 0.0368 (4) | |
C8 | 0.3612 (3) | 0.0293 (2) | 0.2557 (5) | 0.0782 (10) | |
H8A | 0.406218 | −0.007008 | 0.321874 | 0.117* | |
H8B | 0.378659 | 0.018516 | 0.147944 | 0.117* | |
H8C | 0.294318 | 0.006481 | 0.273615 | 0.117* | |
C3 | 0.30148 (17) | 0.18170 (18) | 0.3885 (3) | 0.0478 (5) | |
H3 | 0.250913 | 0.143525 | 0.432859 | 0.057* | |
C2 | 0.30595 (18) | 0.28038 (19) | 0.4231 (3) | 0.0407 (5) | |
C7 | 0.23079 (19) | 0.3233 (2) | 0.5301 (3) | 0.0512 (6) | |
H7A | 0.185274 | 0.363947 | 0.471476 | 0.077* | |
H7B | 0.263505 | 0.363313 | 0.607882 | 0.077* | |
H7C | 0.194779 | 0.270463 | 0.580599 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.02775 (10) | 0.02775 (10) | 0.04063 (14) | 0.000 | 0.000 | 0.000 |
N | 0.0305 (9) | 0.0343 (9) | 0.0544 (11) | −0.0004 (7) | −0.0056 (8) | −0.0023 (8) |
C9 | 0.0519 (14) | 0.0485 (13) | 0.0566 (13) | −0.0059 (10) | 0.0118 (11) | −0.0064 (11) |
C6 | 0.0410 (11) | 0.0387 (10) | 0.0461 (11) | −0.0019 (8) | −0.0044 (9) | −0.0037 (9) |
C5 | 0.0462 (12) | 0.0426 (11) | 0.0548 (13) | −0.0015 (10) | −0.0049 (11) | −0.0089 (10) |
C4 | 0.0508 (14) | 0.0347 (11) | 0.0668 (15) | −0.0026 (9) | −0.0158 (12) | −0.0035 (10) |
C1 | 0.0334 (10) | 0.0331 (10) | 0.0440 (11) | −0.0022 (8) | −0.0081 (9) | 0.0005 (8) |
C8 | 0.074 (2) | 0.0391 (13) | 0.121 (3) | −0.0126 (13) | −0.007 (2) | −0.0154 (17) |
C3 | 0.0429 (12) | 0.0410 (11) | 0.0596 (14) | −0.0117 (10) | −0.0119 (11) | 0.0084 (11) |
C2 | 0.0362 (11) | 0.0399 (12) | 0.0459 (13) | −0.0038 (9) | −0.0091 (10) | 0.0047 (10) |
C7 | 0.0431 (11) | 0.0516 (13) | 0.0591 (16) | −0.0067 (10) | 0.0046 (10) | 0.0035 (11) |
Sn—N | 2.0332 (19) | C5—H5 | 0.9500 |
Sn—Ni | 2.0332 (19) | C4—C3 | 1.382 (4) |
Sn—Nii | 2.0332 (19) | C4—C8 | 1.509 (3) |
Sn—Niii | 2.0332 (19) | C1—C2 | 1.405 (3) |
N—C1 | 1.422 (3) | C8—H8A | 0.9800 |
N—H | 0.79 (3) | C8—H8B | 0.9800 |
C9—C6 | 1.502 (3) | C8—H8C | 0.9800 |
C9—H9A | 0.9800 | C3—C2 | 1.386 (3) |
C9—H9B | 0.9800 | C3—H3 | 0.9500 |
C9—H9C | 0.9800 | C2—C7 | 1.509 (4) |
C6—C5 | 1.392 (3) | C7—H7A | 0.9800 |
C6—C1 | 1.402 (3) | C7—H7B | 0.9800 |
C5—C4 | 1.391 (4) | C7—H7C | 0.9800 |
N—Sn—Ni | 104.22 (5) | C5—C4—C8 | 121.0 (3) |
N—Sn—Nii | 120.57 (12) | C6—C1—C2 | 119.6 (2) |
Ni—Sn—Nii | 104.22 (5) | C6—C1—N | 118.8 (2) |
N—Sn—Niii | 104.22 (5) | C2—C1—N | 121.6 (2) |
Ni—Sn—Niii | 120.57 (12) | C4—C8—H8A | 109.5 |
Nii—Sn—Niii | 104.22 (5) | C4—C8—H8B | 109.5 |
C1—N—Sn | 122.05 (15) | H8A—C8—H8B | 109.5 |
C1—N—H | 114 (2) | C4—C8—H8C | 109.5 |
Sn—N—H | 109 (2) | H8A—C8—H8C | 109.5 |
C6—C9—H9A | 109.5 | H8B—C8—H8C | 109.5 |
C6—C9—H9B | 109.5 | C4—C3—C2 | 122.5 (2) |
H9A—C9—H9B | 109.5 | C4—C3—H3 | 118.7 |
C6—C9—H9C | 109.5 | C2—C3—H3 | 118.7 |
H9A—C9—H9C | 109.5 | C3—C2—C1 | 119.2 (2) |
H9B—C9—H9C | 109.5 | C3—C2—C7 | 118.9 (2) |
C5—C6—C1 | 118.9 (2) | C1—C2—C7 | 121.9 (2) |
C5—C6—C9 | 120.0 (2) | C2—C7—H7A | 109.5 |
C1—C6—C9 | 121.0 (2) | C2—C7—H7B | 109.5 |
C4—C5—C6 | 122.3 (2) | H7A—C7—H7B | 109.5 |
C4—C5—H5 | 118.9 | C2—C7—H7C | 109.5 |
C6—C5—H5 | 118.9 | H7A—C7—H7C | 109.5 |
C3—C4—C5 | 117.5 (2) | H7B—C7—H7C | 109.5 |
C3—C4—C8 | 121.5 (3) | ||
C1—C6—C5—C4 | 3.2 (4) | Sn—N—C1—C2 | 114.2 (2) |
C9—C6—C5—C4 | −173.1 (2) | C5—C4—C3—C2 | −1.0 (4) |
C6—C5—C4—C3 | −1.1 (4) | C8—C4—C3—C2 | −179.7 (3) |
C6—C5—C4—C8 | 177.7 (3) | C4—C3—C2—C1 | 0.9 (4) |
C5—C6—C1—C2 | −3.2 (3) | C4—C3—C2—C7 | −179.7 (2) |
C9—C6—C1—C2 | 173.1 (2) | C6—C1—C2—C3 | 1.2 (3) |
C5—C6—C1—N | 179.8 (2) | N—C1—C2—C3 | 178.2 (2) |
C9—C6—C1—N | −3.9 (3) | C6—C1—C2—C7 | −178.2 (2) |
Sn—N—C1—C6 | −68.8 (3) | N—C1—C2—C7 | −1.2 (4) |
Symmetry codes: (i) y, −x+1, −z+1; (ii) −x+1, −y+1, z; (iii) −y+1, x, −z+1. |
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie for financial support. We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-University Halle-Wittenberg. A. Kiowski is thanked for his technical support.
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft; Fonds der Chemischen Industrie.
References
Andersch, H. & Jansen, M. (1990). Acta Cryst. C46, 1180–1181. CrossRef CAS IUCr Journals Google Scholar
Beswick, M. A., Harmer, C. N., Mosquera, M. E. G., Raithby, P. R., Tombul, M., Wright, D. S., Beswick, M. A., Choi, N. & McPartlin, M. (1998). Chem. Commun. pp. 1383–1384. CrossRef Google Scholar
Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Coppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. In Crystallographic Computing edited by F. R. Ahmed, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Engering, J., Nuss, J. & Jansen, M. (2003). Z. Kristallogr. New Cryst. Struct. 218, 201–202. CrossRef CAS Google Scholar
Jansen, M., Rings, S. & Baldus, H. P. (1992). Z. Anorg. Allge Chem. 610, 99–102. CrossRef CAS Google Scholar
Janssen, J., Schmidt, H.-G., Noltemeyer, M. & Roesky, H. W. (2003). Eur. J. Inorg. Chem. pp. 4338–4340. CrossRef Google Scholar
Jones, K. & Lappert, M. F. (1965). J. Chem. Soc. pp. 1944–1951. CrossRef Google Scholar
Lämmer, C. & Merzweiler, K. (1999). Z. Anorg. Allg. Chem. 625, 735–738. Google Scholar
Lichtscheidl, A. G., Janicke, M. T., Scott, B. L., Nelson, A. T. & Kiplinger, J. L. (2015). Dalton Trans. 44, 16156–16163. CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Puff, H., Hänssgen, D., Beckermann, N., Roloff, A. & Schuh, W. (1989). J. Organomet. Chem. 373, 37–47. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2016). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.