metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­kis(2,4,6-tri­methyl­anilido)tin(IV)

crossmark logo

aMartin-Luther-Universität Halle, Naturwissenschaftliche Fakultät II, Institut für Chemie, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 May 2024; accepted 22 May 2024; online 31 May 2024)

Transamination of Sn(NMe2)4 with H2NMes (Mes is 2,4,6-tri­methyl­phenyl, C9H11) led to the formation of the title compound, [Sn(C9H12N)4] or Sn(NHMes)4, which crystallizes in the tetra­gonal space group P[\overline{4}]21c, with four formula units per unit cell. The mol­ecular structure consists of a central tin(IV) atom, which is surrounded by four NHMes groups. Sn(NHMes)4 possesses crystallographically imposed [\overline{4}] symmetry. The SnN4 coordination polyhedron is best described as a compressed bis­phenoid.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Contrary to homoleptic silicon amides Si(NHR)4 [e.g. R = methyl (Andersch & Jansen, 1990[Andersch, H. & Jansen, M. (1990). Acta Cryst. C46, 1180-1181.]), R = penta­fluoro­phenyl (Jansen et al., 1992[Jansen, M., Rings, S. & Baldus, H. P. (1992). Z. Anorg. Allge Chem. 610, 99-102.]), R = i-propyl (Engering et al., 2003[Engering, J., Nuss, J. & Jansen, M. (2003). Z. Kristallogr. New Cryst. Struct. 218, 201-202.])], corresponding tin(IV) compounds have been studied much less. In 1998, Beswick and co-workers reported the crystal structure of [Li2(THF)2Sn(NHCy)6] (Cy = cyclo­hex­yl), which represents a rare example of a homoleptic tin(IV) amide (Beswick et al., 1998[Beswick, M. A., Harmer, C. N., Mosquera, M. E. G., Raithby, P. R., Tombul, M., Wright, D. S., Beswick, M. A., Choi, N. & McPartlin, M. (1998). Chem. Commun. pp. 1383-1384.]). In the context of our investigations on polynuclear organotin(IV) nitro­gen compounds like [(MeSn)4(NHPh)4(NPh)4] (Lämmer & Merzweiler, 1999[Lämmer, C. & Merzweiler, K. (1999). Z. Anorg. Allg. Chem. 625, 735-738.]), we found that Sn(NMe2)4 reacts with 2,4,6-tri­methyl­phenyl amine (H2NMes) to give the title compound, (1) (Fig. 1[link]).

[Figure 1]
Figure 1
Mol­ecular structure of compound (1) in the crystal. Displacement ellipsoids are drawn at the 50% probability level. H atoms except for the NH group are omitted for clarity. [Symmetry codes: (i) y, −x + 1, −z + 1; (ii) −x + 1, −y + 1, z; (iii) −y + 1, x, −z + 1.]

The crystal structure of (1) consists of discrete Sn(NHMes)4 mol­ecules without any unusually short inter­molecular contacts. The asymmetric unit consists of one tin(IV) atom on Wyckoff position 2a of space group P[\overline{4}]21c with site symmetry [\overline{4}], and one NHMes unit on a general position. The tin(IV) atom exhibits a distorted tetra­hedral (bis­phen­oidal) coordination (τ4 = 0.83, with extreme values of 1 for ideal tetra­hedral and 0 for ideal square-planar coordination; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) from four nitro­gen atoms with Sn—N distances of 2.033 (2) Å and N—Sn—N angles from 104.22 (5) to 120.6 (1)° (Table 1[link]). Similar Sn—N distances were observed in (Me3Si)3CSn(NHtBu)3 (2.017–2.028 Å; Janssen et al., 2003[Janssen, J., Schmidt, H.-G., Noltemeyer, M. & Roesky, H. W. (2003). Eur. J. Inorg. Chem. pp. 4338-4340.]), (tBu2Sn)3(NH)3 (2.030 Å; Puff et al., 1989[Puff, H., Hänssgen, D., Beckermann, N., Roloff, A. & Schuh, W. (1989). J. Organomet. Chem. 373, 37-47.]) and 2,4,6-tBu3-C6H2-NHSnMe3 (2.050 Å; Lichtscheidl et al., 2015[Lichtscheidl, A. G., Janicke, M. T., Scott, B. L., Nelson, A. T. & Kiplinger, J. L. (2015). Dalton Trans. 44, 16156-16163.]) that also exhibit four-coordinate tin(IV) atoms. In the case of [Li2(THF)2Sn(NHCy)6], which contains tin(IV) in a distorted octa­hedral coordination, the Sn—N distances are longer in average and vary from 2.06–2.27 Å (Beswick et al., 1998[Beswick, M. A., Harmer, C. N., Mosquera, M. E. G., Raithby, P. R., Tombul, M., Wright, D. S., Beswick, M. A., Choi, N. & McPartlin, M. (1998). Chem. Commun. pp. 1383-1384.]). Regarding the NHMes group, bond lengths and angles are within the expected ranges. The N atom in (1) displays a slightly pyramidal coordination, as indicated by the sum of bond angles (345.1°).

Table 1
Selected geometric parameters (Å, °)

Sn—N 2.0332 (19) N—H 0.79 (3)
N—C1 1.422 (3)    
       
N—Sn—Ni 104.22 (5) C1—N—Sn 122.05 (15)
N—Sn—Nii 120.57 (12) C1—N—H 114 (2)
Symmetry codes: (i) [y, -x+1, -z+1]; (ii) [-x+1, -y+1, z].

The packing diagram (Fig. 2[link]) indicates that the mol­ecules of (1) are arranged in undulating layers parallel to (001) in the solid state. The NH groups do not participate in hydrogen bridges. This is obviously due to the steric shielding of the bulky mesityl residues.

[Figure 2]
Figure 2
Crystal structure of compound (1), in a view along [010].

Synthesis and crystallization

All manipulations were carried out under an argon atmos­phere. n-Hexane was freshly distilled from lithium aluminium hydride. Sn(NMe2)4 was prepared according to the literature (Jones & Lappert, 1965[Jones, K. & Lappert, M. F. (1965). J. Chem. Soc. pp. 1944-1951.]).

2.5 g (18.4 mmol) of mesityl amine were added to a solution of 1.36 g (4.61 mmol) of Sn(NMe2)4 in 30 ml of n-hexane. The reaction slowly turned pale yellow and a colourless precipitate was formed. After 12 h the reaction mixture was filtered and 300 mg of the product were received. The filtrate was stored at 253 K to give another 0.83 g of yellowish crystals of the title compound. Combined yield: 1.13 g (38%).

1H NMR (C6D6) δ = 6.17 (s, C6H2), 3.38 (s, NH), 2.15 (s, p-CH3), 2.07 (s, o-CH3) p.p.m. 13C NMR (CDCl3) δ = 142.1, 129.4, 128.7, 127.6, 20.4, 18.6 p.p.m. 119Sn NMR (CDCl3) δ = −170.5 p.p.m.

Refinement

Crystal data, data collection, and structure refinement details are given in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Sn(C9H12N)4]
Mr 655.47
Crystal system, space group Tetragonal, P[\overline{4}]21c
Temperature (K) 170
a, c (Å) 13.7000 (6), 8.7123 (5)
V3) 1635.21 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.50 × 0.35 × 0.30
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration [X-RED32 (Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), by Gaussian integration analogous to Coppens (1970[Coppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. In Crystallographic Computing edited by F. R. Ahmed, pp. 255-270. Copenhagen: Munksgaard.])]
Tmin, Tmax 0.735, 0.898
No. of measured, independent and observed [I > 2σ(I)] reflections 30518, 2205, 2049
Rint 0.053
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.057, 1.07
No. of reflections 2205
No. of parameters 100
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.21
Absolute structure Flack x determined using 832 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.036 (19)
Computer programs: X-AREA (Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2019[Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Tetrakis(2,4,6-trimethylanilido)tin(IV) top
Crystal data top
[Sn(C9H12N)4]Dx = 1.331 Mg m3
Mr = 655.47Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 28663 reflections
a = 13.7000 (6) Åθ = 29.7–1.5°
c = 8.7123 (5) ŵ = 0.81 mm1
V = 1635.21 (17) Å3T = 170 K
Z = 2Block, colourless
F(000) = 6840.50 × 0.35 × 0.30 mm
Data collection top
Stoe IPDS 2
diffractometer
2049 reflections with I > 2σ(I)
rotation scansRint = 0.053
Absorption correction: integration
[X-Red32 (Stoe & Cie, 2016), by Gaussian integration analogous to Coppens (1970)]
θmax = 29.2°, θmin = 2.1°
Tmin = 0.735, Tmax = 0.898h = 1818
30518 measured reflectionsk = 1817
2205 independent reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.2402P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.42 e Å3
2205 reflectionsΔρmin = 0.21 e Å3
100 parametersAbsolute structure: Flack x determined using 832 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.036 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The amino hydrogen atom was located from a difference-Fourier map and was refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.5000000.5000000.5000000.03205 (9)
N0.38602 (14)0.43981 (15)0.3843 (2)0.0398 (4)
H0.337 (2)0.464 (2)0.414 (3)0.058 (9)*
C90.51845 (19)0.3557 (2)0.1674 (3)0.0523 (6)
H9A0.4851990.4122400.1225630.078*
H9B0.5478130.3164900.0854630.078*
H9C0.5696200.3781570.2376520.078*
C60.44600 (16)0.29472 (16)0.2542 (3)0.0419 (4)
C50.44012 (18)0.19474 (18)0.2270 (3)0.0479 (5)
H50.4871380.1651000.1618380.057*
C40.36777 (19)0.13675 (17)0.2921 (3)0.0508 (6)
C10.37965 (16)0.33771 (16)0.3564 (3)0.0368 (4)
C80.3612 (3)0.0293 (2)0.2557 (5)0.0782 (10)
H8A0.4062180.0070080.3218740.117*
H8B0.3786590.0185160.1479440.117*
H8C0.2943180.0064810.2736150.117*
C30.30148 (17)0.18170 (18)0.3885 (3)0.0478 (5)
H30.2509130.1435250.4328590.057*
C20.30595 (18)0.28038 (19)0.4231 (3)0.0407 (5)
C70.23079 (19)0.3233 (2)0.5301 (3)0.0512 (6)
H7A0.1852740.3639470.4714760.077*
H7B0.2635050.3633130.6078820.077*
H7C0.1947790.2704630.5805990.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02775 (10)0.02775 (10)0.04063 (14)0.0000.0000.000
N0.0305 (9)0.0343 (9)0.0544 (11)0.0004 (7)0.0056 (8)0.0023 (8)
C90.0519 (14)0.0485 (13)0.0566 (13)0.0059 (10)0.0118 (11)0.0064 (11)
C60.0410 (11)0.0387 (10)0.0461 (11)0.0019 (8)0.0044 (9)0.0037 (9)
C50.0462 (12)0.0426 (11)0.0548 (13)0.0015 (10)0.0049 (11)0.0089 (10)
C40.0508 (14)0.0347 (11)0.0668 (15)0.0026 (9)0.0158 (12)0.0035 (10)
C10.0334 (10)0.0331 (10)0.0440 (11)0.0022 (8)0.0081 (9)0.0005 (8)
C80.074 (2)0.0391 (13)0.121 (3)0.0126 (13)0.007 (2)0.0154 (17)
C30.0429 (12)0.0410 (11)0.0596 (14)0.0117 (10)0.0119 (11)0.0084 (11)
C20.0362 (11)0.0399 (12)0.0459 (13)0.0038 (9)0.0091 (10)0.0047 (10)
C70.0431 (11)0.0516 (13)0.0591 (16)0.0067 (10)0.0046 (10)0.0035 (11)
Geometric parameters (Å, º) top
Sn—N2.0332 (19)C5—H50.9500
Sn—Ni2.0332 (19)C4—C31.382 (4)
Sn—Nii2.0332 (19)C4—C81.509 (3)
Sn—Niii2.0332 (19)C1—C21.405 (3)
N—C11.422 (3)C8—H8A0.9800
N—H0.79 (3)C8—H8B0.9800
C9—C61.502 (3)C8—H8C0.9800
C9—H9A0.9800C3—C21.386 (3)
C9—H9B0.9800C3—H30.9500
C9—H9C0.9800C2—C71.509 (4)
C6—C51.392 (3)C7—H7A0.9800
C6—C11.402 (3)C7—H7B0.9800
C5—C41.391 (4)C7—H7C0.9800
N—Sn—Ni104.22 (5)C5—C4—C8121.0 (3)
N—Sn—Nii120.57 (12)C6—C1—C2119.6 (2)
Ni—Sn—Nii104.22 (5)C6—C1—N118.8 (2)
N—Sn—Niii104.22 (5)C2—C1—N121.6 (2)
Ni—Sn—Niii120.57 (12)C4—C8—H8A109.5
Nii—Sn—Niii104.22 (5)C4—C8—H8B109.5
C1—N—Sn122.05 (15)H8A—C8—H8B109.5
C1—N—H114 (2)C4—C8—H8C109.5
Sn—N—H109 (2)H8A—C8—H8C109.5
C6—C9—H9A109.5H8B—C8—H8C109.5
C6—C9—H9B109.5C4—C3—C2122.5 (2)
H9A—C9—H9B109.5C4—C3—H3118.7
C6—C9—H9C109.5C2—C3—H3118.7
H9A—C9—H9C109.5C3—C2—C1119.2 (2)
H9B—C9—H9C109.5C3—C2—C7118.9 (2)
C5—C6—C1118.9 (2)C1—C2—C7121.9 (2)
C5—C6—C9120.0 (2)C2—C7—H7A109.5
C1—C6—C9121.0 (2)C2—C7—H7B109.5
C4—C5—C6122.3 (2)H7A—C7—H7B109.5
C4—C5—H5118.9C2—C7—H7C109.5
C6—C5—H5118.9H7A—C7—H7C109.5
C3—C4—C5117.5 (2)H7B—C7—H7C109.5
C3—C4—C8121.5 (3)
C1—C6—C5—C43.2 (4)Sn—N—C1—C2114.2 (2)
C9—C6—C5—C4173.1 (2)C5—C4—C3—C21.0 (4)
C6—C5—C4—C31.1 (4)C8—C4—C3—C2179.7 (3)
C6—C5—C4—C8177.7 (3)C4—C3—C2—C10.9 (4)
C5—C6—C1—C23.2 (3)C4—C3—C2—C7179.7 (2)
C9—C6—C1—C2173.1 (2)C6—C1—C2—C31.2 (3)
C5—C6—C1—N179.8 (2)N—C1—C2—C3178.2 (2)
C9—C6—C1—N3.9 (3)C6—C1—C2—C7178.2 (2)
Sn—N—C1—C668.8 (3)N—C1—C2—C71.2 (4)
Symmetry codes: (i) y, x+1, z+1; (ii) x+1, y+1, z; (iii) y+1, x, z+1.
 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie for financial support. We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-University Halle-Wittenberg. A. Kiowski is thanked for his technical support.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft; Fonds der Chemischen Industrie.

References

First citationAndersch, H. & Jansen, M. (1990). Acta Cryst. C46, 1180–1181.  CrossRef CAS IUCr Journals Google Scholar
First citationBeswick, M. A., Harmer, C. N., Mosquera, M. E. G., Raithby, P. R., Tombul, M., Wright, D. S., Beswick, M. A., Choi, N. & McPartlin, M. (1998). Chem. Commun. pp. 1383–1384.  CrossRef Google Scholar
First citationBrandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCoppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. In Crystallographic Computing edited by F. R. Ahmed, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEngering, J., Nuss, J. & Jansen, M. (2003). Z. Kristallogr. New Cryst. Struct. 218, 201–202.  CrossRef CAS Google Scholar
First citationJansen, M., Rings, S. & Baldus, H. P. (1992). Z. Anorg. Allge Chem. 610, 99–102.  CrossRef CAS Google Scholar
First citationJanssen, J., Schmidt, H.-G., Noltemeyer, M. & Roesky, H. W. (2003). Eur. J. Inorg. Chem. pp. 4338–4340.  CrossRef Google Scholar
First citationJones, K. & Lappert, M. F. (1965). J. Chem. Soc. pp. 1944–1951.  CrossRef Google Scholar
First citationLämmer, C. & Merzweiler, K. (1999). Z. Anorg. Allg. Chem. 625, 735–738.  Google Scholar
First citationLichtscheidl, A. G., Janicke, M. T., Scott, B. L., Nelson, A. T. & Kiplinger, J. L. (2015). Dalton Trans. 44, 16156–16163.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPuff, H., Hänssgen, D., Beckermann, N., Roloff, A. & Schuh, W. (1989). J. Organomet. Chem. 373, 37–47.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2016). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146