organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(S)-2-Carb­­oxy­ethyl L-cysteinyl sulfone

crossmark logo

aExperiment Station Chemical Laboratories, University of Missouri, Agriculture Bldg, Rm 4, Columbia, MO 65211, USA, bDepartment of Chemistry, University of Missouri, Columbia, MO 65211, USA, and cDepartment of Biochemistry, University of Missouri, Columbia, MO 65211, USA
*Correspondence e-mail: MossineV@missouri.edu

Edited by S. Parkin, University of Kentucky, USA (Received 10 May 2024; accepted 22 May 2024; online 31 May 2024)

The title compound {systematic name: (2S)-2-aza­niumyl-3-[(2-carb­oxy­ethane)­sulfon­yl]propano­ate}, C6H11NO6S, forms enanti­opure crystals in the monoclinic space group P21 and exists as a zwitterion, with a protonated α-amino group and a deprotonated α-carboxyl group. Both the carboxyl groups and the amino group are involved in an extensive multicentered inter­molecular hydrogen-bonding scheme. In the crystal, the diperiodic network of hydrogen bonds propagates parallel to (101) and involves inter­connected heterodromic R43(10) rings. Electrostatic forces are major contributors to the structure energy, which was estimated by DFT calculations as Etotal = −333.5 kJ mol−1.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

S-(2-Carb­oxy­eth­yl)-L-cysteine (CEC) and its sulfoxide (CECO) are naturally occurring, insecticidal amino acids, most often found in legumes of tropical and subtropical regions (Romeo & Simmonds, 1989[Romeo, J. T. & Simmonds, M. S. J. (1989). ACS Symp. Ser. 387, 59-68.]; Seneviratne & Fowden, 1968[Seneviratne, A. S. & Fowden, L. (1968). Phytochemistry, 7, 1039-1045.]). These non-proteinogenic acids have also been detected in the urine of humans exposed to dietary or occupational acryl­amide (Bull et al., 2005[Bull, P. J., Brooke, R. K., Cocker, J., Jones, K. & Warren, N. (2005). Ann. Occup. Hyg. 49, 683-690.]), as well as in cysta­thio­ninuria patients (Watanabe et al., 1991[Watanabe, H., Fujita, Y., Sugahara, K., Kodama, H. & Ohmori, S. (1991). Biol. Mass Spectrom. 20, 602-608.]). Recently, we have described structures and demonstrated the protective effects of both CEC and CECO against hydroxyl free-radical induced DNA degradation (Waters et al., 2022[Waters, J. K., Mossine, V. V., Kelley, S. P. & Mawhinney, T. P. (2022). Molecules, 27, 5317.]). In addition, these amino acids activated the anti­oxidant signaling pathway in renal tubular epithelial cells and protected the cells from cytotoxic CuO nanoparticles. In a continuation of our studies on anti­oxidant amino acids (Waters et al., 2020[Waters, J. K., Kelley, S. P., Mossine, V. V. & Mawhinney, T. P. (2020). Pharmaceuticals 13, 270.], 2022[Waters, J. K., Mossine, V. V., Kelley, S. P. & Mawhinney, T. P. (2022). Molecules, 27, 5317.]; Mawhinney et al., 2020[Mawhinney, T. P., Li, Y., Chance, D. L., Kelley, S. P. & Mossine, V. V. (2020). Acta Cryst. E76, 562-566.]), we have synthesized S-(2-carb­oxy­eth­yl)-L-cysteine sulfone (CECO2, I), an alleged metabolite of CEC, and report here its mol­ecular and crystal structures.

Searches of SciFinder and the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) by both structure and chemical names revealed no previous structural description of S-(2-carb­oxy­eth­yl)-L-cysteine sulfone. The most closely related structures solved by diffraction methods are S-(2-carb­oxy­eth­yl)-L-cysteine, S-(2-carb­oxy­eth­yl)-L-cysteine sulfoxide (Waters et al., 2022[Waters, J. K., Mossine, V. V., Kelley, S. P. & Mawhinney, T. P. (2022). Molecules, 27, 5317.]), S-carb­oxy­methyl-L-cysteine sulfone (CMCO2; Hubbard et al., 1976[Hubbard, C. R., Mighell, A. D., Staffa, J. A., Zervos, C. & Konopelski, J. P. (1976). Acta Cryst. B32, 2723-2725.]), and S-carb­oxy­methyl-L-cysteine sulfoxide (CMCO; Staffa et al., 1976[Staffa, J. A., Zervos, C., Mighell, A. D. & Hubbard, C. R. (1976). Acta Cryst. B32, 3132-3135.]; Waters et al., 2020[Waters, J. K., Kelley, S. P., Mossine, V. V. & Mawhinney, T. P. (2020). Pharmaceuticals 13, 270.]). The asymmetric unit in crystalline I contains one mol­ecule of the amino acid existing as a zwitterion, with a deprotonated α-carb­oxy­lic group, and protonated α-amino and ɛ-carb­oxy­lic groups, as shown in Fig.1. The aforementioned related mol­ecules uniformly adopt similar zwitterionic arrangements in their structures. All bond lengths and angles in I are within their expected ranges. The conformation of the cysteine moiety in I is close to that found in CMCO2 (CCDC #1134461, refcode CXMCYS), triclinic (4R)-CMCO (CCDC #2027234, refcode CMXLCS01), and may be partially stabilized in all three structures by weak intra­molecular hydrogen bonds, which exist between the sulfone/sulfoxide oxygen atom O4 and the ammonium group (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 (3) 1.95 (3) 2.8113 (17) 168 (2)
N1—H1A⋯O4 0.88 (3) 2.61 (2) 3.0239 (17) 110 (2)
N1—H1B⋯O5ii 0.86 (3) 2.22 (2) 2.8860 (16) 134 (2)
N1—H1B⋯O6iii 0.86 (3) 2.31 (2) 2.9869 (15) 136 (2)
N1—H1C⋯O1iv 0.85 (3) 1.98 (3) 2.8238 (17) 173 (2)
O6—H6⋯O2v 0.83 (3) 1.75 (3) 2.5436 (15) 159 (2)
Symmetry codes: (i) [x+1, y, z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) [x, y, z+1]; (v) [-x, y-{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
Atomic numbering and displacement ellipsoids at the 50% probability level for I. The intra­molecular hydrogen bond is shown as a dotted line.

The crystal packing in I is shown in Fig. 2[link]. The enanti­opure crystal of I has the symmetry of the monoclinic Sohncke space group P21, with two mol­ecules per unit cell. Because this di­carb­oxy­lic amino acid is a heteroatom-rich, zwitterionic mol­ecule, there is an extensive inter­molecular hydrogen-bonding network, which involves all carb­oxy­lic oxygen atoms and all protons in the ammonium group, as listed in Table 1[link]. The ammonium hydrogen atoms H1B and H1A are both involved in bifurcated hydrogen bonds. Among the oxygen atoms, the carb­oxy­lic O1 participates in multi-centered hydrogen bonding, while the sulfone O3 is the only oxygen atom not involved in heteroatom contacts. The hydrogen-bonding network topology consists of a system of heterodromic R43(10) rings including both α- and ɛ-carb­oxy­lic groups and the ammonium group. The rings are connected by the N1—H1C⋯O1 and the N1—H1B⋯O6 links, which propagate in the [100] and [001] directions, respectively. In addition, short C—H⋯O contacts are present in the crystal structure of I (Table 2[link]).

Table 2
Additional D—H⋯A contacts (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2vi 0.96 (2) 2.55 (2) 3.3104 (18) 136.3 (17)
C3—H3A⋯O4vii 0.95 (2) 2.36 (2) 3.249 (2) 155 (2)
C3—H3B⋯O1iv 0.97 (3) 2.58 (2) 3.3688 (18) 138.3 (18)
C5—H5A⋯O3viii 0.95 (2) 2.58 (2) 2.998 (2) 107.2 (16)
Symmetry codes: (vi) x + 1, y, z; (vii) x − 1, y, z − 1; (viii) x − 1, y, z.
[Figure 2]
Figure 2
Mol­ecular packing of I. Inter­molecular hydrogen bonds are shown as cyan dotted lines. Crystallographic axes color codes: a – red; b – green; c – blue.

To account for all inter­actions involved in the crystal structure of I, we have performed DFT calculations, at the B3LYP/6–31 G(d,p) theory level (Thomas et al., 2018[Thomas, S. P., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). J. Chem. Theory Comput. 14, 1614-1623.]; Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]), of the electrostatic, dispersion, polarization, and repulsion energies for the structure. The mol­ecular modeling calculations show that electrostatic forces arising from multiple heteroatom contacts between CECO2 mol­ecules are the main contributors to the crystal packing energies (Fig. 3[link], Table 3[link]). The spatial distribution of the energetically most significant inter­actions is also illustrated in Fig. 3[link]. As was previously noted (Waters et al., 2022[Waters, J. K., Mossine, V. V., Kelley, S. P. & Mawhinney, T. P. (2022). Molecules, 27, 5317.]), there is a relatively large difference in total structural energy estimated for CECO epimers, due to a more extensive hydrogen-bonding network found in the crystal structure of the (4R)-epimer, as compared to that of the (4S)-epimer (Table 3[link]). Both electrostatic and total energies estimated for I are close to those calculated for both (4R)-CECO and more compact mol­ecules CMCO and CMCO2.

Table 3
Calculated inter­molecular inter­action energies E (kJ mol−1) in crystalline I and related structures

Etotal = 1.057Eelstat + 0.74Epolar + 0.871Eenergy-dispersive + 0.618Erepuls.

Mol­ecule Eelectrostatic Epolar Edispersion Erepulsion Etotal
CECO2 −289.4 −120.6 −130.1 283 −333.5
(4R)-CECOa −293.6 −115.5 −130.6 308.6 −319.1
(4S)-CECOa −168.6 −96.3 −92.9 187.4 −214.7
CMCO2b −335.7 −142.4 −126 319.7 −372.6
(4R)-CMCOc −336.8 −148.7 −117.3 350.2 −351.8
(4S)-CMCOc −323.4 −157.7 −118.7 318.4 −365.6
Notes: (a) Waters et al. (2022[Waters, J. K., Mossine, V. V., Kelley, S. P. & Mawhinney, T. P. (2022). Molecules, 27, 5317.]); (b) Hubbard et al. (1976[Hubbard, C. R., Mighell, A. D., Staffa, J. A., Zervos, C. & Konopelski, J. P. (1976). Acta Cryst. B32, 2723-2725.]); (c) Waters et al. (2020[Waters, J. K., Kelley, S. P., Mossine, V. V. & Mawhinney, T. P. (2020). Pharmaceuticals 13, 270.]).
[Figure 3]
Figure 3
Inter­action energies in crystal structure of I. (a) A view of inter­actions between a central mol­ecule of CECO2 in crystalline I, shown as its Hirshfeld surface, and 14 mol­ecules that share the inter­action surfaces with the central mol­ecule. (b) Calculated energies (electrostatic, polarization, dispersion, repulsion, and total) of pairwise inter­actions in I between the central mol­ecule and those indicated by respective colors. (c) Energy framework for pairwise electrostatic inter­action energies in I. The cylinders link mol­ecular centroids, and the cylinder thickness is proportional to the magnitude of the energies, such as those shown in (b). For clarity, the cylinders corresponding to energies <5 kJ mol−1 are not shown. (d) The pairwise dispersion energy framework in I.

Synthesis and crystallization

Compound I was synthesized by performic acid oxidation of S-(2-carb­oxy­eth­yl)-L-cysteine. CEC was prepared as reported earlier (Waters et al., 2022[Waters, J. K., Mossine, V. V., Kelley, S. P. & Mawhinney, T. P. (2022). Molecules, 27, 5317.]). Performic acid was made fresh by adding 10 ml of 30% hydrogen peroxide to 90 ml of 98% formic acid. Then 20 g (0.104 moles) of CEC were dissolved in 100 ml of cold performic acid and left overnight in an ice bath. The reaction was monitored using an amino acid analyser (Hitachi L8900). Upon reaction completeness, the performic acid solution was left at room temperature for 1 h, cooled down to −80°C, and then the excess of performic acid was removed by vacuum freeze drying at −50°C. The residue was recrystallized from water to afford chromatographically pure I as colorless plates. [α]D23 +10.9° (c 1, 0.2 N HCl). Elemental analysis: calculated for C6H11NO6S: N, 6.22%. Found: N, 6.17%. Exact mass of the [M+H]+ ion. Calculated for C6H12NO4S: m/z 226.02. Found: m/z 226.00.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Enanti­opurity of the crystal was established on the basis of Flack absolute structure parameter determined [−0.001 (11) for 1277 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])].

Table 4
Experimental details

Crystal data
Chemical formula C6H11NO6S
Mr 225.22
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 4.8838 (2), 18.3867 (7), 5.1522 (2)
β (°) 110.3246 (16)
V3) 433.85 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.45 × 0.28 × 0.02
 
Data collection
Diffractometer Bruker APEXII area detector
Absorption correction Multi-scan (AXScale; Bruker, 2014[Bruker (2014). AXScale, APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.705, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15133, 2656, 2644
Rint 0.017
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.10
No. of reflections 2656
No. of parameters 160
No. of restraints 1
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.31, −0.18
Absolute structure Flack x determined using 1277 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.001 (11)
Computer programs: APEX3 and SAINT (Bruker, 2014[Bruker (2014). AXScale, APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalExplorer 17.5 (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

(2S)-2-Azaniumyl-3-[(2-carboxyethane)sulfonyl]propanoate top
Crystal data top
C6H11NO6SF(000) = 236
Mr = 225.22Dx = 1.724 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.8838 (2) ÅCell parameters from 9939 reflections
b = 18.3867 (7) Åθ = 3.3–30.6°
c = 5.1522 (2) ŵ = 0.38 mm1
β = 110.3246 (16)°T = 100 K
V = 433.85 (3) Å3Plate, colourless
Z = 20.45 × 0.28 × 0.02 mm
Data collection top
Bruker APEXII area detector
diffractometer
2656 independent reflections
Radiation source: Sealed Source Mo with TRIUMPH optics2644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω and phi scansθmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan
(AXScale; Bruker, 2014)
h = 66
Tmin = 0.705, Tmax = 0.746k = 2626
15133 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.019Only H-atom coordinates refined
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.0609P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2656 reflectionsΔρmax = 0.31 e Å3
160 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack x determined using 1277 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data were corrected for Lorentz, polarization, and absorption effects. Non-hydrogen atoms were refined with anisotropic thermal parameters. The hydroxyl and ammonium hydrogen atoms were located in difference Fourier maps and were allowed to refine freely. The remaining H atoms were placed at calculated positions and included in the refinement using a riding model. All hydrogen atom thermal parameters were constrained to ride on the carrier atoms (Uiso(methine, methylene H) = 1.2Ueq and Uiso(hydroxyl, ammonium H) = 1.5Ueq).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.85411 (6)0.89496 (2)0.84809 (6)0.01103 (8)
O60.1220 (2)0.69175 (6)0.5230 (2)0.01356 (19)
H60.006 (6)0.6645 (14)0.561 (5)0.020*
O41.0462 (3)0.92863 (7)1.0965 (3)0.0239 (3)
O50.2537 (2)0.72208 (6)0.9711 (2)0.0144 (2)
C10.4393 (3)1.06770 (7)0.3928 (3)0.0085 (2)
C60.2813 (3)0.72813 (7)0.7474 (3)0.0100 (2)
O20.2657 (2)1.09831 (6)0.4873 (2)0.0141 (2)
N10.8143 (3)1.07575 (6)0.8579 (2)0.0091 (2)
H1A0.998 (5)1.0653 (13)0.951 (5)0.014*
H1B0.801 (5)1.1210 (14)0.816 (4)0.014*
H1C0.707 (5)1.0726 (13)0.957 (5)0.014*
O10.4180 (2)1.06328 (6)0.14494 (19)0.01234 (18)
C40.6697 (3)0.82185 (7)0.9387 (3)0.0115 (2)
H4A0.818 (5)0.7954 (13)1.063 (4)0.014*
H4B0.548 (5)0.8430 (13)1.023 (4)0.014*
C30.5730 (3)0.95792 (7)0.6791 (3)0.0095 (2)
C20.6965 (3)1.02859 (7)0.6080 (2)0.0076 (2)
H20.854 (5)1.0212 (12)0.541 (4)0.009*
O30.9803 (3)0.87027 (6)0.6484 (3)0.0207 (2)
C50.4975 (3)0.77739 (7)0.6867 (3)0.0117 (2)
H5A0.395 (5)0.8068 (13)0.533 (4)0.014*
H5B0.618 (5)0.7471 (14)0.621 (4)0.014*
H3A0.445 (5)0.9346 (13)0.517 (5)0.014*
H3B0.459 (5)0.9664 (12)0.797 (5)0.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.00737 (13)0.00812 (13)0.01511 (13)0.00088 (11)0.00073 (9)0.00364 (11)
O60.0136 (4)0.0127 (4)0.0158 (4)0.0061 (4)0.0068 (4)0.0039 (3)
O40.0206 (6)0.0166 (5)0.0208 (5)0.0083 (4)0.0100 (4)0.0045 (4)
O50.0184 (5)0.0110 (5)0.0152 (4)0.0032 (4)0.0075 (4)0.0006 (3)
C10.0077 (5)0.0071 (5)0.0096 (5)0.0006 (4)0.0017 (4)0.0009 (4)
C60.0097 (5)0.0064 (5)0.0143 (5)0.0000 (4)0.0047 (4)0.0005 (4)
O20.0130 (5)0.0164 (5)0.0130 (4)0.0072 (4)0.0046 (4)0.0016 (4)
N10.0088 (5)0.0086 (5)0.0088 (4)0.0004 (4)0.0015 (4)0.0006 (3)
O10.0106 (4)0.0180 (5)0.0079 (4)0.0008 (4)0.0025 (3)0.0012 (4)
C40.0118 (6)0.0088 (5)0.0129 (5)0.0024 (4)0.0028 (4)0.0025 (4)
C30.0074 (5)0.0071 (5)0.0122 (5)0.0001 (4)0.0011 (4)0.0008 (4)
C20.0079 (5)0.0066 (5)0.0077 (4)0.0002 (4)0.0019 (4)0.0000 (4)
O30.0186 (5)0.0143 (5)0.0356 (6)0.0035 (4)0.0177 (5)0.0059 (4)
C50.0119 (5)0.0093 (5)0.0157 (5)0.0025 (5)0.0072 (4)0.0016 (4)
Geometric parameters (Å, º) top
S1—O41.4380 (12)C3—C21.5293 (18)
S1—C41.7686 (13)O6—H60.83 (3)
S1—C31.7756 (13)N1—H1A0.88 (3)
S1—O31.4440 (12)N1—H1B0.86 (3)
O6—C61.3285 (16)N1—H1C0.85 (3)
O5—C61.2107 (16)C2—H20.96 (2)
C1—O21.2489 (16)C3—H3A0.95 (2)
C1—O11.2471 (15)C3—H3B0.97 (3)
C1—C21.5353 (18)C4—H4A0.92 (2)
C6—C51.5038 (19)C4—H4B0.93 (2)
N1—C21.4919 (16)C5—H5A0.95 (2)
C4—C51.5174 (19)C5—H5B0.95 (2)
O4—S1—C4109.09 (7)H1A—N1—H1B109 (2)
O4—S1—C3108.07 (7)H1A—N1—H1C113 (2)
O4—S1—O3117.48 (9)H1B—N1—H1C102 (2)
C4—S1—C3104.31 (6)N1—C2—H2106.1 (13)
O3—S1—C4109.37 (7)C1—C2—H2111.4 (12)
O3—S1—C3107.71 (7)C3—C2—H2113.5 (13)
O2—C1—C2115.16 (11)S1—C3—H3A107.2 (15)
O1—C1—O2127.01 (13)S1—C3—H3B108.2 (14)
O1—C1—C2117.75 (12)C2—C3—H3A111.4 (15)
O6—C6—C5111.32 (11)C2—C3—H3B112.0 (13)
O5—C6—O6123.82 (13)H3A—C3—H3B106 (2)
O5—C6—C5124.85 (12)S1—C4—H4A103.6 (15)
C5—C4—S1111.44 (9)S1—C4—H4B105.7 (15)
C2—C3—S1111.67 (9)C5—C4—H4A112.3 (14)
N1—C2—C1108.94 (10)C5—C4—H4B111.7 (14)
N1—C2—C3110.69 (10)H4A—C4—H4B111.7 (19)
C3—C2—C1106.21 (10)C4—C5—H5A112.5 (14)
C6—C5—C4111.54 (11)C4—C5—H5B113.0 (14)
C6—O6—H6109.9 (17)C6—C5—H5A108.2 (15)
C2—N1—H1A111.0 (16)C6—C5—H5B106.7 (15)
C2—N1—H1B112.0 (13)H5A—C5—H5B104.4 (19)
C2—N1—H1C110.2 (16)
O3—S1—C3—C269.00 (11)O2—C1—C2—H2159.7 (14)
O4—S1—C3—C258.88 (12)C1—C2—N1—H1A155.6 (17)
C4—S1—C3—C2174.85 (9)C1—C2—N1—H1B33.7 (18)
O3—S1—C4—C541.94 (13)C1—C2—N1—H1C79.2 (18)
O4—S1—C4—C5171.68 (11)C3—C2—N1—H1A88.0 (17)
C3—S1—C4—C573.05 (11)C3—C2—N1—H1B150.1 (18)
O1—C1—C2—N1139.90 (13)C3—C2—N1—H1C37.2 (18)
O1—C1—C2—C3100.88 (14)H2—C2—N1—H1A36 (2)
O2—C1—C2—N143.00 (16)H2—C2—N1—H1B86 (2)
O2—C1—C2—C376.23 (14)H2—C2—N1—H1C161 (2)
N1—C2—C3—S178.37 (13)N1—C2—C3—H3A161.7 (17)
C1—C2—C3—S1163.54 (9)N1—C2—C3—H3B43.1 (16)
S1—C4—C5—C6165.17 (10)C1—C2—C3—H3A43.7 (17)
C4—C5—C6—O52.7 (2)C1—C2—C3—H3B75.0 (16)
C4—C5—C6—O6177.18 (12)H2—C2—C3—S140.8 (13)
O3—S1—C3—H3A53.3 (16)H2—C2—C3—H3A79 (2)
O3—S1—C3—H3B167.4 (15)H2—C2—C3—H3B162 (2)
O4—S1—C3—H3A178.8 (16)S1—C4—C5—H5A43.3 (17)
O4—S1—C3—H3B64.8 (15)S1—C4—C5—H5B74.7 (16)
C4—S1—C3—H3A62.8 (16)H4A—C4—C5—C679.1 (16)
C4—S1—C3—H3B51.2 (15)H4A—C4—C5—H5A159 (2)
O3—S1—C4—H4A79.0 (14)H4A—C4—C5—H5B41 (2)
O3—S1—C4—H4B163.4 (13)H4B—C4—C5—C647.2 (15)
O4—S1—C4—H4A50.8 (14)H4B—C4—C5—H5A75 (2)
O4—S1—C4—H4B66.8 (13)H4B—C4—C5—H5B167 (2)
C3—S1—C4—H4A166.1 (14)H5A—C5—C6—O5127.0 (14)
C3—S1—C4—H4B48.4 (13)H5A—C5—C6—O652.9 (14)
H6—O6—C6—O51 (2)H5B—C5—C6—O5121.2 (13)
H6—O6—C6—C5179 (2)H5B—C5—C6—O659.0 (13)
O1—C1—C2—H223.2 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.88 (3)1.95 (3)2.8113 (17)168 (2)
N1—H1A···O40.88 (3)2.61 (2)3.0239 (17)110 (2)
N1—H1B···O5ii0.86 (3)2.22 (2)2.8860 (16)134 (2)
N1—H1B···O6iii0.86 (3)2.31 (2)2.9869 (15)136 (2)
N1—H1C···O1iv0.85 (3)1.98 (3)2.8238 (17)173 (2)
O6—H6···O2v0.83 (3)1.75 (3)2.5436 (15)159 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+2; (iii) x+1, y+1/2, z+1; (iv) x, y, z+1; (v) x, y1/2, z+1.
Additional D—H···A contacts (Å, °) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2vi0.96 (2)2.55 (2)3.3104 (18)136.3 (17)
C3—H3A···O4vii0.95 (2)2.36 (2)3.249 (2)155 (2)
C3—H3B···O1iv0.97 (3)2.58 (2)3.3688 (18)138.3 (18)
C5—H5A···O3viii0.95 (2)2.58 (2)2.998 (2)107.2 (16)
Symmetry codes: (vi) x + 1, y, z; (vii) x - 1, y, z - 1; (viii) x - 1, y, z.
Calculated intermolecular interaction energies E (kJ mol-1) in crystalline I and related structures top
Etotal = 1.057Eelstat + 0.74Epolar + 0.871Edisp + 0.618Erepuls.
MoleculeEelectrostaticEpolarEdispersionErepulsionEtotal
CECO2-289.4-120.6-130.1283-333.5
(4R)-CECOa-293.6-115.5-130.6308.6-319.1
(4S)-CECOa-168.6-96.3-92.9187.4-214.7
CMCO2b-335.7-142.4-126319.7-372.6
(4R)-CMCOc-336.8-148.7-117.3350.2-351.8
(4S)-CMCOc-323.4-157.7-118.7318.4-365.6
Notes: (a) Waters et al. (2022); (b) Hubbard et al. (1976); (c) Waters et al. (2020).
 

Funding information

Funding for this research was provided by: National Institute of Food and Agriculture (grant No. Hatch 1023929); University of Missouri Experiment Station Chemical Laboratories .

References

First citationBruker (2014). AXScale, APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBull, P. J., Brooke, R. K., Cocker, J., Jones, K. & Warren, N. (2005). Ann. Occup. Hyg. 49, 683–690.  PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHubbard, C. R., Mighell, A. D., Staffa, J. A., Zervos, C. & Konopelski, J. P. (1976). Acta Cryst. B32, 2723–2725.  CrossRef CAS IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMawhinney, T. P., Li, Y., Chance, D. L., Kelley, S. P. & Mossine, V. V. (2020). Acta Cryst. E76, 562–566.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRomeo, J. T. & Simmonds, M. S. J. (1989). ACS Symp. Ser. 387, 59–68.  CrossRef Google Scholar
First citationSeneviratne, A. S. & Fowden, L. (1968). Phytochemistry, 7, 1039–1045.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStaffa, J. A., Zervos, C., Mighell, A. D. & Hubbard, C. R. (1976). Acta Cryst. B32, 3132–3135.  CrossRef CAS IUCr Journals Google Scholar
First citationThomas, S. P., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). J. Chem. Theory Comput. 14, 1614–1623.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWatanabe, H., Fujita, Y., Sugahara, K., Kodama, H. & Ohmori, S. (1991). Biol. Mass Spectrom. 20, 602–608.  CrossRef PubMed CAS Google Scholar
First citationWaters, J. K., Kelley, S. P., Mossine, V. V. & Mawhinney, T. P. (2020). Pharmaceuticals 13, 270.  CrossRef PubMed Google Scholar
First citationWaters, J. K., Mossine, V. V., Kelley, S. P. & Mawhinney, T. P. (2022). Molecules, 27, 5317.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146