organic compounds
(S)-2-Carboxyethyl L-cysteinyl sulfone
aExperiment Station Chemical Laboratories, University of Missouri, Agriculture Bldg, Rm 4, Columbia, MO 65211, USA, bDepartment of Chemistry, University of Missouri, Columbia, MO 65211, USA, and cDepartment of Biochemistry, University of Missouri, Columbia, MO 65211, USA
*Correspondence e-mail: MossineV@missouri.edu
The title compound {systematic name: (2S)-2-azaniumyl-3-[(2-carboxyethane)sulfonyl]propanoate}, C6H11NO6S, forms enantiopure crystals in the monoclinic P21 and exists as a zwitterion, with a protonated α-amino group and a deprotonated α-carboxyl group. Both the carboxyl groups and the amino group are involved in an extensive multicentered intermolecular hydrogen-bonding scheme. In the crystal, the diperiodic network of hydrogen bonds propagates parallel to (101) and involves interconnected heterodromic R43(10) rings. Electrostatic forces are major contributors to the structure energy, which was estimated by DFT calculations as Etotal = −333.5 kJ mol−1.
Keywords: crystal structure; hydrogen bonding; amino acid; legumes.
CCDC reference: 1936514
Structure description
S-(2-Carboxyethyl)-L-cysteine (CEC) and its sulfoxide (CECO) are naturally occurring, insecticidal amino acids, most often found in legumes of tropical and subtropical regions (Romeo & Simmonds, 1989; Seneviratne & Fowden, 1968). These non-proteinogenic acids have also been detected in the urine of humans exposed to dietary or occupational acrylamide (Bull et al., 2005), as well as in cystathioninuria patients (Watanabe et al., 1991). Recently, we have described structures and demonstrated the protective effects of both CEC and CECO against hydroxyl free-radical induced DNA degradation (Waters et al., 2022). In addition, these amino acids activated the antioxidant signaling pathway in renal tubular epithelial cells and protected the cells from cytotoxic CuO nanoparticles. In a continuation of our studies on antioxidant amino acids (Waters et al., 2020, 2022; Mawhinney et al., 2020), we have synthesized S-(2-carboxyethyl)-L-cysteine sulfone (CECO2, I), an alleged metabolite of CEC, and report here its molecular and crystal structures.
Searches of SciFinder and the Cambridge Structural Database (Groom et al., 2016) by both structure and chemical names revealed no previous structural description of S-(2-carboxyethyl)-L-cysteine sulfone. The most closely related structures solved by diffraction methods are S-(2-carboxyethyl)-L-cysteine, S-(2-carboxyethyl)-L-cysteine sulfoxide (Waters et al., 2022), S-carboxymethyl-L-cysteine sulfone (CMCO2; Hubbard et al., 1976), and S-carboxymethyl-L-cysteine sulfoxide (CMCO; Staffa et al., 1976; Waters et al., 2020). The in crystalline I contains one molecule of the amino acid existing as a zwitterion, with a deprotonated α-carboxylic group, and protonated α-amino and ɛ-carboxylic groups, as shown in Fig.1. The aforementioned related molecules uniformly adopt similar zwitterionic arrangements in their structures. All bond lengths and angles in I are within their expected ranges. The conformation of the cysteine moiety in I is close to that found in CMCO2 (CCDC #1134461, refcode CXMCYS), triclinic (4R)-CMCO (CCDC #2027234, refcode CMXLCS01), and may be partially stabilized in all three structures by weak intramolecular hydrogen bonds, which exist between the sulfone/sulfoxide oxygen atom O4 and the ammonium group (Fig. 1, Table 1).
The crystal packing in I is shown in Fig. 2. The enantiopure crystal of I has the symmetry of the monoclinic Sohncke P21, with two molecules per Because this dicarboxylic amino acid is a heteroatom-rich, zwitterionic molecule, there is an extensive intermolecular hydrogen-bonding network, which involves all carboxylic oxygen atoms and all protons in the ammonium group, as listed in Table 1. The ammonium hydrogen atoms H1B and H1A are both involved in bifurcated hydrogen bonds. Among the oxygen atoms, the carboxylic O1 participates in multi-centered hydrogen bonding, while the sulfone O3 is the only oxygen atom not involved in heteroatom contacts. The hydrogen-bonding network topology consists of a system of heterodromic R43(10) rings including both α- and ɛ-carboxylic groups and the ammonium group. The rings are connected by the N1—H1C⋯O1 and the N1—H1B⋯O6 links, which propagate in the [100] and [001] directions, respectively. In addition, short C—H⋯O contacts are present in the of I (Table 2).
|
To account for all interactions involved in the I, we have performed DFT calculations, at the B3LYP/6–31 G(d,p) theory level (Thomas et al., 2018; Mackenzie et al., 2017), of the electrostatic, dispersion, polarization, and repulsion energies for the structure. The molecular modeling calculations show that electrostatic forces arising from multiple heteroatom contacts between CECO2 molecules are the main contributors to the crystal packing energies (Fig. 3, Table 3). The spatial distribution of the energetically most significant interactions is also illustrated in Fig. 3. As was previously noted (Waters et al., 2022), there is a relatively large difference in total structural energy estimated for CECO due to a more extensive hydrogen-bonding network found in the of the (4R)-epimer, as compared to that of the (4S)-epimer (Table 3). Both electrostatic and total energies estimated for I are close to those calculated for both (4R)-CECO and more compact molecules CMCO and CMCO2.
of
|
Synthesis and crystallization
Compound I was synthesized by performic acid oxidation of S-(2-carboxyethyl)-L-cysteine. CEC was prepared as reported earlier (Waters et al., 2022). Performic acid was made fresh by adding 10 ml of 30% hydrogen peroxide to 90 ml of 98% formic acid. Then 20 g (0.104 moles) of CEC were dissolved in 100 ml of cold performic acid and left overnight in an ice bath. The reaction was monitored using an amino acid analyser (Hitachi L8900). Upon reaction completeness, the performic acid solution was left at room temperature for 1 h, cooled down to −80°C, and then the excess of performic acid was removed by vacuum freeze drying at −50°C. The residue was recrystallized from water to afford chromatographically pure I as colorless plates. [α]D23 +10.9° (c 1, 0.2 N HCl). Elemental analysis: calculated for C6H11NO6S: N, 6.22%. Found: N, 6.17%. Exact mass of the [M+H]+ ion. Calculated for C6H12NO4S: m/z 226.02. Found: m/z 226.00.
Refinement
Crystal data, data collection and structure . Enantiopurity of the crystal was established on the basis of Flack parameter determined [−0.001 (11) for 1277 quotients (Parsons et al., 2013)].
details are summarized in Table 4
|
Structural data
CCDC reference: 1936514
https://doi.org/10.1107/S2414314624004802/pk4044sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624004802/pk4044Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624004802/pk4044Isup3.cml
C6H11NO6S | F(000) = 236 |
Mr = 225.22 | Dx = 1.724 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8838 (2) Å | Cell parameters from 9939 reflections |
b = 18.3867 (7) Å | θ = 3.3–30.6° |
c = 5.1522 (2) Å | µ = 0.38 mm−1 |
β = 110.3246 (16)° | T = 100 K |
V = 433.85 (3) Å3 | Plate, colourless |
Z = 2 | 0.45 × 0.28 × 0.02 mm |
Bruker APEXII area detector diffractometer | 2656 independent reflections |
Radiation source: Sealed Source Mo with TRIUMPH optics | 2644 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω and phi scans | θmax = 30.6°, θmin = 2.2° |
Absorption correction: multi-scan (AXScale; Bruker, 2014) | h = −6→6 |
Tmin = 0.705, Tmax = 0.746 | k = −26→26 |
15133 measured reflections | l = −7→7 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.019 | Only H-atom coordinates refined |
wR(F2) = 0.051 | w = 1/[σ2(Fo2) + (0.0333P)2 + 0.0609P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
2656 reflections | Δρmax = 0.31 e Å−3 |
160 parameters | Δρmin = −0.18 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1277 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.001 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data were corrected for Lorentz, polarization, and absorption effects. Non-hydrogen atoms were refined with anisotropic thermal parameters. The hydroxyl and ammonium hydrogen atoms were located in difference Fourier maps and were allowed to refine freely. The remaining H atoms were placed at calculated positions and included in the refinement using a riding model. All hydrogen atom thermal parameters were constrained to ride on the carrier atoms (Uiso(methine, methylene H) = 1.2Ueq and Uiso(hydroxyl, ammonium H) = 1.5Ueq). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.85411 (6) | 0.89496 (2) | 0.84809 (6) | 0.01103 (8) | |
O6 | 0.1220 (2) | 0.69175 (6) | 0.5230 (2) | 0.01356 (19) | |
H6 | 0.006 (6) | 0.6645 (14) | 0.561 (5) | 0.020* | |
O4 | 1.0462 (3) | 0.92863 (7) | 1.0965 (3) | 0.0239 (3) | |
O5 | 0.2537 (2) | 0.72208 (6) | 0.9711 (2) | 0.0144 (2) | |
C1 | 0.4393 (3) | 1.06770 (7) | 0.3928 (3) | 0.0085 (2) | |
C6 | 0.2813 (3) | 0.72813 (7) | 0.7474 (3) | 0.0100 (2) | |
O2 | 0.2657 (2) | 1.09831 (6) | 0.4873 (2) | 0.0141 (2) | |
N1 | 0.8143 (3) | 1.07575 (6) | 0.8579 (2) | 0.0091 (2) | |
H1A | 0.998 (5) | 1.0653 (13) | 0.951 (5) | 0.014* | |
H1B | 0.801 (5) | 1.1210 (14) | 0.816 (4) | 0.014* | |
H1C | 0.707 (5) | 1.0726 (13) | 0.957 (5) | 0.014* | |
O1 | 0.4180 (2) | 1.06328 (6) | 0.14494 (19) | 0.01234 (18) | |
C4 | 0.6697 (3) | 0.82185 (7) | 0.9387 (3) | 0.0115 (2) | |
H4A | 0.818 (5) | 0.7954 (13) | 1.063 (4) | 0.014* | |
H4B | 0.548 (5) | 0.8430 (13) | 1.023 (4) | 0.014* | |
C3 | 0.5730 (3) | 0.95792 (7) | 0.6791 (3) | 0.0095 (2) | |
C2 | 0.6965 (3) | 1.02859 (7) | 0.6080 (2) | 0.0076 (2) | |
H2 | 0.854 (5) | 1.0212 (12) | 0.541 (4) | 0.009* | |
O3 | 0.9803 (3) | 0.87027 (6) | 0.6484 (3) | 0.0207 (2) | |
C5 | 0.4975 (3) | 0.77739 (7) | 0.6867 (3) | 0.0117 (2) | |
H5A | 0.395 (5) | 0.8068 (13) | 0.533 (4) | 0.014* | |
H5B | 0.618 (5) | 0.7471 (14) | 0.621 (4) | 0.014* | |
H3A | 0.445 (5) | 0.9346 (13) | 0.517 (5) | 0.014* | |
H3B | 0.459 (5) | 0.9664 (12) | 0.797 (5) | 0.014* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.00737 (13) | 0.00812 (13) | 0.01511 (13) | −0.00088 (11) | 0.00073 (9) | 0.00364 (11) |
O6 | 0.0136 (4) | 0.0127 (4) | 0.0158 (4) | −0.0061 (4) | 0.0068 (4) | −0.0039 (3) |
O4 | 0.0206 (6) | 0.0166 (5) | 0.0208 (5) | −0.0083 (4) | −0.0100 (4) | 0.0045 (4) |
O5 | 0.0184 (5) | 0.0110 (5) | 0.0152 (4) | −0.0032 (4) | 0.0075 (4) | 0.0006 (3) |
C1 | 0.0077 (5) | 0.0071 (5) | 0.0096 (5) | −0.0006 (4) | 0.0017 (4) | 0.0009 (4) |
C6 | 0.0097 (5) | 0.0064 (5) | 0.0143 (5) | 0.0000 (4) | 0.0047 (4) | −0.0005 (4) |
O2 | 0.0130 (5) | 0.0164 (5) | 0.0130 (4) | 0.0072 (4) | 0.0046 (4) | 0.0016 (4) |
N1 | 0.0088 (5) | 0.0086 (5) | 0.0088 (4) | −0.0004 (4) | 0.0015 (4) | −0.0006 (3) |
O1 | 0.0106 (4) | 0.0180 (5) | 0.0079 (4) | −0.0008 (4) | 0.0025 (3) | 0.0012 (4) |
C4 | 0.0118 (6) | 0.0088 (5) | 0.0129 (5) | −0.0024 (4) | 0.0028 (4) | 0.0025 (4) |
C3 | 0.0074 (5) | 0.0071 (5) | 0.0122 (5) | −0.0001 (4) | 0.0011 (4) | 0.0008 (4) |
C2 | 0.0079 (5) | 0.0066 (5) | 0.0077 (4) | 0.0002 (4) | 0.0019 (4) | 0.0000 (4) |
O3 | 0.0186 (5) | 0.0143 (5) | 0.0356 (6) | 0.0035 (4) | 0.0177 (5) | 0.0059 (4) |
C5 | 0.0119 (5) | 0.0093 (5) | 0.0157 (5) | −0.0025 (5) | 0.0072 (4) | −0.0016 (4) |
S1—O4 | 1.4380 (12) | C3—C2 | 1.5293 (18) |
S1—C4 | 1.7686 (13) | O6—H6 | 0.83 (3) |
S1—C3 | 1.7756 (13) | N1—H1A | 0.88 (3) |
S1—O3 | 1.4440 (12) | N1—H1B | 0.86 (3) |
O6—C6 | 1.3285 (16) | N1—H1C | 0.85 (3) |
O5—C6 | 1.2107 (16) | C2—H2 | 0.96 (2) |
C1—O2 | 1.2489 (16) | C3—H3A | 0.95 (2) |
C1—O1 | 1.2471 (15) | C3—H3B | 0.97 (3) |
C1—C2 | 1.5353 (18) | C4—H4A | 0.92 (2) |
C6—C5 | 1.5038 (19) | C4—H4B | 0.93 (2) |
N1—C2 | 1.4919 (16) | C5—H5A | 0.95 (2) |
C4—C5 | 1.5174 (19) | C5—H5B | 0.95 (2) |
O4—S1—C4 | 109.09 (7) | H1A—N1—H1B | 109 (2) |
O4—S1—C3 | 108.07 (7) | H1A—N1—H1C | 113 (2) |
O4—S1—O3 | 117.48 (9) | H1B—N1—H1C | 102 (2) |
C4—S1—C3 | 104.31 (6) | N1—C2—H2 | 106.1 (13) |
O3—S1—C4 | 109.37 (7) | C1—C2—H2 | 111.4 (12) |
O3—S1—C3 | 107.71 (7) | C3—C2—H2 | 113.5 (13) |
O2—C1—C2 | 115.16 (11) | S1—C3—H3A | 107.2 (15) |
O1—C1—O2 | 127.01 (13) | S1—C3—H3B | 108.2 (14) |
O1—C1—C2 | 117.75 (12) | C2—C3—H3A | 111.4 (15) |
O6—C6—C5 | 111.32 (11) | C2—C3—H3B | 112.0 (13) |
O5—C6—O6 | 123.82 (13) | H3A—C3—H3B | 106 (2) |
O5—C6—C5 | 124.85 (12) | S1—C4—H4A | 103.6 (15) |
C5—C4—S1 | 111.44 (9) | S1—C4—H4B | 105.7 (15) |
C2—C3—S1 | 111.67 (9) | C5—C4—H4A | 112.3 (14) |
N1—C2—C1 | 108.94 (10) | C5—C4—H4B | 111.7 (14) |
N1—C2—C3 | 110.69 (10) | H4A—C4—H4B | 111.7 (19) |
C3—C2—C1 | 106.21 (10) | C4—C5—H5A | 112.5 (14) |
C6—C5—C4 | 111.54 (11) | C4—C5—H5B | 113.0 (14) |
C6—O6—H6 | 109.9 (17) | C6—C5—H5A | 108.2 (15) |
C2—N1—H1A | 111.0 (16) | C6—C5—H5B | 106.7 (15) |
C2—N1—H1B | 112.0 (13) | H5A—C5—H5B | 104.4 (19) |
C2—N1—H1C | 110.2 (16) | ||
O3—S1—C3—C2 | −69.00 (11) | O2—C1—C2—H2 | −159.7 (14) |
O4—S1—C3—C2 | 58.88 (12) | C1—C2—N1—H1A | −155.6 (17) |
C4—S1—C3—C2 | 174.85 (9) | C1—C2—N1—H1B | −33.7 (18) |
O3—S1—C4—C5 | −41.94 (13) | C1—C2—N1—H1C | 79.2 (18) |
O4—S1—C4—C5 | −171.68 (11) | C3—C2—N1—H1A | 88.0 (17) |
C3—S1—C4—C5 | 73.05 (11) | C3—C2—N1—H1B | −150.1 (18) |
O1—C1—C2—N1 | 139.90 (13) | C3—C2—N1—H1C | −37.2 (18) |
O1—C1—C2—C3 | −100.88 (14) | H2—C2—N1—H1A | −36 (2) |
O2—C1—C2—N1 | −43.00 (16) | H2—C2—N1—H1B | 86 (2) |
O2—C1—C2—C3 | 76.23 (14) | H2—C2—N1—H1C | −161 (2) |
N1—C2—C3—S1 | −78.37 (13) | N1—C2—C3—H3A | 161.7 (17) |
C1—C2—C3—S1 | 163.54 (9) | N1—C2—C3—H3B | 43.1 (16) |
S1—C4—C5—C6 | −165.17 (10) | C1—C2—C3—H3A | 43.7 (17) |
C4—C5—C6—O5 | −2.7 (2) | C1—C2—C3—H3B | −75.0 (16) |
C4—C5—C6—O6 | 177.18 (12) | H2—C2—C3—S1 | 40.8 (13) |
O3—S1—C3—H3A | 53.3 (16) | H2—C2—C3—H3A | −79 (2) |
O3—S1—C3—H3B | 167.4 (15) | H2—C2—C3—H3B | 162 (2) |
O4—S1—C3—H3A | −178.8 (16) | S1—C4—C5—H5A | −43.3 (17) |
O4—S1—C3—H3B | −64.8 (15) | S1—C4—C5—H5B | 74.7 (16) |
C4—S1—C3—H3A | −62.8 (16) | H4A—C4—C5—C6 | 79.1 (16) |
C4—S1—C3—H3B | 51.2 (15) | H4A—C4—C5—H5A | −159 (2) |
O3—S1—C4—H4A | 79.0 (14) | H4A—C4—C5—H5B | −41 (2) |
O3—S1—C4—H4B | −163.4 (13) | H4B—C4—C5—C6 | −47.2 (15) |
O4—S1—C4—H4A | −50.8 (14) | H4B—C4—C5—H5A | 75 (2) |
O4—S1—C4—H4B | 66.8 (13) | H4B—C4—C5—H5B | −167 (2) |
C3—S1—C4—H4A | −166.1 (14) | H5A—C5—C6—O5 | −127.0 (14) |
C3—S1—C4—H4B | −48.4 (13) | H5A—C5—C6—O6 | 52.9 (14) |
H6—O6—C6—O5 | −1 (2) | H5B—C5—C6—O5 | 121.2 (13) |
H6—O6—C6—C5 | 179 (2) | H5B—C5—C6—O6 | −59.0 (13) |
O1—C1—C2—H2 | 23.2 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.88 (3) | 1.95 (3) | 2.8113 (17) | 168 (2) |
N1—H1A···O4 | 0.88 (3) | 2.61 (2) | 3.0239 (17) | 110 (2) |
N1—H1B···O5ii | 0.86 (3) | 2.22 (2) | 2.8860 (16) | 134 (2) |
N1—H1B···O6iii | 0.86 (3) | 2.31 (2) | 2.9869 (15) | 136 (2) |
N1—H1C···O1iv | 0.85 (3) | 1.98 (3) | 2.8238 (17) | 173 (2) |
O6—H6···O2v | 0.83 (3) | 1.75 (3) | 2.5436 (15) | 159 (2) |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+1, y+1/2, −z+2; (iii) −x+1, y+1/2, −z+1; (iv) x, y, z+1; (v) −x, y−1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2vi | 0.96 (2) | 2.55 (2) | 3.3104 (18) | 136.3 (17) |
C3—H3A···O4vii | 0.95 (2) | 2.36 (2) | 3.249 (2) | 155 (2) |
C3—H3B···O1iv | 0.97 (3) | 2.58 (2) | 3.3688 (18) | 138.3 (18) |
C5—H5A···O3viii | 0.95 (2) | 2.58 (2) | 2.998 (2) | 107.2 (16) |
Symmetry codes: (vi) x + 1, y, z; (vii) x - 1, y, z - 1; (viii) x - 1, y, z. |
Etotal = 1.057Eelstat + 0.74Epolar + 0.871Edisp + 0.618Erepuls. |
Molecule | Eelectrostatic | Epolar | Edispersion | Erepulsion | Etotal |
CECO2 | -289.4 | -120.6 | -130.1 | 283 | -333.5 |
(4R)-CECOa | -293.6 | -115.5 | -130.6 | 308.6 | -319.1 |
(4S)-CECOa | -168.6 | -96.3 | -92.9 | 187.4 | -214.7 |
CMCO2b | -335.7 | -142.4 | -126 | 319.7 | -372.6 |
(4R)-CMCOc | -336.8 | -148.7 | -117.3 | 350.2 | -351.8 |
(4S)-CMCOc | -323.4 | -157.7 | -118.7 | 318.4 | -365.6 |
Notes: (a) Waters et al. (2022); (b) Hubbard et al. (1976); (c) Waters et al. (2020). |
Funding information
Funding for this research was provided by: National Institute of Food and Agriculture (grant No. Hatch 1023929); University of Missouri Experiment Station Chemical Laboratories .
References
Bruker (2014). AXScale, APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bull, P. J., Brooke, R. K., Cocker, J., Jones, K. & Warren, N. (2005). Ann. Occup. Hyg. 49, 683–690. PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hubbard, C. R., Mighell, A. D., Staffa, J. A., Zervos, C. & Konopelski, J. P. (1976). Acta Cryst. B32, 2723–2725. CrossRef CAS IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mawhinney, T. P., Li, Y., Chance, D. L., Kelley, S. P. & Mossine, V. V. (2020). Acta Cryst. E76, 562–566. CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Romeo, J. T. & Simmonds, M. S. J. (1989). ACS Symp. Ser. 387, 59–68. CrossRef Google Scholar
Seneviratne, A. S. & Fowden, L. (1968). Phytochemistry, 7, 1039–1045. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Staffa, J. A., Zervos, C., Mighell, A. D. & Hubbard, C. R. (1976). Acta Cryst. B32, 3132–3135. CrossRef CAS IUCr Journals Google Scholar
Thomas, S. P., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). J. Chem. Theory Comput. 14, 1614–1623. Web of Science CrossRef CAS PubMed Google Scholar
Watanabe, H., Fujita, Y., Sugahara, K., Kodama, H. & Ohmori, S. (1991). Biol. Mass Spectrom. 20, 602–608. CrossRef PubMed CAS Google Scholar
Waters, J. K., Kelley, S. P., Mossine, V. V. & Mawhinney, T. P. (2020). Pharmaceuticals 13, 270. CrossRef PubMed Google Scholar
Waters, J. K., Mossine, V. V., Kelley, S. P. & Mawhinney, T. P. (2022). Molecules, 27, 5317. CrossRef PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.