organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Oxo-2H-chromen-4-yl 3,3-di­methyl­butano­ate

crossmark logo

aLaboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, bLaboratory of Material, Sciences, Environnement and Solar Energy, Research Team: Crystallography and Molecular Physics, University Félix Houphouët-Boigny, 08 BP 582 Abidjan, Ivory Coast, and cLaboratory of Drug Development, Center of Training Reasearch and Expertise in Pharmaceutical Sciences (CFOREM), University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 30, Burkina Faso
*Correspondence e-mail: eric.ziki@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 23 May 2024; accepted 25 May 2024; online 31 May 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

In the crystal of the title compound, C15H16O4, the mol­ecules are connected through C—H⋯O hydrogen bonds, generating [100] chains, which are crosslinked by weak ππ stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarin derivatives show various biological activities such as anti­cancer (Lacy & O'Kennedy, 2004[Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797-3811.]; Kostova, 2005[Kostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29-46.]), anti-inflammatory (Todeschini et al., 1998[Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189-199.]) and anti­viral (Borges et al., 2005[Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887-916.]) properties. As part of our ongoing studies in this area (Ziki et al., 2017[Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45-47.]), we now describe the synthesis and structure of the title compound, C15H16O4.

As expected, the coumarin ring system is almost planar (r.m.s deviation = 0.025 Å) and oriented at an angle of 56.24 (18)° with the C10/C11/O3/O4 butano­ate moiety (Fig. 1[link]). The C1—C2 [1.332 (2) Å] and C2—C3 [1.446 (3) Å] bond lengths are shorter and longer, respectively, than those excepted for an aromatic C—C bond (1.38 Å). This suggests that the C1—C2 bond has significant double-bond character, as seen in other coumarin derivatives (e.g., Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]). A short intra­molecular C2—H2⋯O4 contact occurs (Table 1[link]). If this is regarded as a directional bond, an S(6) ring is generated. In the extended structure, the mol­ecules are linked by weak C5—H1⋯O1 hydrogen bonds, generating [100] C(6) chains (Fig. 2[link]). Weak aromatic ππ stacking between the C4–C9 rings [centroid–centroid separation = 3.8987 (12) Å, tilt angle = 10.08 (10)°] crosslink the chains in the [001] direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4 0.93 2.44 2.847 (3) 107
C5—H5⋯O1i 0.93 2.48 3.405 (2) 176
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of a [100] hydrogen-bonded chain in the extended structure of the title compound. The inter­molecular hydrogen bonds are shown as black dashed lines and the short intra­molecular contacts as orange dashed lines.

The only red spots (close contacts) on the Hirshfeld surface of the title compound generated by CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) are associated with the hydrogen-bond donor H5 and acceptor O1 atoms noted above (Fig. 3[link]). The two-dimensional fingerprint plots (Fig. 4[link]ae) show that the main contributions to the Hirshfeld surface are H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts, which contribute 47.4, 31.7, 14.2 and 5.4%, respectively.

[Figure 3]
Figure 3
A view of the Hirshfeld surface mapped over dnorm. The short contact points (red) are labelled to indicate the atoms participating in the inter­molecular inter­actions.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots: (a) overall, and delineated into contributions from different contacts: (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H and (e) C⋯C.

Synthesis and crystallization

In a 100 ml round-necked flask topped with a water condenser were introduced successively: dried diethyl ether (16 ml), tert-butyl­acetyl chloride (0.90 ml, 6.2 mmol) and dried pyridine (2.31 ml, 4.7 molar equivalents). With vigorous stirring, 4-hy­droxy­coumarin (1.00 g; 6.17 mmol) was added in small portions over 30 min. The reaction mixture was left stirring at room temperature for 3 h. The mixture was then poured in a separating funnel containing 40 ml of chloro­form and washed with diluted hydro­chloric acid solution until the pH was 2–3. The organic phase was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate was filtered off with suction, washed with n-pentane and recrystallized from acetone solution to obtain colourless prisms of the title compound: yield 63%; m.p. 430–431 K

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H16O4
Mr 260.28
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 295
a, b, c (Å) 10.6769 (3), 17.9611 (5), 7.0266 (2)
V3) 1347.48 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.76
Crystal size (mm) 0.32 × 0.18 × 0.16
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.829, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9694, 2249, 2133
Rint 0.020
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.05
No. of reflections 2249
No. of parameters 176
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.13
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.5 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 fro Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

2-Oxo-2H-chromen-4-yl 3,3-dimethylbutanoate top
Crystal data top
C15H16O4Dx = 1.283 Mg m3
Mr = 260.28Melting point: 430 K
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54184 Å
a = 10.6769 (3) ÅCell parameters from 6044 reflections
b = 17.9611 (5) Åθ = 4.8–72.4°
c = 7.0266 (2) ŵ = 0.76 mm1
V = 1347.48 (7) Å3T = 295 K
Z = 4Prism, colourless
F(000) = 5520.32 × 0.18 × 0.16 mm
Data collection top
SuperNova, Dual, Cu at home/near, AtlasS2
diffractometer
2133 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube; SuperNova (Cu) X-ray SourceRint = 0.020
Mirror monochromatorθmax = 72.4°, θmin = 4.8°
ω scanh = 1213
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2023)
k = 2221
Tmin = 0.829, Tmax = 1.000l = 87
9694 measured reflections2249 standard reflections every 25 min
2249 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.049P)2 + 0.0768P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2249 reflectionsΔρmax = 0.11 e Å3
176 parametersΔρmin = 0.13 e Å3
1 restraintAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.5 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.81314 (18)0.29193 (8)0.4568 (3)0.0877 (6)
O20.62460 (14)0.33944 (6)0.4897 (2)0.0631 (4)
O30.76506 (11)0.55295 (6)0.5416 (2)0.0578 (4)
O40.93542 (18)0.52915 (9)0.7209 (4)0.0924 (7)
C10.72707 (16)0.47995 (8)0.5255 (3)0.0468 (4)
C20.80284 (18)0.42179 (10)0.5013 (4)0.0569 (4)
H20.88910.42900.49740.068*
C30.7522 (2)0.34755 (10)0.4809 (3)0.0615 (5)
C40.54603 (17)0.39958 (9)0.5092 (3)0.0504 (4)
C50.4183 (2)0.38581 (12)0.5105 (3)0.0650 (5)
H50.38820.33730.50140.078*
C60.33703 (19)0.44444 (14)0.5253 (3)0.0673 (6)
H60.25120.43560.52620.081*
C70.38128 (18)0.51700 (12)0.5390 (3)0.0623 (5)
H70.32520.55650.54700.075*
C80.50808 (17)0.53037 (10)0.5406 (3)0.0515 (4)
H80.53750.57890.55090.062*
C90.59267 (16)0.47158 (8)0.5268 (3)0.0435 (4)
C100.87001 (19)0.57316 (12)0.6437 (4)0.0583 (5)
C110.8867 (2)0.65593 (11)0.6425 (4)0.0604 (5)
H11A0.92750.67070.75990.072*
H11B0.80460.67920.64010.072*
C120.96367 (16)0.68573 (9)0.4739 (3)0.0516 (4)
C130.9024 (3)0.66854 (15)0.2840 (4)0.0798 (7)
H13A0.89580.61560.26840.120*
H13B0.95230.68890.18300.120*
H13C0.82030.69030.28060.120*
C140.9745 (3)0.77005 (12)0.5023 (6)0.0868 (8)
H14A0.89220.79150.50700.130*
H14B1.02040.79140.39830.130*
H14C1.01750.78010.61950.130*
C151.0947 (2)0.65202 (14)0.4765 (5)0.0739 (6)
H15A1.13480.66360.59520.111*
H15B1.14300.67220.37350.111*
H15C1.08890.59900.46260.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1116 (13)0.0485 (8)0.1030 (14)0.0254 (8)0.0004 (12)0.0058 (9)
O20.0819 (9)0.0344 (6)0.0732 (10)0.0071 (5)0.0018 (9)0.0023 (7)
O30.0523 (6)0.0387 (6)0.0824 (10)0.0079 (5)0.0064 (7)0.0043 (6)
O40.0924 (12)0.0634 (9)0.1214 (18)0.0185 (9)0.0473 (12)0.0232 (10)
C10.0538 (9)0.0364 (8)0.0503 (10)0.0053 (6)0.0001 (9)0.0039 (8)
C20.0570 (9)0.0482 (9)0.0654 (12)0.0032 (7)0.0014 (10)0.0019 (10)
C30.0812 (13)0.0434 (9)0.0598 (13)0.0092 (9)0.0012 (12)0.0017 (9)
C40.0656 (10)0.0421 (8)0.0436 (9)0.0100 (7)0.0008 (9)0.0045 (8)
C50.0738 (12)0.0637 (11)0.0574 (12)0.0302 (10)0.0038 (11)0.0092 (11)
C60.0533 (10)0.0923 (15)0.0563 (12)0.0153 (10)0.0005 (11)0.0094 (13)
C70.0545 (10)0.0762 (13)0.0562 (11)0.0065 (9)0.0010 (10)0.0033 (11)
C80.0579 (9)0.0468 (9)0.0498 (10)0.0003 (7)0.0009 (9)0.0014 (8)
C90.0527 (8)0.0381 (7)0.0397 (8)0.0065 (6)0.0001 (8)0.0039 (7)
C100.0575 (10)0.0514 (10)0.0660 (12)0.0137 (9)0.0017 (10)0.0029 (10)
C110.0597 (11)0.0497 (10)0.0716 (13)0.0117 (8)0.0073 (10)0.0099 (10)
C120.0525 (9)0.0398 (8)0.0626 (12)0.0086 (7)0.0034 (9)0.0019 (8)
C130.0913 (17)0.0747 (16)0.0733 (16)0.0182 (13)0.0236 (13)0.0109 (13)
C140.1012 (16)0.0441 (10)0.115 (2)0.0192 (10)0.0060 (19)0.0045 (14)
C150.0576 (11)0.0847 (14)0.0793 (16)0.0015 (10)0.0018 (12)0.0032 (13)
Geometric parameters (Å, º) top
O1—C31.204 (2)C8—C91.393 (2)
O2—C31.371 (3)C8—H80.9300
O2—C41.374 (2)C10—C111.497 (3)
O3—C11.3771 (19)C11—C121.538 (3)
O3—C101.379 (2)C11—H11A0.9700
O4—C101.186 (3)C11—H11B0.9700
C1—C21.332 (2)C12—C131.518 (3)
C1—C91.443 (2)C12—C151.525 (3)
C2—C31.446 (3)C12—C141.532 (3)
C2—H20.9300C13—H13A0.9600
C4—C51.386 (3)C13—H13B0.9600
C4—C91.391 (2)C13—H13C0.9600
C5—C61.368 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.390 (3)C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—C81.375 (3)C15—H15B0.9600
C7—H70.9300C15—H15C0.9600
C3—O2—C4121.82 (13)O3—C10—C11110.79 (18)
C1—O3—C10122.19 (15)C10—C11—C12114.42 (18)
C2—C1—O3125.33 (16)C10—C11—H11A108.7
C2—C1—C9121.53 (15)C12—C11—H11A108.7
O3—C1—C9113.06 (14)C10—C11—H11B108.7
C1—C2—C3120.57 (18)C12—C11—H11B108.7
C1—C2—H2119.7H11A—C11—H11B107.6
C3—C2—H2119.7C13—C12—C15109.0 (2)
O1—C3—O2117.08 (19)C13—C12—C14110.4 (2)
O1—C3—C2125.2 (2)C15—C12—C14108.79 (17)
O2—C3—C2117.71 (16)C13—C12—C11112.06 (17)
O2—C4—C5117.45 (16)C15—C12—C11110.08 (19)
O2—C4—C9121.39 (16)C14—C12—C11106.50 (19)
C5—C4—C9121.16 (18)C12—C13—H13A109.5
C6—C5—C4119.15 (18)C12—C13—H13B109.5
C6—C5—H5120.4H13A—C13—H13B109.5
C4—C5—H5120.4C12—C13—H13C109.5
C5—C6—C7120.76 (18)H13A—C13—H13C109.5
C5—C6—H6119.6H13B—C13—H13C109.5
C7—C6—H6119.6C12—C14—H14A109.5
C8—C7—C6119.95 (19)C12—C14—H14B109.5
C8—C7—H7120.0H14A—C14—H14B109.5
C6—C7—H7120.0C12—C14—H14C109.5
C7—C8—C9120.36 (17)H14A—C14—H14C109.5
C7—C8—H8119.8H14B—C14—H14C109.5
C9—C8—H8119.8C12—C15—H15A109.5
C4—C9—C8118.61 (16)C12—C15—H15B109.5
C4—C9—C1116.89 (15)H15A—C15—H15B109.5
C8—C9—C1124.49 (15)C12—C15—H15C109.5
O4—C10—O3122.75 (19)H15A—C15—H15C109.5
O4—C10—C11126.5 (2)H15B—C15—H15C109.5
C10—O3—C1—C240.0 (3)C5—C4—C9—C81.7 (3)
C10—O3—C1—C9143.23 (18)O2—C4—C9—C10.6 (3)
O3—C1—C2—C3178.33 (19)C5—C4—C9—C1179.5 (2)
C9—C1—C2—C31.8 (3)C7—C8—C9—C40.7 (3)
C4—O2—C3—O1177.4 (2)C7—C8—C9—C1179.4 (2)
C4—O2—C3—C22.6 (3)C2—C1—C9—C42.5 (3)
C1—C2—C3—O1179.2 (2)O3—C1—C9—C4179.41 (17)
C1—C2—C3—O20.7 (3)C2—C1—C9—C8176.2 (2)
C3—O2—C4—C5178.0 (2)O3—C1—C9—C80.7 (3)
C3—O2—C4—C91.9 (3)C1—O3—C10—O41.4 (4)
O2—C4—C5—C6178.5 (2)C1—O3—C10—C11178.15 (18)
C9—C4—C5—C61.4 (3)O4—C10—C11—C1291.9 (3)
C4—C5—C6—C70.0 (4)O3—C10—C11—C1288.6 (2)
C5—C6—C7—C81.0 (4)C10—C11—C12—C1361.4 (2)
C6—C7—C8—C90.6 (3)C10—C11—C12—C1560.0 (2)
O2—C4—C9—C8178.16 (18)C10—C11—C12—C14177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O40.932.442.847 (3)107
C5—H5···O1i0.932.483.405 (2)176
Symmetry code: (i) x1/2, y+1/2, z.
 

References

First citationBorges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29–46.  CrossRef PubMed CAS Google Scholar
First citationLacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTodeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZiki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146