organic compounds
2-Oxo-2H-chromen-4-yl 3,3-dimethylbutanoate
aLaboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, bLaboratory of Material, Sciences, Environnement and Solar Energy, Research Team: Crystallography and Molecular Physics, University Félix Houphouët-Boigny, 08 BP 582 Abidjan, Ivory Coast, and cLaboratory of Drug Development, Center of Training Reasearch and Expertise in Pharmaceutical Sciences (CFOREM), University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 30, Burkina Faso
*Correspondence e-mail: eric.ziki@gmail.com
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
In the crystal of the title compound, C15H16O4, the molecules are connected through C—H⋯O hydrogen bonds, generating [100] chains, which are crosslinked by weak π–π stacking interactions.
Keywords: crystal structure; coumarin; Hirshfeld surface.
CCDC reference: 2336029
Structure description
Coumarin derivatives show various biological activities such as anticancer (Lacy & O'Kennedy, 2004; Kostova, 2005), anti-inflammatory (Todeschini et al., 1998) and antiviral (Borges et al., 2005) properties. As part of our ongoing studies in this area (Ziki et al., 2017), we now describe the synthesis and structure of the title compound, C15H16O4.
As expected, the coumarin ring system is almost planar (r.m.s deviation = 0.025 Å) and oriented at an angle of 56.24 (18)° with the C10/C11/O3/O4 butanoate moiety (Fig. 1). The C1—C2 [1.332 (2) Å] and C2—C3 [1.446 (3) Å] bond lengths are shorter and longer, respectively, than those excepted for an aromatic C—C bond (1.38 Å). This suggests that the C1—C2 bond has significant double-bond character, as seen in other coumarin derivatives (e.g., Gomes et al., 2016). A short intramolecular C2—H2⋯O4 contact occurs (Table 1). If this is regarded as a directional bond, an S(6) ring is generated. In the extended structure, the molecules are linked by weak C5—H1⋯O1 hydrogen bonds, generating [100] C(6) chains (Fig. 2). Weak aromatic π–π stacking between the C4–C9 rings [centroid–centroid separation = 3.8987 (12) Å, tilt angle = 10.08 (10)°] crosslink the chains in the [001] direction.
|
The only red spots (close contacts) on the Hirshfeld surface of the title compound generated by CrystalExplorer17 (Spackman et al., 2021) are associated with the hydrogen-bond donor H5 and acceptor O1 atoms noted above (Fig. 3). The two-dimensional fingerprint plots (Fig. 4a–e) show that the main contributions to the Hirshfeld surface are H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts, which contribute 47.4, 31.7, 14.2 and 5.4%, respectively.
Synthesis and crystallization
In a 100 ml round-necked flask topped with a water condenser were introduced successively: dried diethyl ether (16 ml), tert-butylacetyl chloride (0.90 ml, 6.2 mmol) and dried pyridine (2.31 ml, 4.7 molar equivalents). With vigorous stirring, 4-hydroxycoumarin (1.00 g; 6.17 mmol) was added in small portions over 30 min. The reaction mixture was left stirring at room temperature for 3 h. The mixture was then poured in a separating funnel containing 40 ml of chloroform and washed with diluted hydrochloric acid solution until the pH was 2–3. The organic phase was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate was filtered off with suction, washed with n-pentane and recrystallized from acetone solution to obtain colourless prisms of the title compound: yield 63%; m.p. 430–431 K
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2336029
https://doi.org/10.1107/S2414314624004942/hb4474sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624004942/hb4474Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624004942/hb4474Isup3.cml
C15H16O4 | Dx = 1.283 Mg m−3 |
Mr = 260.28 | Melting point: 430 K |
Orthorhombic, Pna21 | Cu Kα radiation, λ = 1.54184 Å |
a = 10.6769 (3) Å | Cell parameters from 6044 reflections |
b = 17.9611 (5) Å | θ = 4.8–72.4° |
c = 7.0266 (2) Å | µ = 0.76 mm−1 |
V = 1347.48 (7) Å3 | T = 295 K |
Z = 4 | Prism, colourless |
F(000) = 552 | 0.32 × 0.18 × 0.16 mm |
SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer | 2133 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube; SuperNova (Cu) X-ray Source | Rint = 0.020 |
Mirror monochromator | θmax = 72.4°, θmin = 4.8° |
ω scan | h = −12→13 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2023) | k = −22→21 |
Tmin = 0.829, Tmax = 1.000 | l = −8→7 |
9694 measured reflections | 2249 standard reflections every 25 min |
2249 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.049P)2 + 0.0768P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2249 reflections | Δρmax = 0.11 e Å−3 |
176 parameters | Δρmin = −0.13 e Å−3 |
1 restraint | Absolute structure: Refined as an inversion twin. |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.5 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.81314 (18) | 0.29193 (8) | 0.4568 (3) | 0.0877 (6) | |
O2 | 0.62460 (14) | 0.33944 (6) | 0.4897 (2) | 0.0631 (4) | |
O3 | 0.76506 (11) | 0.55295 (6) | 0.5416 (2) | 0.0578 (4) | |
O4 | 0.93542 (18) | 0.52915 (9) | 0.7209 (4) | 0.0924 (7) | |
C1 | 0.72707 (16) | 0.47995 (8) | 0.5255 (3) | 0.0468 (4) | |
C2 | 0.80284 (18) | 0.42179 (10) | 0.5013 (4) | 0.0569 (4) | |
H2 | 0.8891 | 0.4290 | 0.4974 | 0.068* | |
C3 | 0.7522 (2) | 0.34755 (10) | 0.4809 (3) | 0.0615 (5) | |
C4 | 0.54603 (17) | 0.39958 (9) | 0.5092 (3) | 0.0504 (4) | |
C5 | 0.4183 (2) | 0.38581 (12) | 0.5105 (3) | 0.0650 (5) | |
H5 | 0.3882 | 0.3373 | 0.5014 | 0.078* | |
C6 | 0.33703 (19) | 0.44444 (14) | 0.5253 (3) | 0.0673 (6) | |
H6 | 0.2512 | 0.4356 | 0.5262 | 0.081* | |
C7 | 0.38128 (18) | 0.51700 (12) | 0.5390 (3) | 0.0623 (5) | |
H7 | 0.3252 | 0.5565 | 0.5470 | 0.075* | |
C8 | 0.50808 (17) | 0.53037 (10) | 0.5406 (3) | 0.0515 (4) | |
H8 | 0.5375 | 0.5789 | 0.5509 | 0.062* | |
C9 | 0.59267 (16) | 0.47158 (8) | 0.5268 (3) | 0.0435 (4) | |
C10 | 0.87001 (19) | 0.57316 (12) | 0.6437 (4) | 0.0583 (5) | |
C11 | 0.8867 (2) | 0.65593 (11) | 0.6425 (4) | 0.0604 (5) | |
H11A | 0.9275 | 0.6707 | 0.7599 | 0.072* | |
H11B | 0.8046 | 0.6792 | 0.6401 | 0.072* | |
C12 | 0.96367 (16) | 0.68573 (9) | 0.4739 (3) | 0.0516 (4) | |
C13 | 0.9024 (3) | 0.66854 (15) | 0.2840 (4) | 0.0798 (7) | |
H13A | 0.8958 | 0.6156 | 0.2684 | 0.120* | |
H13B | 0.9523 | 0.6889 | 0.1830 | 0.120* | |
H13C | 0.8203 | 0.6903 | 0.2806 | 0.120* | |
C14 | 0.9745 (3) | 0.77005 (12) | 0.5023 (6) | 0.0868 (8) | |
H14A | 0.8922 | 0.7915 | 0.5070 | 0.130* | |
H14B | 1.0204 | 0.7914 | 0.3983 | 0.130* | |
H14C | 1.0175 | 0.7801 | 0.6195 | 0.130* | |
C15 | 1.0947 (2) | 0.65202 (14) | 0.4765 (5) | 0.0739 (6) | |
H15A | 1.1348 | 0.6636 | 0.5952 | 0.111* | |
H15B | 1.1430 | 0.6722 | 0.3735 | 0.111* | |
H15C | 1.0889 | 0.5990 | 0.4626 | 0.111* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1116 (13) | 0.0485 (8) | 0.1030 (14) | 0.0254 (8) | −0.0004 (12) | −0.0058 (9) |
O2 | 0.0819 (9) | 0.0344 (6) | 0.0732 (10) | −0.0071 (5) | −0.0018 (9) | 0.0023 (7) |
O3 | 0.0523 (6) | 0.0387 (6) | 0.0824 (10) | −0.0079 (5) | −0.0064 (7) | 0.0043 (6) |
O4 | 0.0924 (12) | 0.0634 (9) | 0.1214 (18) | −0.0185 (9) | −0.0473 (12) | 0.0232 (10) |
C1 | 0.0538 (9) | 0.0364 (8) | 0.0503 (10) | −0.0053 (6) | 0.0001 (9) | 0.0039 (8) |
C2 | 0.0570 (9) | 0.0482 (9) | 0.0654 (12) | 0.0032 (7) | 0.0014 (10) | 0.0019 (10) |
C3 | 0.0812 (13) | 0.0434 (9) | 0.0598 (13) | 0.0092 (9) | −0.0012 (12) | 0.0017 (9) |
C4 | 0.0656 (10) | 0.0421 (8) | 0.0436 (9) | −0.0100 (7) | −0.0008 (9) | 0.0045 (8) |
C5 | 0.0738 (12) | 0.0637 (11) | 0.0574 (12) | −0.0302 (10) | −0.0038 (11) | 0.0092 (11) |
C6 | 0.0533 (10) | 0.0923 (15) | 0.0563 (12) | −0.0153 (10) | 0.0005 (11) | 0.0094 (13) |
C7 | 0.0545 (10) | 0.0762 (13) | 0.0562 (11) | 0.0065 (9) | 0.0010 (10) | 0.0033 (11) |
C8 | 0.0579 (9) | 0.0468 (9) | 0.0498 (10) | 0.0003 (7) | −0.0009 (9) | 0.0014 (8) |
C9 | 0.0527 (8) | 0.0381 (7) | 0.0397 (8) | −0.0065 (6) | 0.0001 (8) | 0.0039 (7) |
C10 | 0.0575 (10) | 0.0514 (10) | 0.0660 (12) | −0.0137 (9) | −0.0017 (10) | 0.0029 (10) |
C11 | 0.0597 (11) | 0.0497 (10) | 0.0716 (13) | −0.0117 (8) | 0.0073 (10) | −0.0099 (10) |
C12 | 0.0525 (9) | 0.0398 (8) | 0.0626 (12) | −0.0086 (7) | −0.0034 (9) | −0.0019 (8) |
C13 | 0.0913 (17) | 0.0747 (16) | 0.0733 (16) | −0.0182 (13) | −0.0236 (13) | 0.0109 (13) |
C14 | 0.1012 (16) | 0.0441 (10) | 0.115 (2) | −0.0192 (10) | 0.0060 (19) | −0.0045 (14) |
C15 | 0.0576 (11) | 0.0847 (14) | 0.0793 (16) | −0.0015 (10) | 0.0018 (12) | −0.0032 (13) |
O1—C3 | 1.204 (2) | C8—C9 | 1.393 (2) |
O2—C3 | 1.371 (3) | C8—H8 | 0.9300 |
O2—C4 | 1.374 (2) | C10—C11 | 1.497 (3) |
O3—C1 | 1.3771 (19) | C11—C12 | 1.538 (3) |
O3—C10 | 1.379 (2) | C11—H11A | 0.9700 |
O4—C10 | 1.186 (3) | C11—H11B | 0.9700 |
C1—C2 | 1.332 (2) | C12—C13 | 1.518 (3) |
C1—C9 | 1.443 (2) | C12—C15 | 1.525 (3) |
C2—C3 | 1.446 (3) | C12—C14 | 1.532 (3) |
C2—H2 | 0.9300 | C13—H13A | 0.9600 |
C4—C5 | 1.386 (3) | C13—H13B | 0.9600 |
C4—C9 | 1.391 (2) | C13—H13C | 0.9600 |
C5—C6 | 1.368 (3) | C14—H14A | 0.9600 |
C5—H5 | 0.9300 | C14—H14B | 0.9600 |
C6—C7 | 1.390 (3) | C14—H14C | 0.9600 |
C6—H6 | 0.9300 | C15—H15A | 0.9600 |
C7—C8 | 1.375 (3) | C15—H15B | 0.9600 |
C7—H7 | 0.9300 | C15—H15C | 0.9600 |
C3—O2—C4 | 121.82 (13) | O3—C10—C11 | 110.79 (18) |
C1—O3—C10 | 122.19 (15) | C10—C11—C12 | 114.42 (18) |
C2—C1—O3 | 125.33 (16) | C10—C11—H11A | 108.7 |
C2—C1—C9 | 121.53 (15) | C12—C11—H11A | 108.7 |
O3—C1—C9 | 113.06 (14) | C10—C11—H11B | 108.7 |
C1—C2—C3 | 120.57 (18) | C12—C11—H11B | 108.7 |
C1—C2—H2 | 119.7 | H11A—C11—H11B | 107.6 |
C3—C2—H2 | 119.7 | C13—C12—C15 | 109.0 (2) |
O1—C3—O2 | 117.08 (19) | C13—C12—C14 | 110.4 (2) |
O1—C3—C2 | 125.2 (2) | C15—C12—C14 | 108.79 (17) |
O2—C3—C2 | 117.71 (16) | C13—C12—C11 | 112.06 (17) |
O2—C4—C5 | 117.45 (16) | C15—C12—C11 | 110.08 (19) |
O2—C4—C9 | 121.39 (16) | C14—C12—C11 | 106.50 (19) |
C5—C4—C9 | 121.16 (18) | C12—C13—H13A | 109.5 |
C6—C5—C4 | 119.15 (18) | C12—C13—H13B | 109.5 |
C6—C5—H5 | 120.4 | H13A—C13—H13B | 109.5 |
C4—C5—H5 | 120.4 | C12—C13—H13C | 109.5 |
C5—C6—C7 | 120.76 (18) | H13A—C13—H13C | 109.5 |
C5—C6—H6 | 119.6 | H13B—C13—H13C | 109.5 |
C7—C6—H6 | 119.6 | C12—C14—H14A | 109.5 |
C8—C7—C6 | 119.95 (19) | C12—C14—H14B | 109.5 |
C8—C7—H7 | 120.0 | H14A—C14—H14B | 109.5 |
C6—C7—H7 | 120.0 | C12—C14—H14C | 109.5 |
C7—C8—C9 | 120.36 (17) | H14A—C14—H14C | 109.5 |
C7—C8—H8 | 119.8 | H14B—C14—H14C | 109.5 |
C9—C8—H8 | 119.8 | C12—C15—H15A | 109.5 |
C4—C9—C8 | 118.61 (16) | C12—C15—H15B | 109.5 |
C4—C9—C1 | 116.89 (15) | H15A—C15—H15B | 109.5 |
C8—C9—C1 | 124.49 (15) | C12—C15—H15C | 109.5 |
O4—C10—O3 | 122.75 (19) | H15A—C15—H15C | 109.5 |
O4—C10—C11 | 126.5 (2) | H15B—C15—H15C | 109.5 |
C10—O3—C1—C2 | −40.0 (3) | C5—C4—C9—C8 | −1.7 (3) |
C10—O3—C1—C9 | 143.23 (18) | O2—C4—C9—C1 | −0.6 (3) |
O3—C1—C2—C3 | −178.33 (19) | C5—C4—C9—C1 | 179.5 (2) |
C9—C1—C2—C3 | −1.8 (3) | C7—C8—C9—C4 | 0.7 (3) |
C4—O2—C3—O1 | −177.4 (2) | C7—C8—C9—C1 | 179.4 (2) |
C4—O2—C3—C2 | 2.6 (3) | C2—C1—C9—C4 | 2.5 (3) |
C1—C2—C3—O1 | 179.2 (2) | O3—C1—C9—C4 | 179.41 (17) |
C1—C2—C3—O2 | −0.7 (3) | C2—C1—C9—C8 | −176.2 (2) |
C3—O2—C4—C5 | 178.0 (2) | O3—C1—C9—C8 | 0.7 (3) |
C3—O2—C4—C9 | −1.9 (3) | C1—O3—C10—O4 | 1.4 (4) |
O2—C4—C5—C6 | −178.5 (2) | C1—O3—C10—C11 | −178.15 (18) |
C9—C4—C5—C6 | 1.4 (3) | O4—C10—C11—C12 | 91.9 (3) |
C4—C5—C6—C7 | 0.0 (4) | O3—C10—C11—C12 | −88.6 (2) |
C5—C6—C7—C8 | −1.0 (4) | C10—C11—C12—C13 | 61.4 (2) |
C6—C7—C8—C9 | 0.6 (3) | C10—C11—C12—C15 | −60.0 (2) |
O2—C4—C9—C8 | 178.16 (18) | C10—C11—C12—C14 | −177.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O4 | 0.93 | 2.44 | 2.847 (3) | 107 |
C5—H5···O1i | 0.93 | 2.48 | 3.405 (2) | 176 |
Symmetry code: (i) x−1/2, −y+1/2, z. |
References
Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29–46. CrossRef PubMed CAS Google Scholar
Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.