organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(10-Bromo­anthracen-9-yl)-N-phenyl­aniline

crossmark logo

aDepartment of Chemistry, National College, Thiruchirappalli, Tamil Nadu, India, bDepartment of Chemistry, Dhanamanjuri University, Manipur 795 001, India, and cDepartment of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India
*Correspondence e-mail: jerelewin.mine@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 13 May 2024; accepted 21 May 2024; online 31 May 2024)

In the title compound, C26H18BrN, the central benzene ring makes dihedral angles with its adjacent anthracene ring system and pendant benzene ring of 87.49 (13) and 62.01 (17)°, respectively. The N—H moiety is sterically blocked from forming a hydrogen bond, but weak C—H⋯π inter­actions occur in the extended structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Anthracene derivatives are candidates for two-dimensional mol­ecular crystals, which can show inter­esting properties with applications in electronics, biomedicine, and sensors (Yan et al., 2023[Yan, X., Zhao, Y., Cao, G., Li, X., Gao, C., Liu, L., Ahmed, S., Altaf, F., Tan, H., Ma, X., Xie, Z. & Zhang, H. (2023). Adv. Sci. 10, 2203889. https://doi.org/10.1002/advs.202203889]). As part of our studies of anthracene derivatives, we now report the synthesis and crystal structure of the title compound, C26H18BrN, (I).

The mol­ecular structure of (I) is illustrated in Fig. 1[link]. As expected, the anthracene (C1–C14) ring system is almost planar, with a maximum deviation of 0.039 (4) Å for atom C1. The central benzene (C15–C20) ring makes dihedral angles of 87.49 (13) and 62.01 (17)° with the anthracene ring system and the terminal C21–C26 phenyl ring, respectively. The dihedral angle between the phenyl ring and anthracene ring system is 87.92 (14)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I) showing displacement ellipsoids at the 50% probability level (H atoms are omitted for clarity).

In the extended structure, the N—H grouping in (I) is presumably blocked from forming a hydrogen bond due to steric reasons but two weak C—H⋯π inter­actions are observed (Table 1[link]). The packing is illustrated in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg3i 0.93 2.77 3.598 (4) 148
C18—H18⋯Cg5i 0.93 2.85 3.661 (4) 146
Symmetry code: (i) [x, y+1, z].
[Figure 2]
Figure 2
The crystal packing of (I) viewed approximately down [000].

Related structures reported in the Cambridge Structural Database (CSD, Version 5.41, updated November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) include {1-[2-(9-anthr­yl)phen­yl]-3-[2-(4-isopropyl-4,5-di­hydro-1,3-oxazol-2-yl)propan-2-yl]-1,3-di­hydro-2H-benzimidazole-2-thione}di­chloro­palladium(II) deutero­chloro­form solvate (CSD refcode BUVGEF; Gao et al. 2010[Gao, Y.-Z., Chang, L., Shi, H., Liang, B., Wongkhan, K., Chaiyaveij, D., Batsanov, A. S., Marder, T. B., Li, C.-C., Yang, Z. & Huang, Y. (2010). Adv. Synth. Catal. 352, 1955-1966.]), 10-bromo-2,7-di-tert-butyl-N,N-bis­(4-methyl­phen­yl) anthracen-9-amine (FEKTOG; Hoffend et al., 2012[Hoffend, C., Schödel, F., Bolte, M., Lerner, H.-W. & Wagner, M. (2012). Chem. Eur. J. 18, 15394-15405.]) and 9-(10′-bromo-9′-anthr­yl)carbazole (PEDSUM; Boyer et al., 1993[Boyer, G., Claramunt, R. M., Elguero, J., Fathalla, M., Foces-Foces, C., Jaime, C. & Llamas-Saiz, A. L. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 757-766.]).

Synthesis and crystallization

Following the method of Justin Thomas et al. (2005[Justin Thomas, K. R., Velusamy, M., Lin, J. T., Chuen, C. H. & Tao, Y. T. (2005). Chem. Mater. 17, 1860-1866.]), a mixture of di­phenyl­amine (1.69 g, 10.0 mmol), sodium tert-butoxide (1.15 g, 12.0 mmol) and Pd2(dba)3 (dba = di­benzyl­ideneacetone; 23 mg, 0.10 mmol) was dissolved in dry toluene (50 ml), and 9,10-di­bromo­anthracene (3.33 g, 10.0 mmol) and 1,1′-ferrocenediyl-bis­(di­phenyl­phosphine) (0.277 g, 0.5 mmol) were added sequentially. The mixture was heated to reflux, stirred for 24 h and then cooled and 5 ml of water were added. The solution was extracted with di­chloro­methane/water. The organic layer was dried over anhydrous sodium sulfate, filtered, and dried. The residue was chromatographed through silica gel using a mixture of di­chloro­methane and hexane as the eluent to give the pure product as yellow crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H18BrN
Mr 424.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 13.0619 (17), 7.6891 (10), 20.475 (3)
β (°) 106.809 (14)
V3) 1968.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.10
Crystal size (mm) 0.48 × 0.39 × 0.30
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Analytical (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.432, 0.572
No. of measured, independent and observed [I > 2σ(I)] reflections 12046, 3999, 3115
Rint 0.037
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 1.05
No. of reflections 3999
No. of parameters 257
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.81, −1.40
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

2-(10-Bromoanthracen-9-yl)-N-phenylaniline top
Crystal data top
C26H18BrNF(000) = 864
Mr = 424.32Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.0619 (17) ÅCell parameters from 3999 reflections
b = 7.6891 (10) Åθ = 3.4–26.4°
c = 20.475 (3) ŵ = 2.10 mm1
β = 106.809 (14)°T = 293 K
V = 1968.6 (5) Å3Plate, yellow
Z = 40.48 × 0.39 × 0.30 mm
Data collection top
Agilent Xcalibur, Atlas, Gemini
diffractometer
3115 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
ω scansθmax = 26.4°, θmin = 3.4°
Absorption correction: analytical
(CrysAlis RED; Agilent, 2012)
h = 1614
Tmin = 0.432, Tmax = 0.572k = 98
12046 measured reflectionsl = 2525
3999 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0558P)2 + 1.6534P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3999 reflectionsΔρmax = 0.81 e Å3
257 parametersΔρmin = 1.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The N-bound hydrogen atom was located in a difference map and its position was freely refined. The remaining hydrogen atoms were positioned geometrically [C—H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.02528 (3)0.04566 (6)0.34351 (2)0.0715 (2)
N10.4598 (2)0.3135 (4)0.41519 (18)0.0577 (9)
C30.1079 (2)0.2407 (4)0.40118 (14)0.0324 (6)
C120.1886 (2)0.3680 (4)0.40287 (14)0.0315 (6)
C110.2396 (2)0.3735 (4)0.35115 (14)0.0309 (6)
C50.1305 (2)0.1255 (4)0.29426 (14)0.0321 (6)
C100.2127 (2)0.2523 (4)0.29757 (14)0.0306 (6)
C40.0816 (2)0.1236 (4)0.34678 (15)0.0346 (6)
C150.3228 (2)0.5092 (4)0.35332 (15)0.0338 (6)
C90.2637 (2)0.2517 (4)0.24464 (15)0.0396 (7)
H90.3177470.3317030.2461040.048*
C200.4302 (2)0.4749 (4)0.38369 (16)0.0374 (7)
C20.0601 (3)0.2382 (4)0.45579 (15)0.0424 (7)
H20.0072710.1569050.4555130.051*
C80.2351 (3)0.1373 (4)0.19247 (16)0.0467 (8)
H80.2693770.1398790.1584910.056*
C210.5558 (2)0.2265 (4)0.41906 (17)0.0410 (7)
C130.2159 (3)0.4878 (4)0.45853 (16)0.0426 (7)
H130.2670450.5730830.4601480.051*
C60.1034 (3)0.0083 (4)0.23773 (16)0.0426 (7)
H60.0498340.0738000.2344130.051*
C70.1544 (3)0.0148 (4)0.18900 (17)0.0487 (8)
H70.1356780.0630950.1527150.058*
C160.2937 (3)0.6726 (4)0.32505 (18)0.0478 (8)
H160.2216260.6979530.3057400.057*
C260.6048 (3)0.1311 (4)0.47645 (18)0.0482 (8)
H260.5762520.1293370.5131360.058*
C180.4752 (3)0.7621 (4)0.35375 (18)0.0501 (8)
H180.5265900.8453600.3533000.060*
C10.0911 (3)0.3530 (5)0.50787 (16)0.0484 (8)
H10.0603810.3477100.5435320.058*
C190.5059 (3)0.6027 (4)0.38339 (19)0.0492 (8)
H190.5781170.5798040.4034880.059*
C220.6002 (3)0.2280 (5)0.36512 (19)0.0512 (8)
H220.5675770.2913510.3259150.061*
C170.3693 (3)0.7984 (4)0.32496 (19)0.0545 (9)
H170.3483210.9067070.3054810.065*
C140.1681 (3)0.4789 (5)0.50894 (17)0.0497 (8)
H140.1870450.5580490.5447860.060*
C230.6920 (3)0.1364 (5)0.3695 (2)0.0620 (10)
H230.7216460.1399890.3333580.074*
C250.6966 (3)0.0379 (5)0.4793 (3)0.0678 (12)
H250.7293310.0274720.5179430.081*
C240.7402 (3)0.0409 (5)0.4254 (3)0.0717 (12)
H240.8019470.0219190.4274680.086*
H550.425 (3)0.265 (6)0.435 (2)0.073 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0704 (3)0.0804 (3)0.0719 (3)0.0470 (2)0.0336 (2)0.0247 (2)
N10.0311 (15)0.0545 (18)0.092 (2)0.0093 (13)0.0244 (16)0.0365 (17)
C30.0271 (14)0.0351 (15)0.0330 (15)0.0021 (11)0.0057 (11)0.0035 (12)
C120.0279 (14)0.0333 (14)0.0306 (15)0.0019 (11)0.0041 (11)0.0025 (11)
C110.0212 (13)0.0327 (14)0.0357 (15)0.0024 (11)0.0036 (11)0.0057 (12)
C50.0284 (14)0.0309 (14)0.0329 (15)0.0031 (11)0.0024 (12)0.0014 (11)
C100.0255 (13)0.0326 (14)0.0314 (14)0.0047 (11)0.0047 (11)0.0053 (11)
C40.0260 (14)0.0365 (15)0.0378 (16)0.0035 (12)0.0039 (12)0.0021 (12)
C150.0315 (15)0.0330 (14)0.0371 (16)0.0015 (12)0.0103 (13)0.0024 (12)
C90.0374 (16)0.0413 (17)0.0415 (17)0.0049 (13)0.0136 (14)0.0070 (13)
C200.0315 (15)0.0360 (15)0.0465 (18)0.0015 (12)0.0140 (13)0.0089 (13)
C20.0389 (17)0.0494 (18)0.0401 (17)0.0023 (14)0.0133 (14)0.0030 (14)
C80.052 (2)0.054 (2)0.0379 (17)0.0078 (16)0.0188 (15)0.0020 (15)
C210.0286 (15)0.0322 (15)0.059 (2)0.0012 (12)0.0069 (14)0.0050 (14)
C130.0433 (18)0.0419 (17)0.0410 (18)0.0080 (14)0.0098 (14)0.0061 (13)
C60.0469 (18)0.0389 (16)0.0379 (17)0.0039 (14)0.0059 (14)0.0037 (13)
C70.062 (2)0.0439 (18)0.0373 (18)0.0047 (16)0.0093 (16)0.0058 (14)
C160.0389 (17)0.0378 (17)0.061 (2)0.0031 (14)0.0050 (15)0.0133 (15)
C260.0388 (17)0.0457 (18)0.056 (2)0.0000 (14)0.0074 (15)0.0072 (16)
C180.051 (2)0.0384 (18)0.065 (2)0.0136 (15)0.0232 (18)0.0003 (15)
C10.0504 (19)0.060 (2)0.0377 (18)0.0041 (16)0.0181 (15)0.0013 (15)
C190.0313 (16)0.0508 (19)0.066 (2)0.0044 (14)0.0145 (16)0.0070 (17)
C220.049 (2)0.0476 (19)0.056 (2)0.0016 (16)0.0134 (17)0.0038 (16)
C170.060 (2)0.0309 (16)0.070 (2)0.0027 (15)0.0140 (19)0.0133 (16)
C140.057 (2)0.054 (2)0.0386 (18)0.0039 (16)0.0151 (16)0.0098 (15)
C230.065 (2)0.045 (2)0.090 (3)0.0036 (18)0.043 (2)0.009 (2)
C250.045 (2)0.052 (2)0.095 (3)0.0124 (17)0.002 (2)0.024 (2)
C240.048 (2)0.052 (2)0.121 (4)0.0122 (18)0.035 (3)0.006 (2)
Geometric parameters (Å, º) top
Br1—C41.896 (3)C21—C221.388 (5)
N1—C201.401 (4)C13—C141.353 (5)
N1—C211.404 (4)C13—H130.9300
N1—H550.78 (4)C6—C71.352 (5)
C3—C41.396 (4)C6—H60.9300
C3—C21.430 (4)C7—H70.9300
C3—C121.432 (4)C16—C171.383 (5)
C12—C111.405 (4)C16—H160.9300
C12—C131.429 (4)C26—C251.385 (5)
C11—C101.405 (4)C26—H260.9300
C11—C151.497 (4)C18—C171.366 (5)
C5—C41.400 (4)C18—C191.375 (5)
C5—C61.428 (4)C18—H180.9300
C5—C101.437 (4)C1—C141.392 (5)
C10—C91.427 (4)C1—H10.9300
C15—C201.386 (4)C19—H190.9300
C15—C161.390 (4)C22—C231.371 (5)
C9—C81.351 (5)C22—H220.9300
C9—H90.9300C17—H170.9300
C20—C191.395 (4)C14—H140.9300
C2—C11.353 (4)C23—C241.352 (6)
C2—H20.9300C23—H230.9300
C8—C71.400 (5)C25—C241.381 (6)
C8—H80.9300C25—H250.9300
C21—C261.376 (5)C24—H240.9300
C20—N1—C21124.8 (3)C12—C13—H13119.6
C20—N1—H55122 (3)C7—C6—C5121.0 (3)
C21—N1—H55113 (3)C7—C6—H6119.5
C4—C3—C2123.6 (3)C5—C6—H6119.5
C4—C3—C12118.0 (2)C6—C7—C8120.8 (3)
C2—C3—C12118.4 (3)C6—C7—H7119.6
C11—C12—C13121.2 (3)C8—C7—H7119.6
C11—C12—C3120.6 (3)C17—C16—C15121.5 (3)
C13—C12—C3118.2 (3)C17—C16—H16119.2
C10—C11—C12120.1 (2)C15—C16—H16119.2
C10—C11—C15120.1 (2)C21—C26—C25119.7 (4)
C12—C11—C15119.8 (2)C21—C26—H26120.2
C4—C5—C6123.7 (3)C25—C26—H26120.2
C4—C5—C10118.1 (2)C17—C18—C19120.2 (3)
C6—C5—C10118.2 (3)C17—C18—H18119.9
C11—C10—C9121.9 (3)C19—C18—H18119.9
C11—C10—C5120.2 (2)C2—C1—C14121.1 (3)
C9—C10—C5118.0 (3)C2—C1—H1119.5
C3—C4—C5123.0 (3)C14—C1—H1119.5
C3—C4—Br1118.7 (2)C18—C19—C20120.8 (3)
C5—C4—Br1118.3 (2)C18—C19—H19119.6
C20—C15—C16118.6 (3)C20—C19—H19119.6
C20—C15—C11120.8 (3)C23—C22—C21120.1 (3)
C16—C15—C11120.6 (3)C23—C22—H22119.9
C8—C9—C10121.3 (3)C21—C22—H22119.9
C8—C9—H9119.4C18—C17—C16119.4 (3)
C10—C9—H9119.4C18—C17—H17120.3
C15—C20—C19119.4 (3)C16—C17—H17120.3
C15—C20—N1118.9 (3)C13—C14—C1120.9 (3)
C19—C20—N1121.7 (3)C13—C14—H14119.5
C1—C2—C3120.6 (3)C1—C14—H14119.5
C1—C2—H2119.7C24—C23—C22121.3 (4)
C3—C2—H2119.7C24—C23—H23119.3
C9—C8—C7120.7 (3)C22—C23—H23119.3
C9—C8—H8119.6C24—C25—C26120.7 (4)
C7—C8—H8119.6C24—C25—H25119.7
C26—C21—C22119.1 (3)C26—C25—H25119.7
C26—C21—N1119.3 (3)C23—C24—C25119.1 (4)
C22—C21—N1121.5 (3)C23—C24—H24120.4
C14—C13—C12120.8 (3)C25—C24—H24120.4
C14—C13—H13119.6
C4—C3—C12—C110.2 (4)C11—C15—C20—N12.8 (5)
C2—C3—C12—C11178.7 (3)C21—N1—C20—C15148.5 (3)
C4—C3—C12—C13179.9 (3)C21—N1—C20—C1932.9 (5)
C2—C3—C12—C131.0 (4)C4—C3—C2—C1178.5 (3)
C13—C12—C11—C10178.9 (3)C12—C3—C2—C10.3 (4)
C3—C12—C11—C100.8 (4)C10—C9—C8—C70.3 (5)
C13—C12—C11—C151.1 (4)C20—N1—C21—C26144.7 (4)
C3—C12—C11—C15179.2 (2)C20—N1—C21—C2238.2 (5)
C12—C11—C10—C9179.0 (3)C11—C12—C13—C14178.4 (3)
C15—C11—C10—C91.0 (4)C3—C12—C13—C141.3 (5)
C12—C11—C10—C51.9 (4)C4—C5—C6—C7179.1 (3)
C15—C11—C10—C5178.1 (2)C10—C5—C6—C70.8 (4)
C4—C5—C10—C112.0 (4)C5—C6—C7—C80.2 (5)
C6—C5—C10—C11178.1 (3)C9—C8—C7—C60.0 (5)
C4—C5—C10—C9178.8 (2)C20—C15—C16—C171.9 (5)
C6—C5—C10—C91.0 (4)C11—C15—C16—C17178.4 (3)
C2—C3—C4—C5178.8 (3)C22—C21—C26—C250.4 (5)
C12—C3—C4—C50.0 (4)N1—C21—C26—C25176.8 (3)
C2—C3—C4—Br11.3 (4)C3—C2—C1—C141.6 (5)
C12—C3—C4—Br1179.9 (2)C17—C18—C19—C201.0 (5)
C6—C5—C4—C3179.1 (3)C15—C20—C19—C180.4 (5)
C10—C5—C4—C31.1 (4)N1—C20—C19—C18178.3 (3)
C6—C5—C4—Br10.8 (4)C26—C21—C22—C230.5 (5)
C10—C5—C4—Br1179.03 (19)N1—C21—C22—C23177.5 (3)
C10—C11—C15—C2086.9 (3)C19—C18—C17—C160.9 (6)
C12—C11—C15—C2093.1 (3)C15—C16—C17—C180.5 (6)
C10—C11—C15—C1693.3 (4)C12—C13—C14—C10.1 (5)
C12—C11—C15—C1686.7 (4)C2—C1—C14—C131.3 (5)
C11—C10—C9—C8178.3 (3)C21—C22—C23—C241.1 (6)
C5—C10—C9—C80.8 (4)C21—C26—C25—C240.6 (6)
C16—C15—C20—C191.8 (5)C22—C23—C24—C250.9 (6)
C11—C15—C20—C19178.5 (3)C26—C25—C24—C230.0 (6)
C16—C15—C20—N1176.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg3i0.932.773.598 (4)148
C18—H18···Cg5i0.932.853.661 (4)146
Symmetry code: (i) x, y+1, z.
 

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBoyer, G., Claramunt, R. M., Elguero, J., Fathalla, M., Foces-Foces, C., Jaime, C. & Llamas-Saiz, A. L. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 757–766.  CSD CrossRef Web of Science Google Scholar
First citationGao, Y.-Z., Chang, L., Shi, H., Liang, B., Wongkhan, K., Chaiyaveij, D., Batsanov, A. S., Marder, T. B., Li, C.-C., Yang, Z. & Huang, Y. (2010). Adv. Synth. Catal. 352, 1955–1966.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoffend, C., Schödel, F., Bolte, M., Lerner, H.-W. & Wagner, M. (2012). Chem. Eur. J. 18, 15394–15405.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJustin Thomas, K. R., Velusamy, M., Lin, J. T., Chuen, C. H. & Tao, Y. T. (2005). Chem. Mater. 17, 1860–1866.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYan, X., Zhao, Y., Cao, G., Li, X., Gao, C., Liu, L., Ahmed, S., Altaf, F., Tan, H., Ma, X., Xie, Z. & Zhang, H. (2023). Adv. Sci. 10, 2203889. https://doi.org/10.1002/advs.202203889  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146