organic compounds
Methyl 2-hydroxy-4-iodobenzoate
a730 Natural Sciences Complex, Buffalo, NY 14260-3000, USA, and b771 Natural Sciences Complex, Buffalo, NY 14260, USA
*Correspondence e-mail: jbb6@buffalo.edu
The structure of the title compound, C8H7IO3, at 90 K has monoclinic (P21/c) symmetry. The extended structure is layered and displays intermolecular and intramolecular hydrogen bonding arising from the same OH group.
Keywords: crystal structure; organic; co-former.
CCDC reference: 2352344
Structure description
2-Hydroxybenzoic acid methyl ester (C8H8O3), commonly known as methyl salicylate, and its derivatives have been shown to display biological effects such as anti-inflammatory, anti-fungal, and process signaling (Yoon et al., 2019; Li et al., 2016; Park et al., 2007). It can also be found in various foods (Duthie & Wood, 2011). The title compound, 2-hydroxy-4-iodobenzoic acid methyl ester (methyl 4-iodosalicylate, C8H7IO3) allows for an effective way of incorporating the said methyl salicylates within larger organic molecules, using such methodologies as McClure protocols (Franchi et al., 2010; McClure et al., 2001), Stille (Yoon et al., 2019; Stille, 1986) and Suzuki–Miyaura reactions (Fracaroli et al., 2014; Miyaura et al., 1979), which take advantage of the iodine atom at the 4-position of the aromatic ring for the formation of carbon–carbon bonds. The iodine atom is also capable of forming supramolecular synthons, which may be useful for crystal engineering (Desiraju, 1995; Cherukuvada et al., 2016; Mitchell et al., 2023).
At 90 K the title compound displays monoclinic (P21/c) symmetry with one molecule in the (Fig. 1). Intermolecular hydrogen bonding interactions occur between the hydroxy groups of one molecule and the carbonyl oxygen atom of the methyl ester of an adjacent molecule to form a centrosymmetric dimeric pair (Table 1, Fig. 2) with H⋯O = 2.53 (4) Å. An O3—H3⋯O2 intramolecular hydrogen bond also exists with an H⋯O distance of 2.05 (4) Å. The C5⋯C8 [3.326 (3) Å] and O3⋯H1C (2.51 Å) interactions provide the only short contacts between the stacks of offset (02) parallel sheets, which make up the crystal (Fig. 3). These sheets, in turn, contain the inversion-generated hydrogen-bonded dimers (Fig. 2). The non-hydrogen atoms of the molecule are essentially coplanar with no displacement from the mean molecular plane greater than 0.132 Å (Fig. 4).
Crystallization
Methyl 4-iodosalicylate (32.8 mg, 0.118 mmol) was added to a 20 ml scintillation vial to which benzene (∼2 ml) was added, and the vial shaken until the compound dissolved. The resulting solution was then left undisturbed, lightly capped, and in the dark for one week to allow for crystal formation while the solvent slowly evaporated.
Refinement
Crystal data, data collection, and structure .
details are summarized in Table 2Structural data
CCDC reference: 2352344
https://doi.org/10.1107/S2414314624003948/hb4468sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624003948/hb4468Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624003948/hb4468Isup3.cml
C8H7IO3 | F(000) = 528 |
Mr = 278.04 | Dx = 2.156 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 4.3286 (8) Å | Cell parameters from 6811 reflections |
b = 21.334 (4) Å | θ = 2.9–34.1° |
c = 9.2941 (16) Å | µ = 3.70 mm−1 |
β = 93.744 (4)° | T = 90 K |
V = 856.4 (3) Å3 | Plate, pale yellow |
Z = 4 | 0.80 × 0.20 × 0.02 mm |
Bruker APEXII CCD diffractometer | 3315 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.049 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 35.1°, θmin = 2.4° |
Tmin = 0.564, Tmax = 0.747 | h = −6→6 |
23320 measured reflections | k = −33→34 |
3651 independent reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + 1.660P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
3651 reflections | Δρmax = 1.27 e Å−3 |
114 parameters | Δρmin = −1.92 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The O-bound H atom was located in a difference map and its position was freely refined. The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding atoms. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.05964 (3) | 0.25795 (2) | 0.54095 (2) | 0.01430 (4) | |
O3 | 0.7859 (4) | 0.39459 (9) | 0.91310 (18) | 0.0170 (3) | |
O1 | 0.4603 (4) | 0.56516 (8) | 0.72915 (18) | 0.0180 (3) | |
O2 | 0.7790 (4) | 0.51960 (9) | 0.89865 (19) | 0.0212 (4) | |
C6 | 0.2313 (5) | 0.34266 (10) | 0.6295 (2) | 0.0127 (4) | |
C7 | 0.4516 (5) | 0.34172 (10) | 0.7453 (2) | 0.0128 (4) | |
H7 | 0.522507 | 0.302965 | 0.785568 | 0.015* | |
C8 | 0.5675 (5) | 0.39821 (10) | 0.8018 (2) | 0.0121 (3) | |
C1 | 0.5827 (6) | 0.62513 (11) | 0.7783 (3) | 0.0203 (5) | |
H1A | 0.499780 | 0.658300 | 0.713823 | 0.030* | |
H1B | 0.809060 | 0.624553 | 0.777897 | 0.030* | |
H1C | 0.522278 | 0.633151 | 0.876394 | 0.030* | |
C5 | 0.1189 (5) | 0.39860 (11) | 0.5688 (2) | 0.0161 (4) | |
H5 | −0.033554 | 0.398522 | 0.490504 | 0.019* | |
C3 | 0.4577 (5) | 0.45534 (10) | 0.7425 (2) | 0.0123 (4) | |
C2 | 0.5823 (5) | 0.51534 (11) | 0.7990 (2) | 0.0144 (4) | |
C4 | 0.2359 (5) | 0.45406 (10) | 0.6259 (2) | 0.0156 (4) | |
H4 | 0.163744 | 0.492573 | 0.584857 | 0.019* | |
H3 | 0.836 (8) | 0.4252 (17) | 0.929 (4) | 0.025 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01408 (6) | 0.01099 (7) | 0.01764 (7) | −0.00031 (5) | −0.00056 (4) | −0.00134 (5) |
O3 | 0.0173 (8) | 0.0173 (8) | 0.0153 (7) | 0.0008 (6) | −0.0061 (6) | −0.0004 (6) |
O1 | 0.0241 (8) | 0.0104 (7) | 0.0188 (8) | −0.0031 (6) | −0.0048 (6) | 0.0007 (6) |
O2 | 0.0210 (8) | 0.0204 (9) | 0.0211 (8) | −0.0015 (6) | −0.0083 (6) | −0.0031 (6) |
C6 | 0.0114 (8) | 0.0128 (9) | 0.0138 (9) | −0.0012 (7) | 0.0009 (7) | −0.0017 (7) |
C7 | 0.0128 (9) | 0.0120 (9) | 0.0136 (9) | 0.0008 (7) | 0.0011 (7) | 0.0006 (7) |
C8 | 0.0103 (8) | 0.0155 (9) | 0.0105 (8) | 0.0020 (7) | 0.0003 (6) | 0.0010 (7) |
C1 | 0.0282 (12) | 0.0114 (10) | 0.0211 (11) | −0.0062 (8) | 0.0005 (9) | −0.0021 (8) |
C5 | 0.0178 (10) | 0.0137 (10) | 0.0158 (9) | −0.0004 (7) | −0.0061 (7) | 0.0005 (7) |
C3 | 0.0132 (9) | 0.0108 (9) | 0.0128 (9) | 0.0003 (7) | −0.0010 (7) | 0.0004 (7) |
C2 | 0.0140 (9) | 0.0152 (10) | 0.0138 (9) | −0.0006 (7) | 0.0007 (7) | −0.0011 (7) |
C4 | 0.0179 (10) | 0.0104 (9) | 0.0177 (10) | 0.0002 (7) | −0.0053 (8) | 0.0012 (7) |
I1—C6 | 2.101 (2) | C8—C3 | 1.407 (3) |
O3—C8 | 1.357 (3) | C1—H1A | 0.9800 |
O3—H3 | 0.70 (4) | C1—H1B | 0.9800 |
O1—C1 | 1.447 (3) | C1—H1C | 0.9800 |
O1—C2 | 1.336 (3) | C5—H5 | 0.9500 |
O2—C2 | 1.220 (3) | C5—C4 | 1.379 (3) |
C6—C7 | 1.391 (3) | C3—C2 | 1.472 (3) |
C6—C5 | 1.394 (3) | C3—C4 | 1.400 (3) |
C7—H7 | 0.9500 | C4—H4 | 0.9500 |
C7—C8 | 1.395 (3) | ||
C8—O3—H3 | 107 (3) | H1A—C1—H1C | 109.5 |
C2—O1—C1 | 115.15 (18) | H1B—C1—H1C | 109.5 |
C7—C6—I1 | 119.85 (16) | C6—C5—H5 | 121.0 |
C7—C6—C5 | 121.9 (2) | C4—C5—C6 | 118.0 (2) |
C5—C6—I1 | 118.20 (15) | C4—C5—H5 | 121.0 |
C6—C7—H7 | 120.3 | C8—C3—C2 | 120.44 (19) |
C6—C7—C8 | 119.4 (2) | C4—C3—C8 | 118.89 (19) |
C8—C7—H7 | 120.3 | C4—C3—C2 | 120.63 (19) |
O3—C8—C7 | 116.94 (19) | O1—C2—C3 | 113.23 (18) |
O3—C8—C3 | 123.3 (2) | O2—C2—O1 | 122.9 (2) |
C7—C8—C3 | 119.80 (19) | O2—C2—C3 | 123.8 (2) |
O1—C1—H1A | 109.5 | C5—C4—C3 | 122.0 (2) |
O1—C1—H1B | 109.5 | C5—C4—H4 | 119.0 |
O1—C1—H1C | 109.5 | C3—C4—H4 | 119.0 |
H1A—C1—H1B | 109.5 | ||
I1—C6—C7—C8 | 178.99 (15) | C8—C3—C2—O1 | 178.4 (2) |
I1—C6—C5—C4 | −179.01 (17) | C8—C3—C2—O2 | −1.0 (3) |
O3—C8—C3—C2 | 1.0 (3) | C8—C3—C4—C5 | 0.9 (3) |
O3—C8—C3—C4 | 178.8 (2) | C1—O1—C2—O2 | 1.2 (3) |
C6—C7—C8—O3 | −178.90 (19) | C1—O1—C2—C3 | −178.26 (19) |
C6—C7—C8—C3 | 0.9 (3) | C5—C6—C7—C8 | −0.8 (3) |
C6—C5—C4—C3 | −0.9 (4) | C2—C3—C4—C5 | 178.8 (2) |
C7—C6—C5—C4 | 0.8 (3) | C4—C3—C2—O1 | 0.6 (3) |
C7—C8—C3—C2 | −178.8 (2) | C4—C3—C2—O2 | −178.8 (2) |
C7—C8—C3—C4 | −0.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.70 (4) | 2.05 (4) | 2.670 (3) | 149 (4) |
O3—H3···O2i | 0.70 (4) | 2.53 (4) | 3.087 (2) | 139 (4) |
Symmetry code: (i) −x+2, −y+1, −z+2. |
Footnotes
‡Both authors contributed equally to this work.
Funding information
Funding for this research was provided by: National Science Foundation (award No. DMR-2003932).
References
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cherukuvada, S., Kaur, R. & Guru Row, T. N. (2016). CrystEngComm, 18, 8528–8555. Web of Science CrossRef CAS Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duthie, G. G. & Wood, A. D. (2011). Food Funct. 2, 515–520. Web of Science CrossRef CAS PubMed Google Scholar
Fracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F., Reimer, J. A. & Yaghi, O. M. (2014). J. Am. Chem. Soc. 136, 8863–8866. Web of Science CSD CrossRef CAS PubMed Google Scholar
Franchi, L., Rinaldi, M., Vignaroli, G., Innitzer, A., Radi, M. & Botta, M. (2010). Synthesis, pp. 3927–3933. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, J., Yin, Y., Wang, L., Liang, P., Li, M., Liu, X., Wu, L. & Yang, H. (2016). Molecules, 21, 1544. Web of Science CrossRef PubMed Google Scholar
McClure, M. S., Glover, B., McSorley, E., Millar, A., Osterhout, M. H. & Roschangar, F. (2001). Org. Lett. 3, 1677–1680. Web of Science CrossRef PubMed CAS Google Scholar
Mitchell, T. B., Zhang, X., Jerozal, R. T., Chen, Y.-S., Wang, S. & Benedict, J. B. (2023). IUCrJ, 10, 694–699. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Miyaura, N., Yamada, K. & Suzuki, A. (1979). Tetrahedron Lett. 20, 3437–3440. CrossRef Web of Science Google Scholar
Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S. & Klessig, D. F. (2007). Science, 318, 113–116. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stille, J. K. (1986). Angew. Chem. Int. Ed. Engl. 25, 508–524. CrossRef Web of Science Google Scholar
Yoon, M., Kim, M., Kim, M. H., Kang, J.-G., Sohn, Y. & Kim, I. T. (2019). Inorg. Chim. Acta, 495, 119008. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.